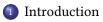
Bayesian Level Set Method for Piecewise Geometry Reconstruction

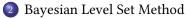
Yulong Lu

with Marco Iglesias (Nottingham) and Andrew Stuart (Warwick)

Uncertainty in Complex Computer Models

February 2, 2015



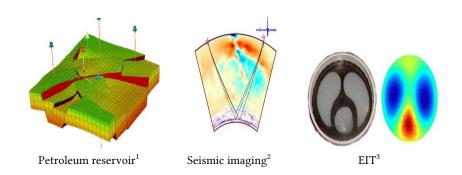


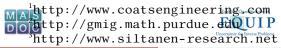
Yulong Lu (Warwick)

Bayesian Level Set Method

Introduction

Geometric Inverse Problems





Introduction

Model Problems: Source Problem

Forward Model Given $f = \mathbf{1}_D$ with $D \subset \tilde{D}$, find $v \in H_0^1(\tilde{D})$ satisfying

$$-\Delta v = f ext{ in } ilde{D}, \quad v = 0 ext{ on } \partial ilde{D}$$

Inverse Problem

Given the noisy boundary measurement data

$$y = L(v) + \eta$$
, with $L(v) = \left\{ \ell_j \left(\frac{\partial v}{\partial \nu} \Big|_{\partial \tilde{D}} \right) \right\}_{j=1}^N$

and noise η , find the domain *D*.

Introduction

Model Problems: Groundwater Flow Problem

Darcy Flow Model

$$-
abla \cdot (\kappa \nabla p) = f, \quad x \in D$$

 $p = 0, \quad x \in \partial D$

with permeability $\kappa = \sum_{i=1}^{n} \kappa_i \mathbf{1}_{D_i}$. Given $f \in H^{-1}(D)$ and κ , find $p \in H^1_0(D)$. **Inverse Problem**

Given noisy data

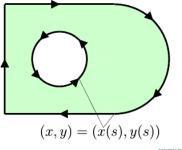
$$y = L(p) + \eta$$
, with $L(p) = \{\ell_j(p)\}_{j=1}^N$

with noise η , find the domains $\{D_i\}_{i=1}^N$.

Geometry Representations

Explicit Geometry

• Boundaries by parameterization



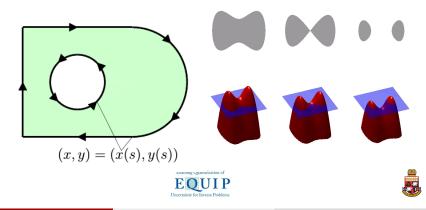
Geometry Representations

Explicit Geometry

• Boundaries by parameterization

Implicit Geometry

• Boundaries as zero level set



Inversion Methods

Optimization method (shape derivative + regularization)

- Geometry parameterization Hettlich-Rundell 1996, Hohage 1997.
- Level set representation

Santosa 1996, Burger 2001, Iglesias and McLaughlin 2011.

Inversion Methods

Optimization method (shape derivative + regularization)

- Geometry parameterization Hettlich-Rundell 1996, Hohage 1997.
- Level set representation

Santosa 1996, Burger 2001, Iglesias and McLaughlin 2011.

Bayesian inference

• Geometry parameterization

Kaipio and Somersalo 2005, Bui-Thanh and Ghattas 2014, Iglesias, Lin and Stuart 2014

Inversion Methods

Optimization method (shape derivative + regularization)

- Geometry parameterization Hettlich-Rundell 1996, Hohage 1997.
- Level set representation

Santosa 1996, Burger 2001, Iglesias and McLaughlin 2011.

Bayesian inference

• Geometry parameterization

Kaipio and Somersalo 2005, Bui-Thanh and Ghattas 2014, Iglesias, Lin and Stuart 2014

• Level set representation

Bayesian Levl Set !

Level Set Formulation

Given constants $-\infty = c_0 < c_1 < \cdots < c_n = \infty$, let $\overline{D} = \bigcup_{i=1}^n \overline{D_i}$ where

$$egin{aligned} D_i &= \{x \in D \mid c_{i-1} \leq u(x) < c_i\}, i = 1, \cdots, n, \ D_i^0 &= \overline{D_i} \cap \overline{D_{i+1}} = \{x \in D \mid u(x) = c_i\} \end{aligned}$$

where u is the **level set function**. The **level set map** F is defined by

$$F: u(x) \to f(x) = \sum_{i=1}^n f_i \mathbf{1}_{D_i}(x)$$

which maps the level set function to the physical parameter in the model. Here f_i , $i = 1, \dots, n$ are constants known a priori.

