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Problem

Want to estimate expectations of functions f wrt an intractable measure µ,
Eµ[f ] := Eµ[f (·)].

Would like to use Monte Carlo estimator: for X (m) iid∼ µ let

YM :=
1

M

M∑
m=1

f (X (m)).

For all M
E[YM] = Eµ[f ] (YM unbiased)

and
YM

M−→ Eµ[f ], almost surely (Ym consistent)

Intractability of µ forces the use of approximations µi introducing bias.
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Debiasing idea - John von Neumann, Stanislaw Ulam

We study unbiased estimation of Eµ[f ] using biased samples.

Assume Eµi [f ]
i→ Eµ[f ].

Let Xi ∼ µi and define ∆i := f (Xi)− f (Xi−1).

If Fubini applies

Eµ[f ] =
∞∑
i=1

(Eµi [f ]− Eµi−1
[f ]) =

∞∑
i=1

E∆i
?
= E

∞∑
i=1

∆i .

∑∞
i=1 ∆i is unbiased but requires infinite computing time.
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Debiasing idea - John von Neumann, Stanislaw Ulam

Z :=
N∑
i=0

∆i

P(N ≥ i)
,

N integer-valued r.v. independent of ∆i , s.t. P(N ≥ i) > 0,∀i .

If Fubini applies then Z unbiased

E[Z ] = E

[ ∞∑
i=0

1{N≥i}∆i

P(N ≥ i)

]
?
=
∞∑
i=0

E[1{N≥i}∆i ]

P(N ≥ i)
=
∞∑
i=0

E∆i = Eµ[f ].

To be practical, Z needs to have finite variance and finite expected computing time.
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Unbiasing theory of Glynn and Rhee

Proposition (GR13)

Assume ∑
i≤`

‖∆i‖2‖∆`‖2

P (N ≥ i)
<∞.

Then Z :=
∑N

i=0
∆i

P(N≥i) is an unbiased estimator for Eµ[f ] with finite variance.

Can use ∆̃i copy of ∆i s.t. {∆̃i} mutually independent.

ti expected cost of generating ∆i . Expected computing time of Z

E(τ ) = E
N∑
i=0

ti =
∞∑
i=0

tiP(N ≥ i).

To be possible to choose P(N ≥ i) s.t. Z practical, suffices to generate ∆i ’s with
correct expectation s.t. ‖∆i‖2

2 decays sufficiently faster than ti blows-up.
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Example - Contamination scenario

- u permeability field

- p pressure

- v Darcy velocity

- p = G (u)

∇.v = h, x ∈ D
p = 0,    x ∈ ∂D
  v = −u∇p, x ∈ D

dz = v(x)dt + 2εdW
z(0) = zinit

Quantity of interest: f (u) = E[ inf
t≥0
{|z(t)| > R}]
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Example - UQ in contamination scenario

Permeability field u unknown, have prior information u ∼ µ0.

Vanilla-UQ: probe µ0 ◦ f −1, e.g. estimate Eµ0
[f (u)].

Have noisy indirect measurements of pressure: data model in RJ

y = G(u) + η, η ∼ N(0, Γ).

Formulate Bayesian inverse problem (see DS13), µy posterior on u|y
dµy

dµ0
(u; y) ∝ exp

(
−1

2
‖y − G(u)‖2

)
.

BIP-UQ: probe µy ◦ f −1, e.g. estimate Eµy [f (u)].

- µ0 is ∞-dim, needs to be approximated by µ0,i in Ri introducing discretization bias (ARV14).

- cannot sample µy directly, construct Markov chain targeting µy , use finite-time distributions µy ,k

burn-in time issues (GR13, ARV14).

- to implement in computer construct Markov chain targeting approximation µyi in Ri , use finite-time

distributions µy ,ki introducing discretization bias and burn-in time issues (ARV14).
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Removing discretization bias

X = L2[0, 1], {ϕ`} complete orthonormal basis.

µ Gaussian measure in X given via the Karhunen-Loeve expansion:

µ = L

( ∞∑
`=1

`−aξ`ϕ`

)
, ξ`

iid∼ N(0, 1), a >
1

2
.

To estimate Eµ[f ], need to truncate introducing discretization bias in MC estimators.
(Vanilla-UQ example)

Aim: unbiasedly estimate Eµ[f ] in finite time.

Approximations µi = L
(∑ji

`=1 `
−aξ`ϕ`

)
, {ji} increasing.

