Practical unbiased Monte Carlo for Uncertainty Quantification

Sergios Agapiou

Department of Statistics, University of Warwick

MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University of Warwick

Enabling Quantification of

http://www.sergiosagapiou.com/

- S. Agapiou, G. O. Roberts and S. J. Vollmer, *Unbiased Monte Carlo: posterior estimation for intractable/infinite dimensional models*, http://arxiv.org/abs/1411.7713
- C. H. Rhee, *Unbiased estimation with biased samples*, PhD thesis, Stanford University, 2013 (supervisor P. W. Glynn).

Outline

Introduction - General theory 1

- 2 UQ example
- Removing specific sources of bias 3
- Performance/Optimization 4

Want to estimate expectations of functions f wrt an intractable measure μ , $\mathbb{E}_{\mu}[f] := \mathbb{E}_{\mu}[f(\cdot)].$

• Would like to use Monte Carlo estimator: for $X^{(m)} \stackrel{\it iid}{\sim} \mu$ let

$$Y_M := \frac{1}{M} \sum_{m=1}^M f(X^{(m)}).$$

For all M

$$\mathbb{E}[Y_M] = \mathbb{E}_{\mu}[f]$$
 (*Y_M* unbiased)

and

$$Y_M \xrightarrow{M} \mathbb{E}_{\mu}[f]$$
, almost surely $(Y_m \text{ consistent})$

• Intractability of μ forces the use of approximations μ_i introducing bias.

Debiasing idea - John von Neumann, Stanislaw Ulam

- We study unbiased estimation of $\mathbb{E}_{\mu}[f]$ using biased samples.
- Assume $\mathbb{E}_{\mu_i}[f] \stackrel{i}{\rightarrow} \mathbb{E}_{\mu}[f]$.
- Let $X_i \sim \mu_i$ and define $\Delta_i := f(X_i) f(X_{i-1})$.

• If Fubini applies

$$\mathbb{E}_{\mu}[f] = \sum_{i=1}^{\infty} (\mathbb{E}_{\mu_i}[f] - \mathbb{E}_{\mu_{i-1}}[f]) = \sum_{i=1}^{\infty} \mathbb{E}\Delta_i \stackrel{?}{=} \mathbb{E}\sum_{i=1}^{\infty} \Delta_i.$$

• $\sum_{i=1}^{\infty} \Delta_i$ is unbiased but requires infinite computing time.

Debiasing idea - John von Neumann, Stanislaw Ulam

$$Z := \sum_{i=0}^{N} \frac{\Delta_i}{\mathbb{P}(N \ge i)},$$

N integer-valued r.v. independent of Δ_i , s.t. $\mathbb{P}(N \ge i) > 0, \forall i$.

• If Fubini applies then Z unbiased

$$\mathbb{E}[Z] = \mathbb{E}\left[\sum_{i=0}^{\infty} \frac{\mathbb{1}_{\{N \ge i\}} \Delta_i}{\mathbb{P}(N \ge i)}\right] \stackrel{?}{=} \sum_{i=0}^{\infty} \frac{\mathbb{E}[\mathbb{1}_{\{N \ge i\}} \Delta_i]}{\mathbb{P}(N \ge i)} = \sum_{i=0}^{\infty} \mathbb{E}\Delta_i = \mathbb{E}_{\mu}[f].$$

• To be practical, Z needs to have finite variance and finite expected computing time.

Unbiasing theory of Glynn and Rhee

Proposition (GR13)

Assume

$$\sum_{i\leq\ell}\frac{\|\Delta_i\|_2\|\Delta_\ell\|_2}{\mathbb{P}(N\geq i)}<\infty.$$

Then $Z := \sum_{i=0}^{N} \frac{\Delta_i}{\mathbb{P}(N \ge i)}$ is an unbiased estimator for $\mathbb{E}_{\mu}[f]$ with finite variance. Can use $\tilde{\Delta}_i$ copy of Δ_i s.t. $\{\tilde{\Delta}_i\}$ mutually independent.

• t_i expected cost of generating Δ_i . Expected computing time of Z

$$\mathbb{E}(\tau) = \mathbb{E}\sum_{i=0}^{N} t_i = \sum_{i=0}^{\infty} t_i \mathbb{P}(N \geq i).$$

• To be possible to choose $\mathbb{P}(N \ge i)$ s.t. Z practical, suffices to generate Δ_i 's with correct expectation s.t. $\|\Delta_i\|_2^2$ decays sufficiently faster than t_i blows-up.

