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Introduction - General theory

Problem

Want to estimate expectations of functions f wrt an intractable measure L,

E.[f] :=E,[f()]

. . id
@ Would like to use Monte Carlo estimator: for X(™ < 1 let

1 M
| (m)
Yv = _M E : f(X )

For all M
E[Yu] = E,[f] ( Yy unbiased)

and
Y —os E,[f], almost surely (Y, consistent)

@ Intractability of u forces the use of approximations 1; introducing bias.



Introduction - General theory

Debiasing idea - John von Neumann, Stanislaw Ulam

@ We study unbiased estimation of E ,[f] using biased samples.
o Assume E, [f] - E,[f]
@ Let X; ~ p; and define A; := f(X;) — f(Xi_1).

o |f Fubini applies

©.@)

B[] = Y (Bulf] — By [f]) = D_EA<E} A,

=1

@ > . A, is unbiased but requires infinite computing time.



Introduction - General theory

Debiasing idea - John von Neumann, Stanislaw Ulam

N integer-valued r.v. independent of A;, s.t. P(N > i) > 0,Vi.

o |f Fubini applies then Z unbiased

~ Liv=nAi | 7 = E[lpns=pA] <
E(Z]| =K — = = = EA; =E,|f].
P LS B L LIS

@ To be practical, Z needs to have finite variance and finite expected computing time.



Introduction - General theory

Unbiasing theory of Glynn and Rhee

Proposition (GR13)

Assume
18 1A]l2 HA£”2
(N > i)
i</
Then Z := 3N 0T N>) is an unbiased estimator for [E,[f] with finite variance.

Can use A; copy of A s.t. {A,-} mutually independent.

@ t; expected cost of generating A;. Expected computing time of Z
N 00
= EZI’,’ = Zt,P(N > I)
i=0 i=0

@ To be possible to choose P(N > i) s.t. Z practical, suffices to generate A;'s with
correct expectation s.t. ||A;||3 decays sufficiently faster than t; blows-up.



UQ example

Example - Contamination scenario

o V.w=h, xeD
o o p=0, xeag
- o v=-uVp, xIED
-
.
-

- u permeability field -

- p pressure =

- v Darcy velocity s .

_p = G(u) s a "

v: :A:.”. ";A“"V:\\:..V‘u.-.w."‘ ww -

Quantity of interest: f(u) = E[inf{|z(t)| > R}]

t>0



UQ example

Example - UQ in contamination scenario

Permeability field v unknown, have prior information u ~ .
o Vanilla-UQ: probe 1190 f 1, e.g. estimate E, [f(u)].

@ Have noisy indirect measurements of pressure: data model in R’
y =G(u)+n, n~ N(QO,T).
Formulate Bayesian inverse problem (see DS13), ©¥ posterior on uly

au, BETT
Vi) e (v~ GWIP)

BIP-UQ: probe 1/ o f 1, e.g. estimate E,[f(u)].

- pto is oo-dim, needs to be approximated by i, in R’ introducing discretization bias (ARV14).

- cannot sample 1+ directly, construct Markov chain targeting 1, use finite-time distributions 1%
burn-in time issues (GR13, ARV14).

- to implement in computer construct Markov chain targeting approximation (! in R', use finite-time
distributions ,uf-/’k introducing discretization bias and burn-in time issues (ARV14).




Removing specific sources of bias

Removing discretization bias

o X = [2[0,1], {¢¢} complete orthonormal basis.

@ /v Gaussian measure in X given via the Karhunen-Loeve expansion:

- i 1
p=AL (Z 53&W> C &R N0O,1), a> >
=1

o To estimate E,[f], need to truncate introducing discretization bias in MC estimators.
(Vanilla-UQ example)

Aim: unbiasedly estimate IE,[f] in finite time. J

@ Approximations ; = L ( Jé":l Ea&w), {ji} increasing.

o A,‘ = f(u,-) — f(u,-_l), uip ~ ;.



Removing specific sources of bias

Removing discretization bias

Theorem 1 (ARV14)
Assume a > 1 and f Lipschitz. Then 3 choices j; and P(N > i), s.t. Z = vazl

A
PN>)) 2

unbiased estimator of [E,[f] with finite variance and finite expected computing time.

