Inverting an Imperfect Model

Tony O'Hagan

Outline

- The objectives of inversion
 - Physical and tuning parameters
 - Imperfect simulators two examples
- Ignoring model discrepancy
 - Results of inverting the examples
 - Implications for learning about physical parameters
- ▶ The simple machine and model discrepancy
 - Simple model discrepancy
 - Modelling discrepancy
 - Nonidentifiability
- Conclusions

The Objectives of Inversion

Inversion as nonlinear regression

• We have a simulator $\eta(x,\theta)$ and observations

$$z_i = \eta(x_i, \theta) + \varepsilon_i$$

- In statistical language this is a nonlinear regression model
 - \blacktriangleright The inversion problem is one of inference about θ
- I'll be assuming the Bayesian paradigm
 - Requires a prior distribution for θ
 - Often assumed to be non-informative
 - Produces a posterior distribution
- Very common approach, but has a major flaw
 - The observations are of the real physical system ζ(.)
 - ▶ And the simulator is invariably imperfect: $\eta(.,\theta) \neq \zeta(.) \forall \theta$

Model discrepancy

We should write

$$z_i = \zeta(x_i) + \varepsilon_i = \eta(x_i, \theta) + \delta(x_i) + \varepsilon_i$$

- where $\delta(.)$ is model discrepancy
- and is an unknown function
- Inference about θ is now clearly more complex
 - No longer just a nonlinear regression problem
 - Some literature on correlated errors
- How important is it?
 - That depends on the objectives of the inversion
 - \blacktriangleright And in particular on the nature of θ

Inversion and the nature of parameters

- Parameters may be physical or just for tuning
 - We adjust tuning parameters so the model fits reality better
 - We are not really interested in their 'true' values
 - Physical parameters are different
 - We are often really interested in true physical values
- What are we inverting for?
 - ▶ To learn about physical parameter values
 - Model discrepancy is hugely important and needs care and thought
 - ▶ To predict reality within context and range of observations
 - Interpolation: model discrepancy is important but easily addressed
 - ▶ To predict reality outside context/range of observations
 - Extrapolation: discrepancy hugely important, needs care and thought

Example 1: A simple machine (SM)

- A machine produces an amount of work y which depends on the amount of effort x put into it
 - Ideally, $y = \beta x$
 - \triangleright Parameter β is the rate at which effort can be converted to work
 - lt's a physical parameter
 - True value of β is β* = 0.65
- Graph shows observed data
 - Points lie below y = 0.65x
 - For large enough x
 - Because of losses due to friction etc.

$$\zeta(x) = 0.65 \times (1 + 0.05 \times)^{-1}$$

Example 2: Hot and cold (HC)

- An object is placed in a hot medium
 - Initially it heats up but then cools as the medium cools
- Simulator

$$\eta(t,\theta) = \theta_1 t \exp(-\theta_2 t)$$

Reality

$$\zeta(t) = 10t(1 + t^2/10)^{-1.5}$$

- θ_1 is initial heating rate, a property of the object
- θ_2 controls the cooling, a property of the medium and setup
- Interested in parameters but also in
 - Maximum temperature ζ_{max} and time t_{max} when max is reached

Meaning of parameters

- What is the relationship between parameters and reality?
 - They don't appear in ζ(.)
 - In the SM example, β is the gradient at the origin
 - Theoretical efficiency only achievable at low inputs
 - ▶ This is well defined for reality, $\beta = 0.65$
 - In the HC example, θ_1 is the gradient at the origin
 - ▶ Again well defined, $\theta_1 = 10$
 - θ_2 is more difficult because in reality cooling is not exponential
 - We define $\theta_2 = 0.413$ from log gradient at point of inflection
 - $ightharpoonup \zeta_{max}$ and t_{max} are not really physical
 - From the simulator, $\zeta_{\text{max}} = \theta_1 \theta_2^{-1} e^{-1}$, $t_{\text{max}} = \theta_2^{-1}$
 - In reality, ζ_{max} = 12.172 and t_{max} = 2.236 depend on θ and the setup

Ignoring model discrepancy

SM assuming no discrepancy

 Following the usual approach, inversion is a simple matter of linear regression through the origin

$$z_i = \beta x_i + \varepsilon_i$$

 Here are some results from various sample sizes spread uniformly over 3 ranges of x values

Range	[0.1,2]	[0.1,4]	[2,6]
n=II	0.549 (0.063)	0.562 (0.029)	0.533 (0.023)
n=31	0.656 (0.038)	0.570 (0.017)	0.529 (0.011)
n=91	0.611 (0.021)	0.571 (0.012)	0.528 (0.007)
n infinite	0.605 (0)	0.565 (0)	0.529 (0)

HC assuming no discrepancy

- ▶ These results are from samples of 91 observations over three different ranges
 - Almost every single posterior distribution is concentrated far from the true value

Range	[0.1,1]	[0.2,2]	[0.4,4]	TRUE
θ_1	10.57 (0.11)	11.11 (0.13)	12.77 (0.19)	10
θ_2	0.159 (0.049)	0.237 (0.023)	0.401 (0.033)	0.413
t _{max}	5.00 (0.47)	3.61 (0.13)	2.52 (0.04)	2.24
ζ_{max}	19.42 (1.55)	14.75 (0.38)	11.85 (0.08)	12.17

The problem is completely general

- Inverting (calibrating, tuning, matching) a wrong model gives parameter estimates that are wrong
 - Not equal to their true physical values − biased
 - With more data we become more sure of these wrong values
- The SM and HC are trivial models, but the same conclusions apply to all models
 - All models are wrong
 - In more complex models it is just harder to see what is going wrong
 - Even with the SM, it takes a lot of data to see any curvature in reality
- What can we do about this?