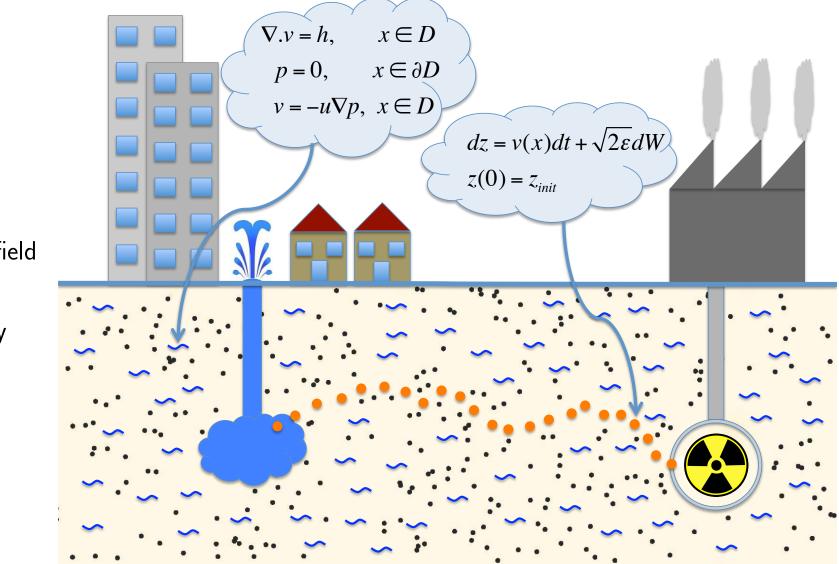
UQ example

Removing specific sources of bias

Performance/Optimization

Conclusions

Example - Contamination scenario



Quantity of interest: $f(u) = \mathbb{E}[\inf_{t>0}\{|z(t)| > R\}]$

- *u* permeability field
- *p* pressure
- v Darcy velocity

$$-p = G(u)$$

Example - UQ in contamination scenario

Permeability field *u* unknown, have prior information $u \sim \mu_0$.

• Vanilla-UQ: probe $\mu_0 \circ f^{-1}$, e.g. estimate $\mathbb{E}_{\mu_0}[f(u)]$.

ullet Have noisy indirect measurements of pressure: data model in \mathbb{R}^J

$$y = \mathcal{G}(u) + \eta, \ \eta \sim N(0,\Gamma).$$

Formulate Bayesian inverse problem (see DS13), μ^{y} posterior on u|y

$$rac{d\mu^y}{d\mu_0}(u;y)\propto \exp\left(-rac{1}{2}\|y-\mathcal{G}(u)\|^2
ight)$$

BIP-UQ: probe $\mu^{y} \circ f^{-1}$, e.g. estimate $\mathbb{E}_{\mu^{y}}[f(u)]$.

- μ_0 is ∞ -dim, needs to be approximated by $\mu_{0,i}$ in \mathbb{R}^i introducing discretization bias (ARV14).
- cannot sample μ^{y} directly, construct Markov chain targeting μ^{y} , use finite-time distributions $\mu^{y,k}$ burn-in time issues (GR13, ARV14).
- to implement in computer construct Markov chain targeting approximation μ_i^y in \mathbb{R}^i , use finite-time distributions $\mu_i^{y,k}$ introducing discretization bias and burn-in time issues (ARV14).

Removing discretization bias

• $\mathcal{X} = L^2[0, 1]$, $\{\varphi_\ell\}$ complete orthonormal basis.

• μ Gaussian measure in \mathcal{X} given via the Karhunen-Loeve expansion:

$$\mu = \mathcal{L}\left(\sum_{\ell=1}^{\infty} \ell^{-a} \xi_{\ell} \varphi_{\ell}
ight), \qquad \xi_{\ell} \stackrel{\textit{iid}}{\sim} \mathsf{N}(0,1), \quad a > rac{1}{2}.$$

• To estimate $\mathbb{E}_{\mu}[f]$, need to truncate introducing discretization bias in MC estimators. (Vanilla-UQ example)

Aim: unbiasedly estimate $\mathbb{E}_{\mu}[f]$ in finite time.

