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Problem setting

We consider a linear ill-posed problem

f = Ku

for a continuous linear operator K : X → Y , where X and Y are
separable Banach and Hilbert spaces, respectively. Suppose we are
given noisy data by

f δ = Ku∗ + δn,

where u∗ is the true solution and δ · n is the noise vector with
parameter δ > 0 describing the noise level.

We would like to understand convergence rates in Tikhonov
regularization for general convex regularization terms...
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...with a little twist!

Example. Suppose Range(K ) ⊂ L2(T) and our data is given by

{〈f δ, ej〉}Jj=1

in some basis {ej}j∈N ⊂ L2(T). In inverse problem literature
involving practical statistical inference the corresponding noise
vector

nJ = {〈n, ej〉}Jj=1 ∈ RJ

is assumed to have white noise statistics, i.e., 〈n, ej〉 ∼ N (0, 1)
i.i.d. Hence

E ‖nJ‖22 =
J∑

j=1

E〈n, ej〉2 = J →∞

as J grows and consequently n cannot be asymptotically modelled
in L2(T)!
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Large noise and background

Earlier work towards large noise in regularization:

I Egger 2008, Mathé and Tautenhahn, 2011,

I Eggermont, LaRiccia and Nashed 2009,

I Kekkonen, Lassas and Siltanen, 2014

Other connections:

I Frequentist cost: N. Bissantz, A. Munk, L. Cavalier, S.
Agapiou and many others

I Schuster, Kaltenbacher, Hofmann and Kazimierski:
Regularization methods in Banach spaces, de Gruyter, 2012.

T. Helin Large noise in variational regularization



Our setup

Let (Z ,Y ,Z ∗) be a triplet such that Z ⊂ Y is a dense subspace
with Banach structure and assume

〈u, v〉Z×Z∗ = 〈u, v〉Y

whenever u ∈ Z and v ∈ Y = Y ∗ ⊂ Z ∗.

Two assumptions:

(1) noise can be modelled in Z ∗, i.e. n ∈ Z ∗ and

(2) K : X → Z is continuous.
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Solution

We take the regularized solution uδα to be the minimizer of

Jδα(u) =
1

2
‖Ku‖2Y − 〈Ku, f δ〉Z×Z∗ + αR(u)

with a convex regularization functional R : X → R ∪ {∞}.

Our main assumptions on R are

(R1) R is lower semicontinuous in some topology τ on X ,

(R2) the sub-level sets {R ≤ ρ}, ρ > 0, are compact in the
topology τ on X and

(R3) the convex conjugate R∗ is finite on a ball in X ∗ centered at
zero.

Moreover, we employ a symmetry condition R(−u) = R(u) for all
u ∈ X for convenience.
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Optimality condition

The functional Jδα is minimized by uδα that satisfies

K ∗(Kuδα − f δ) + αξδα = 0

for some ξδα ∈ ∂R(uδα), where the subdifferential ∂R is defined by

∂R(u) = {ξ ∈ X ∗ | R(u)− R(v) ≤ 〈ξ, u − v〉X∗×X for all v ∈ X}

Assumptions on R guarantee

I existence of uδα and

I an a priori bound to
R(uδα).

Figure: Subdifferential set at x0.
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Bregman distance

Definition
For ξu ∈ ∂R(u) we define symmetric Bregman distance between u
and v as

Dξu ,ξv
R (u, v) = 〈ξu − ξv , u − v〉X∗×X .

Example. Suppose R(u) = 1
2 ‖u‖

2
X with X Hilbert. Then

∂R(u) = {u} and

DR(u, v) = ‖u − v‖2X .

Example. Negative Shannon entropy R(u) =
∫
R(u ln u − u)dx on

L1
+(R) yields ”Kullback–Leibler -like” divergence

DR(u, v) =

∫
R

(u − v) ln
(u

v

)
dx .
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How to obtain traditional error estimates

By writing out the optimality condition for f δ = Ku∗ + n we obtain

K ∗K (uδα − u∗) + α(ξδα − ξ∗) = K ∗n − αξ∗,

where ξ∗ ∈ ∂R(u∗) was added on both sides. Taking a duality
product with uα − u∗ we get

‖K (uδα − u∗)‖2Y + αD
ξδα,ξ

∗

R (uδα, u
∗) ≤ 〈δK ∗n − αξ∗, uδα − u∗〉X∗×X .

The nice case leading directly to estimates if n ∈ Y and the ideal
source condition ξ∗ = K ∗w∗ ∈ X ∗ for w∗ ∈ Y . Then

〈δK ∗n − αξ∗, uδα − u∗〉X∗×X = 〈δn − αw∗,K (uδα − u∗)〉Y ,

and Young’s inequality implies

1

2
‖K (uδα − u∗)‖2Y + αD

ξδα,ξ
∗

R (uδα, u
∗) ≤ 1

2
‖δn − αw∗‖2Y .
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Convex conjugate

The convex conjugate R∗ : X ∗ → R ∪ {∞} defined via

R∗(q) = sup
u∈X

(〈q, u〉X∗×X − R(u)) .