∆i = f (ui)− f (ui−1), ui ∼ µi .
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Removing discretization bias

Theorem 1 (ARV14)

Assume a > 1 and f Lipschitz. Then ∃ choices ji and P(N ≥ i), s.t. Z =
∑N

i=1
∆i

P(N≥i) is

unbiased estimator of Eµ[f ] with finite variance and finite expected computing time.

Proof.

- Consider ji = 2i . Use Proposition.

- Cost of ∆i , ti = O(ji) = O(2i) (# N(0, 1) draws).

- Bound

‖∆i‖2
2 = E(|f (ui)− f (ui−1)|2) ≤ ‖f ′‖2

∞E(‖ui − ui−1‖2) = O(2i(1−2a)).

- ‖∆i‖2
2 decays sufficiently faster than ti blows-up.

- Can choose P(N ≥ i) s.t. E(τ ),Var(Z ) <∞.
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Removing burn-in time bias

X general state space, d distance in X , f d -Lipschitz.

Measure µ intractable, cannot be sampled directly but can construct X = (Xn)n∈N
Markov chain with stationary distribution µ.

{ai} increasing sequence of positive integers.

To estimate Eµ[f ], use finite-time distributions µi = L(Xai) introducing burn-in issues.

Aim: unbiasedly estimate Eµ[f ] in finite time.
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Removing burn-in time bias

Weak convergence of µi not enough to get convergence of ∆i .

Contracting coupling assumption: we can simultaneously generate chains started at
different states s.t. they come together in d geometrically quickly.

Use top level chain T i
· running for ai steps and bottom level chain Bi· running for ai−1

steps, coupled as follows:

x0 = Bi−ai−1
. . . Bi−a0

. . . Bi0
| | | | | }∆i = f (T i

0 )− f (Bi0)
x0 = T i

−ai . . . T i
−ai−1

. . . . . . T i
0
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Removing burn-in time bias

Theorem 2 (ARV14)

∃ choices ai and P(N ≥ i), s.t. Z =
∑N

i=1
∆i

P(N≥i) is unbiased estimator of Eµ[f ] with

finite variance and finite expected computing time.

Proof.

- Use Proposition.

- Using assumptions, can show ‖∆i‖2
2 ≤ ‖f ′‖

2
∞Ed 2

(
T i

0 ,Bi0
)
≤ cr ai .

- Cost of ∆i , ti = O(ai) (# steps).

- ‖∆i‖2
2 decays sufficiently faster than ti blows-up.

- Can choose P(N ≥ i) s.t. E(τ ),Var(Z ) <∞.
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UE for BIP-UQ in function space

Combining can perform UE of Eµ[f ] for µ both∞-dim and only accessible in the limit
of a Markov chain (BIP-UQ example).

Approximation using finite-time distributions and discretizing space: top chain T i
·

more steps and higher discretization level than bottom chain Bi·

ji−1 : x0 = Bi−ai−1
. . . Bi−a0

. . . Bi0
| | | | | }∆i = f (T i

0 )− f (Bi0)
ji : x0 = T i

−ai . . . T i
−ai−1

. . . . . . T i
0

In ARV14, achieve this:

1. in non-linear BIPs (e.g. groundwater flow example) with uniform priors, using independence sampler;

2. for targets µ which have Lipschitz log-density wrt Gaussian, using pCN algorithm.
(MH with proposal Xk+1 = λXk +

√
1− λ2ξ)
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Comparison of Unbiased Estimator vs Ergodic Average

1d Gaussian autoregression

Xn+1 = ρXn +
√

1− ρ2 ξn+1,

ρ ∈ (0, 1), ξn i.i.d. N(0, 1).

Ergodic with invariant distribution µ = N(0, 1). Estimate Eµ[Id] = 0.

Compare MSE-work product of Monte Carlo estimator based on UE vs EA.

For EA

lim
n→∞

MSE-work =
1 + ρ

1− ρ
Tstep.

For UE have non-asymptotic expression for MSE-work product, depending on ai and
P(N ≥ i). Optimize by minimizing wrt ai and P(N ≥ i): hard!
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Comparison of Unbiased Estimator vs Ergodic Average

Figure: 1) Left: optimized P(N ≥ i) for fixed ai = 4(i + 1) (as in GR13), 2) Right: optimized P(N ≥ i)
and ai over subclass ai = m(i + 1).



Introduction - General theory UQ example Removing specific sources of bias Performance/Optimization Conclusions

Conclusions - further work

UE is often feasible.

Optimization wrt parameters is crucial especially in function space setting.

UE easily parallelizable: a) use independent copies of Z , b) ∆i ’s independent.

UE seems competitive. Looking forward to comparisons in problems of higher
complexity (e.g. BIP-UQ example).
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