• Approximations $\mu_i = \mathcal{L}\left(\sum_{\ell=1}^{j_i} \ell^{-a} \xi_{\ell} \varphi_{\ell}\right)$, $\{j_i\}$ increasing.

•
$$\Delta_i = f(u_i) - f(u_{i-1}), u_i \sim \mu_i.$$

Removing discretization bias

Theorem 1 (ARV14)

Assume a > 1 and f Lipschitz. Then \exists choices j_i and $\mathbb{P}(N \ge i)$, s.t. $Z = \sum_{i=1}^{N} \frac{\Delta_i}{\mathbb{P}(N \ge i)}$ is unbiased estimator of $\mathbb{E}_{\mu}[f]$ with finite variance and finite expected computing time.

Proof.

- Consider $j_i = 2^i$. Use Proposition.
- Cost of Δ_i , $t_i = \mathcal{O}(j_i) = \mathcal{O}(2^i)$ (# N(0, 1) draws).

- Bound

$$\|\Delta_i\|_2^2 = \mathbb{E}(|f(u_i) - f(u_{i-1})|^2) \le \|f'\|_\infty^2 \mathbb{E}(\|u_i - u_{i-1}\|^2) = \mathcal{O}(2^{i(1-2a)}).$$

- $\|\Delta_i\|_2^2$ decays sufficiently faster than t_i blows-up.
- Can choose $\mathbb{P}(N \ge i)$ s.t. $\mathbb{E}(\tau), Var(Z) < \infty$.

Removing burn-in time bias

- \mathcal{X} general state space, d distance in \mathcal{X} , f d-Lipschitz.
- Measure μ intractable, cannot be sampled directly but can construct $\mathbb{X} = (X_n)_{n \in \mathbb{N}}$ Markov chain with stationary distribution μ .
- $\{a_i\}$ increasing sequence of positive integers.
- To estimate $\mathbb{E}_{\mu}[f]$, use finite-time distributions $\mu_i = \mathcal{L}(X_{a_i})$ introducing burn-in issues.

Aim: unbiasedly estimate $\mathbb{E}_{\mu}[f]$ in finite time.

Removing burn-in time bias

- Weak convergence of μ_i not enough to get convergence of Δ_i .
- Contracting coupling assumption: we can simultaneously generate chains started at different states s.t. they come together in *d* geometrically quickly.
- Use top level chain \mathcal{T}_{\cdot}^{i} running for a_{i} steps and bottom level chain \mathcal{B}_{\cdot}^{i} running for a_{i-1} steps, coupled as follows:

$$x_0 = \mathcal{B}^{i}_{-a_{i-1}} \dots \mathcal{B}^{i}_{-a_0} \dots \mathcal{B}^{i}_{0}$$

 $| | | | | | | | | | \Delta_i = f(\mathcal{T}^{i}_0) - f(\mathcal{B}^{i}_0)$
 $x_0 = \mathcal{T}^{i}_{-a_i} \dots \mathcal{T}^{i}_{-a_{i-1}} \dots \dots \mathcal{T}^{i}_{0}$

Removing burn-in time bias

Theorem 2 (ARV14)

 \exists choices a_i and $\mathbb{P}(N \ge i)$, s.t. $Z = \sum_{i=1}^{N} \frac{\Delta_i}{\mathbb{P}(N \ge i)}$ is unbiased estimator of $\mathbb{E}_{\mu}[f]$ with finite variance and finite expected computing time.

Proof.

- Use Proposition.
- Using assumptions, can show $\|\Delta_i\|_2^2 \leq \|f'\|_\infty^2 \mathbb{E} d^2 \left(\mathcal{T}_0^i, \mathcal{B}_0^i\right) \leq cr^{a_i}$.
- Cost of Δ_i , $t_i = \mathcal{O}(a_i)$ (# steps).
- $\|\Delta_i\|_2^2$ decays sufficiently faster than t_i blows-up.
- Can choose $\mathbb{P}(N \geq i)$ s.t. $\mathbb{E}(au), Var(Z) < \infty$.