Bayesian Level Set Method

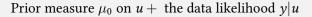
Geometric Inverse problem: determine *u* from noisy data *y*

$$y = \mathcal{G}(u) + \eta$$

where the observational operator $\mathcal{G}: U \to Y := \mathbb{R}^{\mathcal{I}}$ takes the form

 $\mathcal{G} = L \circ G \circ F$

with geometric operator $F : U \to X$, forward operator $G : X \to V$ and observation operator $L : V \to Y$. Bayesian approach:



 $\stackrel{\text{Bayes}}{\Longrightarrow}$ Posterior measure μ^{γ}

Uncertainty for Inverse Problems

Theoretical Foundations

• Existence

Given the Gaussian Prior $u \sim \mu_0$, noise $\eta \sim \mathbb{Q}_0 = \mathcal{N}(0, \Gamma)$, let $\Phi(u; y) = \frac{1}{2} |y - \mathcal{G}(u)|_{\Gamma}^2$, then the posterior

$$\mu^y(du) \propto \exp\left(-\Phi(u;y)
ight) \mu_0(du)$$

Well-posedness

 μ^y is locally Lipschitz with respect to y, in Hellinger distance.

Minimization Versus Bayesian

Minimization Approach

Find \overline{u} such that

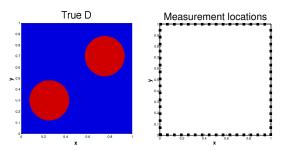
$$\overline{u} = \arg\min_{u} \{\Phi(u; y) + \lambda R(u)\}$$

Classial minimization technique fails to work because $u \mapsto \Phi(u; y)$ is discontinuous.

Bayesian Approach

Putting a Gaussian prior on u, the map $u \mapsto \Phi(u; y)$ is continuous almost surely, i.e. the discontinuity set of $\Phi(u; y)$ has prior measure zero.

Inverse Source Problem



Prior $\mu_0 = \mathcal{N}(0, \mathcal{C})$ where the covariance \mathcal{C} is given by

$$\mathcal{C}\varphi(x) = \int_D K(x, y)\varphi(y)dy$$
 with $K(x, y) = \exp\left(-\frac{|x-y|^2}{2\varepsilon^2}\right)$

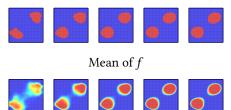
Enabling Quantification of EQUIP Numerical Experiments

Inverse Source Problem: Effect of Prior Length-Scale I

From left to right prior length-scale: 0.1, 0.15, 0.2, 0.3, 0.4.

Mean of level set functions

Map forward onto \boldsymbol{f}



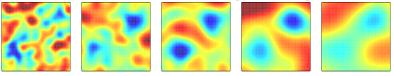
Variance of f

Bayesian Level Set Method

Inverse Source Problem: Effect of Prior Length-Scale II

From left to right prior length-scale: 0.1, 0.15, 0.2, 0.3, 0.4.

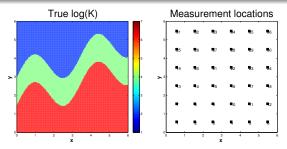
An arbitrary (level-set function) sample from the posterior



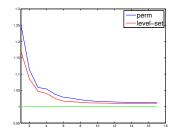
push forward of (level-set function) sample from the posterior

Numerical Experiments

Numerical Experiments: Groundwater Flow



Gelman-Rubin inter-chain statistic:

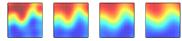


Numerical Experiments

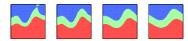
Groundwater Flow: Effect of Prior Length-Scale I

From left to right prior length-scale: 0.2, 0.3, 0.4, 0.5.

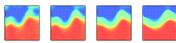
Mean of level set functions



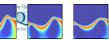
Map forward onto κ



Mean of κ



Variance of κ



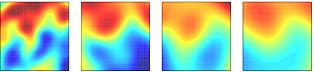
Yulong Lu (Warwick)

Bayesian Level Set Method

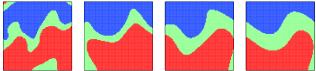
Groundwater Flow: Effect of Prior Length-Scale II

From left to right prior length-scale: 0.2, 0.3, 0.4, 0.5.

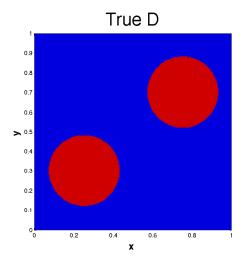
Samples from the posterior on level-set function



and corresponding permeability functions



Enabling Quantification of



Yulong Lu (Warwick)

Bayesian Level Set Method

E

Enabling Quantification of

Uncertainty for Inverse Problems

P

References

T. Bui-Thanh, and O. Ghattas.

An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation.

SIAM/ASA Journal on Uncertainty Quantification 2.1 (2014): 203-222.

M.A. Iglesias, K. Lin and A. M. Stuart

Well-posed Bayesian geometric inverse problems arising in subsurface flow. *Inverse Problems*, 30 (2014) 114001.

M. A. Iglesias, Y. Lu and A. M. Stuart

A level-set approach to Bayesian geometric inverse problems. *In Preparation*, 2015.

F. Santosa

A level-set approach for inverse problems involving obstacles. ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 17-33.

