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Introduction

Geometric Inverse Problems

Petroleum reservoir1 Seismic imaging2 EIT3

1http://www.coatsengineering.com
2http://gmig.math.purdue.edu
3http://www.siltanen-research.net
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Introduction

Model Problems: Source Problem

Forward Model
Given f = 1D with D ⊂ D̃, �nd v ∈ H 1

0 (D̃) satisfying

−∆v = f in D̃, v = 0 on ∂D̃

Inverse Problem
Given the noisy boundary measurement data

y = L(v) + η, with L(v) =

{
`j

(
∂v
∂ν

∣∣∣
∂D̃

)}N

j=1

and noise η, �nd the domain D.
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Introduction

Model Problems: Groundwater Flow Problem

Darcy Flow Model

−∇ · (κ∇p) = f , x ∈ D

p = 0, x ∈ ∂D

with permeability κ =
∑n

i=1 κi1Di . Given f ∈ H−1(D) and κ, �nd
p ∈ H 1

0 (D).
Inverse Problem
Given noisy data

y = L(p) + η, with L(p) = {`j (p)}Nj=1

with noise η, �nd the domains {Di}Ni=1.
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Introduction

Geometry Representations

Explicit Geometry
Boundaries by
parameterization

Implicit Geometry
Boundaries as zero level set
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Introduction

Inversion Methods

1 Optimization method (shape derivative + regularization)
Geometry parameterization

Hettlich-Rundell 1996, Hohage 1997.
Level set representation

Santosa 1996, Burger 2001, Iglesias and McLaughlin 2011.

2 Bayesian inference
Geometry parameterization

Kaipio and Somersalo 2005, Bui-Thanh and Ghattas 2014, Iglesias, Lin
and Stuart 2014
Level set representation

Bayesian Levl Set !
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Bayesian Level Set Method

Level Set Formulation

Given constants −∞ = c0 < c1 < · · · < cn =∞, let D = ∪ni=1Di where

Di = {x ∈ D | ci−1 ≤ u(x) < ci}, i = 1, · · · , n,
D0
i = Di ∩ Di+1 = {x ∈ D | u(x) = ci}

where u is the level set function. The level set map F is de�ned by

F : u(x)→ f (x) =

n∑
i=1

fi 1Di(x)

which maps the level set function to the physical parameter in the model.
Here fi, i = 1, · · · , n are constants known a priori.
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Bayesian Level Set Method

Bayesian Level Set Method

Geometric Inverse problem: determine u from noisy data y

y = G(u) + η

where the observational operator G : U → Y := RJ takes the form

G = L ◦ G ◦ F

with geometric operator F : U → X , forward operator G : X → V and
observation operator L : V → Y .
Bayesian approach:

Prior measure µ0 on u + the data likelihood y|u
Bayes
=⇒ Posterior measure µy
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Bayesian Level Set Method

Theoretical Foundations

Existence

Given the Gaussian Prior u ∼ µ0, noise η ∼ Q0 = N (0,Γ), let
Φ(u; y) = 1

2 |y − G(u)|2Γ, then the posterior

µy(du) ∝ exp (−Φ(u; y))µ0(du)

Well-posedness

µy is locally Lipschitz with respect to y, in Hellinger distance.
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Bayesian Level Set Method

Minimization Versus Bayesian

Minimization Approach

Find u such that

u = arg min
u
{Φ(u; y) + λR(u)}

Classial minimization technique fails to work because u 7→ Φ(u; y) is
discontinuous.
Bayesian Approach

Putting a Gaussian prior on u, the map u 7→ Φ(u; y) is continuous
almost surely, i.e. the discontinuity set of Φ(u; y) has prior measure
zero.
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Numerical Experiments

Inverse Source Problem
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Prior µ0 = N (0, C) where the covariance C is given by

Cϕ(x) =

∫
D
K(x, y)ϕ(y)dy with K(x, y) = exp

(
−|x − y|2

2ε2

)
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Numerical Experiments

Inverse Source Problem: E�ect of Prior Length-Scale I
From left to right prior length-scale: 0.1, 0.15, 0.2, 0.3, 0.4.

Mean of level set functions

Map forward onto f

Mean of f

Variance of f
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Numerical Experiments

Inverse Source Problem: E�ect of Prior Length-Scale II

From left to right prior length-scale: 0.1, 0.15, 0.2, 0.3, 0.4.

An arbitrary (level-set function) sample from the posterior

push forward of (level-set function) sample from the posterior
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Numerical Experiments

Numerical Experiments: Groundwater Flow
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Gelman-Rubin inter-chain statistic:
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Numerical Experiments

Groundwater Flow: E�ect of Prior Length-Scale I
From left to right prior length-scale: 0.2, 0.3, 0.4, 0.5.

Mean of level set functions

Map forward onto κ

Mean of κ

Variance of κ
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Numerical Experiments

Groundwater Flow: E�ect of Prior Length-Scale II

From left to right prior length-scale: 0.2, 0.3, 0.4, 0.5.

Samples from the posterior on level-set function

and corresponding permeability functions
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Numerical Experiments
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Numerical Experiments
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