UE for BIP-UQ in function space

- Combining can perform UE of $\mathbb{E}_{\mu}[f]$ for μ both ∞ -dim and only accessible in the limit of a Markov chain (BIP-UQ example).
- Approximation using finite-time distributions and discretizing space: top chain \mathcal{T}_{\cdot}^{i} more steps and higher discretization level than bottom chain \mathcal{B}_{\cdot}^{j}

• In ARV14, achieve this:

1. in non-linear BIPs (e.g. groundwater flow example) with uniform priors, using independence sampler;

2. for targets μ which have Lipschitz log-density wrt Gaussian, using pCN algorithm. (MH with proposal $X_{k+1} = \lambda X_k + \sqrt{1 - \lambda^2} \xi$)

Comparison of Unbiased Estimator vs Ergodic Average

• 1d Gaussian autoregression

$$X_{n+1} = \rho X_n + \sqrt{1 - \rho^2} \xi_{n+1},$$

 $ho \in (0,1)$, ξ_n i.i.d. N(0,1).

- Ergodic with invariant distribution $\mu = N(0, 1)$. Estimate $\mathbb{E}_{\mu}[\mathrm{Id}] = 0$.
- Compare MSE-work product of Monte Carlo estimator based on UE vs EA.
- For EA

$$\lim_{n \to \infty} \mathsf{MSE}\text{-work} = \frac{1+\rho}{1-\rho} T_{\mathsf{step}}.$$

• For UE have non-asymptotic expression for MSE-work product, depending on a_i and $\mathbb{P}(N \ge i)$. Optimize by minimizing wrt a_i and $\mathbb{P}(N \ge i)$: hard!

Comparison of Unbiased Estimator vs Ergodic Average

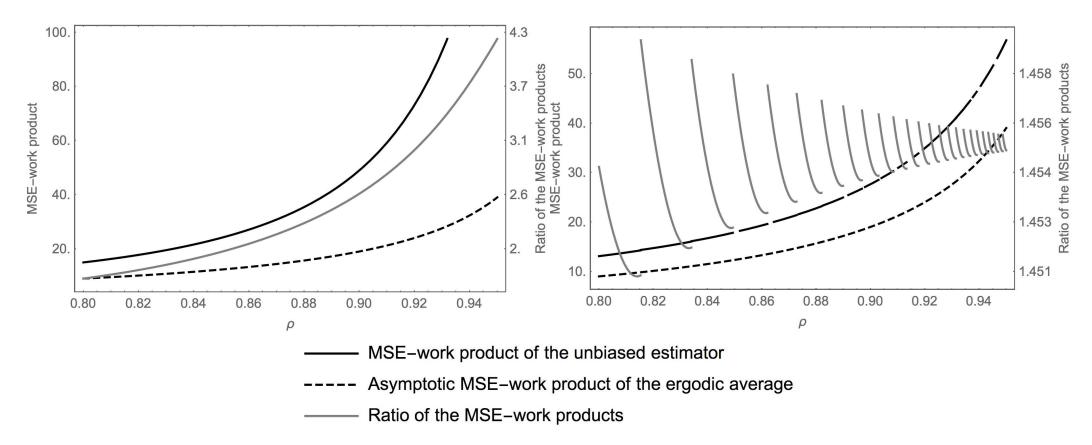


Figure: 1) Left: optimized $\mathbb{P}(N \ge i)$ for fixed $a_i = 4(i+1)$ (as in GR13), 2) Right: optimized $\mathbb{P}(N \ge i)$ and a_i over subclass $a_i = m(i+1)$.

Conclusions - further work

- UE is often feasible.
- Optimization wrt parameters is crucial especially in function space setting.
- UE easily parallelizable: a) use independent copies of Z, b) Δ_i 's independent.
- UE seems competitive. Looking forward to comparisons in problems of higher complexity (e.g. BIP-UQ example).

http://www.sergiosagapiou.com/

- S. Agapiou, G. O. Roberts and S. J. Vollmer, *Unbiased Monte Carlo: posterior estimation for intractable/infinite dimensional models*, arXiv:1411.7713
- C. H. Rhee, *Unbiased estimation with biased samples*, PhD thesis, Stanford University, 2013, (supervisor P. W. Glynn).
- J. G. Propp and D. B. Wilson, *Exact sampling with coupled Markov chains and applications to statistical mechanics*, Random Structures and Algorithms, 1996.
- M. Dashti and A. M. Stuart, *The Bayesian approach to inverse problems*, arXiv:1302.6989.
- M. Hairer, A. M. Stuart and S. J. Vollmer *Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions*, The Annals of Applied Probability, 2014.