The Simple Machine and Model Discrepancy

SM revisited

- Kennedy and O'Hagan (2001) introduced discrepancy $\delta(.)$
 - Modelled it as a zero-mean Gaussian process
 - They claimed it acknowledges additional uncertainty
 - And mitigates against over-fitting of θ
- So add this model discrepancy term to the linear model of the simple machine

$$z_i = \beta x_i + \delta(x_i) + \varepsilon_i$$

- With $\delta(.)$ modelled as a zero-mean GP
- Posterior distribution of β now behaves quite differently
- Results here from extensive study of SM in
 - Brynjarsdóttir, J. and O'Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. *Inverse Problems*, 30, 114007 (24pp), November 2014.

SM – inversion, with discrepancy

- Posterior distribution much broader and doesn't get worse with more data
 - But still misses the true value

Interpolation

Main benefit of simple GP model discrepancy is prediction

- Prediction within the range of the data is possible
 - And gets better with more data

But when it comes to extrapolation ...

• ... at x = 6

- More data doesn't help because it's all in the range [0, 4]
- Prediction OK here but gets worse for larger x

Extrapolation

- One reason for wish to learn about physical parameters
 - Should be better for extrapolation than just tuning
- Without model discrepancy
 - ▶ The parameter estimates will be biased
 - Extrapolation will also be biased
 - Because best fitting parameter values are different in different parts of the control variable space
 - With more data we become more sure of these wrong values
- With GP model discrepancy
 - Extrapolating far from the data does not work
 - No information about model discrepancy
 - Prediction just uses the (calibrated) simulator

We haven't solved the problem

- With simple GP model discrepancy the posterior distribution for θ is typically much wider
 - Increases the chance that we cover the true value
 - But is not very helpful
 - And increasing data does not improve the precision
- Similarly, extrapolation with model discrepancy gives wide prediction intervals
 - And may still not be wide enough
- What's going wrong here?

Nonidentifiability

- Formulation with model discrepancy is not identifiable
- For any θ , there is a $\delta(x)$ to match reality perfectly
 - Reality is $r(x) = f(x, \theta) + \delta(x)$
 - ▶ Given θ and r(x), model discrepancy is $\delta(x) = r(x) f(x, \theta)$
- Suppose we had an unlimited number of observations
 - \blacktriangleright We would learn reality's true function r(x) exactly
 - Within the range of the data
 - Interpolation works
 - \blacktriangleright But we would still not learn θ
 - It could in principle be anything
 - And we would still not be able to extrapolate reliably

The joint posterior

- Inversion leads to a joint posterior distribution for θ and $\delta(x)$
- But nonidentifiability means there are many equally good fits $(\theta, \delta(x))$ to the data
 - Induces strong correlation between θ and $\delta(x)$
 - This may be compounded by the fact that simulators often have large numbers of parameters
 - (Near-)redundancy means that different θ values produce (almost) identical predictions
 - Sometimes called equifinality
- Within this set, the prior distributions for θ and $\delta(x)$ count

The importance of prior information

- The nonparametric GP term allows the model to fit and predict reality accurately given enough data
 - Within the range of the data
- But it doesn't mean physical parameters are correctly estimated
 - The separation between original model and discrepancy is unidentified
 - Estimates depend on prior information
 - Unless the real model discrepancy is just the kind expected a priori the physical parameter estimates will still be biased
- To learn about θ in the presence of model discrepancy we need better prior information
 - And this is also crucial for extrapolation

Better prior information

For calibration

- ▶ Prior information about θ and/or $\delta(x)$
- \blacktriangleright We wish to calibrate because prior information about θ is not strong enough
- So prior knowledge of model discrepancy is crucial
 - In the range of the data

▶ For extrapolation

- All this plus good prior knowledge of $\delta(x)$ outside the range of the calibration data
 - That's seriously challenging!
- In the SM, a model for $\delta(x)$ that says it is zero at x = 0, then increasingly negative, should do better

Inference about the physical parameter

- We conditioned the GP
 - $\delta(0) = 0$
 - $\delta'(0) = 0$
 - $\delta'(0.5) < 0$
 - ▶ $\delta'(1.5) < 0$

Prediction

Conclusions

Summary

- Without model discrepancy
 - Inference about physical parameters will be wrong
 - And will get worse with more data
 - ▶ The same is true of prediction
 - Both interpolation and extrapolation
- With crude GP model discrepancy
 - Interpolation inference is OK
 - And gets better with more data
 - But we still get physical parameters and extrapolation wrong
- ▶ The better our prior knowledge about model discrepancy
 - ▶ The more chance we have of getting physical parameters right
 - Also extrapolation
 - But then we need even better prior knowledge