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Introduction

Geometric Inverse Problems

Petroleum reservoir’ Seismic imaging®
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Model Problems: Source Problem

Forward Model
Given f = 1p with D C D, find v € H{ (D) satisfying

—Av=finD, v=00ndD

Inverse Problem
Given the noisy boundary measurement data

y= 1)+, witn 20) = {1 (5 )}N

Ov 6D =1

and noise 7, find the domain D.
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Model Problems: Groundwater Flow Problem

Darcy Flow Model

-V - (kVp)=f, x€D
p=0, x€0ID
with permeability k = >, ki1p,. Given f € H '(D) and , find
p € Hj (D).
Inverse Problem
Given noisy data

y = L(p) +n, with L(p) = {£; ()},

with noise 7, find the domains {D;}¥,.
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Geometry Representations

Explicit Geometry

e Boundaries by

parameterization
A
(@) = (2(s),y(s))
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Geometry Representations

Explicit Geometry Implicit Geometry
e Boundaries by e Boundaries as zero level set
parameterization

F 3
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Inversion Methods

Q Optimization method (shape derivative + regularization)
o Geometry parameterization
Hettlich-Rundell 1996, Hohage 1997.
o Level set representation
Santosa 1996, Burger 2001, Iglesias and McLaughlin 2011.
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Inversion Methods

Q Optimization method (shape derivative + regularization)
o Geometry parameterization
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@ Bayesian inference

o Geometry parameterization
Kaipio and Somersalo 2005, Bui-Thanh and Ghattas 2014, Iglesias, Lin
and Stuart 2014
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Bayesian Level Set Method

Level Set Formulation

Given constants —0o = ¢y < ¢; < -+ < ¢, = 00, let D = U?:lﬁ- where

Di={xeD|c1<ulx)<c},i=1,---,n,
DY =D;NDys = {x € D] ulx) = ¢;}

where u is the level set function. The level set map F is defined by

F:u(x) — f(x) = Zfz 1p,(x)

which maps the level set function to the physical parameter in the model.

Here f;,i =1, - - , n are constants known a priori.
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Bayesian Level Set Method

Bayesian Level Set Method

Geometric Inverse problem: determine u from noisy data y
y=6(u) +1n

where the observational operator G : U — Y := R7 takes the form
G=LoGoF

with geometric operator F : U — X, forward operator G : X — V and
observation operator L : V. — Y.
Bayesian approach:

Prior measure po on u + the data likelihood y|u

Bayes . y
— Posterior measure )2

Uncertainty for Inverse Problems
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Bayesian Level Set Method

Theoretical Foundations

o Existence

Given the Gaussian Prior u ~ i, noise n ~ Qy = N (0,T), let
®(u;y) = 3|y — G(u)

17 (du) o< exp (—P(u; y)) pro(du)

e Well-posedness

%, then the posterior

1Y is locally Lipschitz with respect to y, in Hellinger distance.
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Bayesian Level Set Method

Minimization Versus Bayesian

@ Minimization Approach

Find % such that
u = argmin{®(u; y) + A\R(u)}

Classial minimization technique fails to work because u — ®(u; y) is
discontinuous.

@ Bayesian Approach

Putting a Gaussian prior on u, the map u — ®(u; y) is continuous
almost surely, i.e. the discontinuity set of ®(u; y) has prior measure
zero.
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Numerical Experiments

Inverse Source Problem

True D Measurement locations

Prior py = N(0,C) where the covariance C is given by

Co(x) = /DK(x, y)¢(y)dy with K(x, y) = exp (—M>
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Numerical Experiments

Inverse Source Problem: Effect of Prior Length-Scale I

From left to right prior length-scale: 0.1,0.15,0.2,0.3, 0.4.

Mean of level set functions

o o o T T

Map forward onto f

Mean of f

P B B B B

Variance of f
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Numerical Experiments

Inverse Source Problem: Effect of Prior Length-Scale II

From left to right prior length-scale: 0.1,0.15,0.2,0.3, 0.4.

An arbitrary (level-set function) sample from the posterior

push forward of (level-set function) sample from the posterior
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Numerical Experiments: Groundwater Flow

True log(K Measurement locations
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Numerical Experiments

Groundwater Flow: Effect of Prior Length-Scale I

From left to right prior length-scale: 0.2,0.3,0.4, 0.5.

Mean of level set functions
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Groundwater Flow: Effect of Prior Length-Scale II

From left to right prior length-scale: 0.2,0.3, 0.4, 0.5.

Samples from the posterior on level-set function
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Numerical Experiments
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