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The Objectives of Inversion
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Inversion as nonlinear regression
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 We have a simulator η(x,θ) and observations

zi = η(xi,θ) + εi

 In statistical language this is a nonlinear regression model

 The inversion problem is one of inference about θ

 I’ll be assuming the Bayesian paradigm

 Requires a prior distribution for θ

 Often assumed to be non-informative

 Produces a posterior distribution

 Very common approach, but has a major flaw

 The observations are of the real physical system ζ(.)

 And the simulator is invariably imperfect:  η(.,θ) ≠ ζ(.) θ



Model discrepancy
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 We should write

zi = ζ(xi) + εi = η(xi,θ) + δ(xi) + εi

 where δ(.) is model discrepancy

 and is an unknown function

 Inference about θ is now clearly more complex

 No longer just a nonlinear regression problem

 Some literature on correlated errors

 How important is it?

 That depends on the objectives of the inversion

 And in particular on the nature of θ



Inversion and the nature of parameters

 Parameters may be physical or just for tuning

 We adjust tuning parameters so the model fits reality better

 We are not really interested in their ‘true’ values

 Physical parameters are different

 We are often really interested in true physical values

 What are we inverting for?

 To learn about physical parameter values

 Model discrepancy is hugely important and needs care and thought

 To predict reality – within context and range of observations

 Interpolation:  model discrepancy is important but easily addressed

 To predict reality – outside context/range of observations

 Extrapolation:  discrepancy hugely important, needs care and thought
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Example 1:  A simple machine (SM)

 A machine produces an amount of work y which depends 

on the amount of effort x put into it

 Ideally,   y = βx

 Parameter β is the rate at which effort can be converted to work

 It’s a physical parameter

 True value of β is β* = 0.65

 Graph shows observed data

 Points lie below y = 0.65x

 For large enough x

 Because of losses due to 

friction etc.

ζ(x) = 0.65x(1 + 0.05x)–1
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Example 2: Hot and cold (HC)
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 An object is placed in a hot medium

 Initially it heats up but then cools as the medium cools

 Simulator 

η(t,θ) = θ1t exp(–θ2t)

 Reality

ζ(t) = 10t (1 + t2/10)–1.5

 Parameters are physical

 θ1 is initial heating rate, a property of the object

 θ2 controls the cooling, a property of the medium and setup

 Interested in parameters but also in

 Maximum temperature ζmax and time tmax when max is reached
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Meaning of parameters
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 What is the relationship between parameters and reality?

 They don’t appear in ζ(.) 

 In the SM example, β is the gradient at the origin

 Theoretical efficiency only achievable at low inputs

 This is well defined for reality,  β = 0.65

 In the HC example, θ1 is the gradient at the origin

 Again well defined,  θ1 = 10

 θ2 is more difficult because in reality cooling is not exponential

 We define θ2 = 0.413 from log gradient at point of inflection

 ζmax and tmax are not really physical

 From the simulator,  ζmax = θ1θ2
–1e–1,  tmax= θ2

–1

 In reality,  ζmax = 12.172 and tmax = 2.236 depend on θ and the setup



Ignoring model discrepancy

Inverting Imperfect Model,   Warwick,10 2/2/2014



SM assuming no discrepancy
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 Following the usual approach, inversion is a simple matter 

of linear regression through the origin

zi = βxi + εi

 Here are some results from various sample sizes spread 

uniformly over 3 ranges of x values

Range [0.1,2] [0.1,4] [2,6]

n=11 0.549 (0.063) 0.562 (0.029) 0.533 (0.023)

n=31 0.656 (0.038) 0.570 (0.017) 0.529 (0.011)

n=91 0.611 (0.021) 0.571 (0.012) 0.528 (0.007)

n infinite 0.605 (0) 0.565 (0) 0.529 (0)



HC assuming no discrepancy
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 These results are from samples of 91 observations over 

three different ranges

 Almost every single posterior distribution is concentrated far 

from the true value

Range [0.1,1] [0.2,2] [0.4,4] TRUE

θ₁ 10.57 (0.11) 11.11 (0.13) 12.77 (0.19) 10

θ₂ 0.159 (0.049) 0.237 (0.023) 0.401 (0.033) 0.413

tmax 5.00 (0.47) 3.61 (0.13) 2.52 (0.04) 2.24

ζmax 19.42 (1.55) 14.75 (0.38) 11.85 (0.08) 12.17



The problem is completely general
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 Inverting (calibrating, tuning, matching) a wrong model 

gives parameter estimates that are wrong

 Not equal to their true physical values – biased 

 With more data we become more sure of these wrong values

 The SM and HC are trivial models, but the same 

conclusions apply to all models

 All models are wrong

 In more complex models it is just harder to see what is going 

wrong

 Even with the SM, it takes a lot of data to see any curvature in 

reality

 What can we do about this?