- Consider j; = 2. Use Proposition.
- Cost of A, t; = O(j;) = O(2)  (# N(0,1) draws).
- Bound
|83 = E(If () = F(ui1)?) < 15 E(lur = uia?) = O@272),

- ||Aj]|5 decays sufficiently faster than t; blows-up.
- Can choose P(N > i) s.t. E(7), Var(Z) < 0.




Removing specific sources of bias

Removing burn-in time bias

@ X general state space, d distance in X, f d-Lipschitz.

@ Measure 11 intractable, cannot be sampled directly but can construct X = (X},)pen
Markov chain with stationary distribution .

@ {a;} increasing sequence of positive integers.

@ To estimate [E ,[f], use finite-time distributions ; = L£(Xj,) introducing burn-in issues.

Aim: unbiasedly estimate E ,[f] in finite time.




Removing specific sources of bias

Removing burn-in time bias

@ Weak convergence of 11; not enough to get convergence of A;.

@ Contracting coupling assumption: we can simultaneously generate chains started at
different states s.t. they come together in d geometrically quickly.

@ Use top level chain 7. running for a; steps and bottom level chain B’ running for a;_;
steps, coupled as follows:

X0:Bi BI B(l)

—dj—1 —do

o !I_}Afo(’fc)’)—f(Bé)

XOZ’T_iai Ti 76

—aj—1 °°



Removing specific sources of bias

Removing burn-in time bias

Theorem 2 (ARV14)

3 choices a; and P(N > i), s.t. Z = vazl P(ﬁle.) is unbiased estimator of E,[f] with

finite variance and finite expected computing time.

- Use Proposition.

- Using assumptions, can show ||A;|[3 < ||f'||%. Ed? (75, Bp) < cr.
- Cost of A, tj = O(a;)  (# steps).

- [|Aj||5 decays sufficiently faster than t; blows-up.

- Can choose P(N > i) s.t. E(7), Var(Z) < 0.




Removing specific sources of bias

UE for BIP-UQ in function space

@ Combining can perform UE of EE,[f] for u both oo-dim and only accessible in the limit
of a Markov chain (BIP-UQ example).

o Approximation using finite-time distributions and discretizing space: top chain 7
more steps and higher discretization level than bottom chain 5’
ji—l : X0 — Bi—a,-_l Bi—ao Bé) . .
| | b FA=1(Ty) — £(By)
Jit o xo= T!, ... T, ... Ty

@ In ARV14, achieve this:

1. in non-linear BIPs (e.g. groundwater flow example) with uniform priors, using independence sampler;

2. for targets 1 which have Lipschitz log-density wrt Gaussian, using pCN algorithm.
(MH with proposal X1 = AXk + V1 — A%€)



Performance/Optimization

Comparison of Unbiased Estimator vs Ergodic Average

@ 1d Gaussian autoregression

Xot1=pXo+ V1= p?&nia,
€ (0,1), &, i.id. N(0,1).
e Ergodic with invariant distribution ;o = N(0, 1). Estimate E ,[Id] = 0.
@ Compare MSE-work product of Monte Carlo estimator based on UE vs EA.

@ For EA |+
lim MSE-work = ——— Tyep.
1—p

n—o0

@ For UE have non-asymptotic expression for MSE-work product, depending on a; and
P(N > i). Optimize by minimizing wrt a; and P(N > i): hard!



Performance/Optimization

Comparison of Unbiased Estimator vs Ergodic Average
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Figure: 1) Left: optimized P(N > i) for fixed a; = 4(i + 1) (as in GR13), 2) Right: optimized P(N > i)
and a; over subclass a; = m(i + 1).




Conclusions

Conclusions - further work

@ UE is often feasible.
@ Optimization wrt parameters is crucial especially in function space setting.
@ UE easily parallelizable: a) use independent copies of Z, b) A;’s independent.

@ UE seems competitive. Looking forward to comparisons in problems of higher
complexity (e.g. BIP-UQ example).
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