The Simple Machine and Model 

Discrepancy
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SM revisited

 Kennedy and O’Hagan (2001) introduced discrepancy δ(.)

 Modelled it as a zero-mean Gaussian process

 They claimed it acknowledges additional uncertainty

 And mitigates against over-fitting of θ

 So add this model discrepancy term to the linear model of the 
simple machine

zi = βxi + δ(xi) + εi

 With δ(.) modelled as a zero-mean GP

 Posterior distribution of β now behaves quite differently

 Results here from extensive study of SM in

 Brynjarsdóttir, J. and O'Hagan, A. (2014). Learning about physical 
parameters: The importance of model discrepancy. Inverse Problems, 
30, 114007 (24pp), November 2014.
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SM – inversion, with discrepancy
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 Posterior distribution much broader and doesn’t get 
worse with more data
 But still misses the true value



Interpolation 

2/2/2014Inverting Imperfect Model,   Warwick,17

 Main benefit of simple GP model discrepancy is prediction

 E.g. at x = 1.5

 Prediction within the range of the data is possible

 And gets better with more data



But when it comes to extrapolation …
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 … at x = 6

 More data doesn’t help because it’s all in the range [0, 4]

 Prediction OK here but gets worse for larger x



Extrapolation 
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 One reason for wish to learn about physical parameters

 Should be better for extrapolation than just tuning

 Without model discrepancy 

 The parameter estimates will be biased

 Extrapolation will also be biased

 Because best fitting parameter values are different in different parts of 

the control variable space

 With more data we become more sure of these wrong values

 With GP model discrepancy

 Extrapolating far from the data does not work

 No information about model discrepancy

 Prediction just uses the (calibrated) simulator



We haven’t solved the problem

2/2/2014Inverting Imperfect Model,   Warwick,20

 With simple GP model discrepancy the posterior 

distribution for θ is typically much wider

 Increases the chance that we cover the true value

 But is not very helpful

 And increasing data does not improve the precision

 Similarly, extrapolation with model discrepancy gives wide 

prediction intervals

 And may still not be wide enough

 What’s going wrong here?



Nonidentifiability
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 Formulation with model discrepancy is not identifiable

 For any θ, there is a δ(x) to match reality perfectly

 Reality is r(x) = f(x, θ) + δ(x)

 Given θ and r(x), model discrepancy is δ(x) = r(x) – f(x, θ)

 Suppose we had an unlimited number of observations

 We would learn reality’s true function r(x) exactly

 Within the range of the data

 Interpolation works

 But we would still not learn θ

 It could in principle be anything

 And we would still not be able to extrapolate reliably



The joint posterior
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 Inversion leads to a joint posterior distribution for θ and 

δ(x)

 But nonidentifiability means there are many equally good 

fits (θ, δ(x)) to the data

 Induces strong correlation between θ and δ(x)

 This may be compounded by the fact that simulators often 

have large numbers of parameters

 (Near-)redundancy means that different θ values produce (almost) 

identical predictions

 Sometimes called equifinality

 Within this set, the prior distributions for θ and δ(x) count



The importance of prior information

 The nonparametric GP term allows the model to fit and 
predict reality accurately given enough data

 Within the range of the data

 But it doesn’t mean physical parameters are correctly 
estimated

 The separation between original model and discrepancy is 
unidentified

 Estimates depend on prior information

 Unless the real model discrepancy is just the kind expected a 
priori the physical parameter estimates will still be biased

 To learn about θ in the presence of model discrepancy 
we need better prior information

 And this is also crucial for extrapolation
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Better prior information
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 For calibration

 Prior information about θ and/or δ(x)

 We wish to calibrate because prior information about θ is not 

strong enough

 So prior knowledge of model discrepancy is crucial

 In the range of the data

 For extrapolation

 All this plus good prior knowledge of δ(x) outside the range of 

the calibration data

 That’s seriously challenging!

 In the SM, a model for δ(x) that says it is zero at x = 0, then 

increasingly negative, should do better



Inference about the physical parameter
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 We conditioned 

the GP

 δ(0) = 0

 δ′(0) = 0

 δ′(0.5) < 0

 δ′(1.5) < 0



Prediction     
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 x = 1.5                                           x = 6



Conclusions
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Summary
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 Without model discrepancy

 Inference about physical parameters will be wrong

 And will get worse with more data

 The same is true of prediction 

 Both interpolation and extrapolation

 With crude GP model discrepancy

 Interpolation inference is OK

 And gets better with more data

 But we still get physical parameters and extrapolation wrong

 The better our prior knowledge about model discrepancy 

 The more chance we have of getting physical parameters right

 Also extrapolation 

 But then we need even better prior knowledge