Generalized Young’s inequality: 〈q, u〉X∗×X ≤ R(u) + R∗(q).

Important example: Let R be one-homogeneous and let

S(q) = sup
R(u)≤1

〈q, u〉X∗×X

. Then we have

R∗(q) =

{
0 if S(q) ≤ 1
+∞ else
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Approximated source conditions to rescue

The key idea is to consider how well you are able to approximate
ξ∗ and K ∗n with elements K ∗w1 and K ∗w2 for wj ∈ Y .

〈δK ∗n − αξ∗, uδα − u∗〉X∗×X

= δ〈K ∗n − K ∗w2, u
δ
α − u∗〉X∗×X

+ α〈ξ∗ − K ∗w1, u
δ
α − u∗〉X∗×X

+ 〈δw2 − αw1,K (uδα − u∗)〉Y ,

For the case R(u) = ‖u‖rX with r > 1 this approximation is
quantified in literature by distance function

dρ(η) := inf
w∈Y
{‖K ∗w − η‖X∗ | ‖w‖Y ≤ ρ}

and its asymptotics as ρ→∞.
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First bound

Theorem (BHK16)

We have a bound

D
ξδα,ξ

∗

R (uδα, u
∗) ≤ (ζ1 +

δ

α
ζ2)R(uδα − u∗) + eα,ζ1(ξ∗) +

δ

α
eδ,ζ2(K ∗n).

where ζ1, ζ2 > 0 are arbitrary and

eβ,ζ(η) = inf
w∈Y

(
ζR∗

(
K ∗w − η

ζ

)
+
β

2
‖w‖2Y

)
= − inf

v∈X

(
1

2β
‖Kv‖2Y − 〈η, v〉X∗×X + ζR(v)

)
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Some added structure to move forward

Assume there exists θ ∈ [0, 1] such that

R(u − v) ≤ Cθ(u, v)
(

Dξu ,ξv
R (u, v)

)θ
for all u, v ∈ X , ξu ∈ ∂R(u) and ξv ∈ ∂R(v). Above the constant
Cθ is bounded on sets where R(u) and R(v) are bounded.

Example

Let R(u) = 1
2‖u‖

2
X . Then Dξu ,ξv

R (u, v) = ‖u − v‖2X = 2R(u − v)
and above θ = 1 and Cθ(u, v) ≡ 1

2 .

Example

Let R be one-homogeneous, symmetric around zero, and convex.
By triangle inequality

R(u − v) ≤ R(u) + R(v),

and hence θ = 0 and C0(u, v) = R(u) + R(v).
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Application: One-homogeneous problem

A priori bound:

R(uδα) . R(u∗) +
δ

α
eδ,α

δ
(K ∗n) . R(u∗)

Together with triangle inequality it follows for the
one-homogeneous case that

D
ξδα,ξ

∗

R (uδα, u
∗)

. inf
ζ1>0

(ζ1R(u∗) + eα,ζ1(ξ∗)) +
δ

α
inf
ζ2>0

(ζ2R(u∗) + eδ,ζ2(K ∗n)) .
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Application: One-homogeneous problem

Suppose that R is one-homogeneous and recall

R∗(cq) =

{
0 if S(q) = supR(u)≤1〈q, u〉X∗×X ≤ 1

c

+∞ else

We have

eβ,ζ(η) = inf
w∈Y

(
ζR∗

(
K ∗w − η

ζ

)
+
β

2
‖w‖2Y

)
=

β

2
inf
w∈Y

{
‖w‖2Y

∣∣∣∣ S(η − K ∗w) ≤ ζ
}

︸ ︷︷ ︸
assumption on decay . ζ−r
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One-homogeneous problem

Quantification of the approximative source condition:

eα,ζ1(ξ∗) =
α

2
inf
w∈Y

{
‖w‖2Y

∣∣∣∣ S(ξ∗ − K ∗w) ≤ ζ1
}

︸ ︷︷ ︸
.ζ

−r1
1

. αζ−r11

and

eδ,ζ2(K ∗n) =
δ

2
inf
w∈Y

{
‖w‖2Y

∣∣∣∣ S(K ∗n − K ∗w) ≤ ζ2
}

︸ ︷︷ ︸
.ζ

−r2
2

. δζ−r22
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One-homogeneous problem

Theorem
Let X be a Banach space and R one-homogeneous. Suppose that
decay on ξ∗ and n is described by r1 and r2, respectively. Optimal
convergence rate is obtained by choice α ' δκ where

κ =

{
(1+r1)(2+r2)
(2+r1)(1+r2)

for r1 ≤ r2 and

1 for r2 < r1,

we have that

D
ξδα,ξ

∗

R (uδα, u
∗) .

δ
2+r2

(2+r1)(1+r2) for r1 ≤ r2 and

δ
1

1+r1 for r2 < r1.

T. Helin Large noise in variational regularization



Frequentist cost

The pointwise theory can be applied to obtain estimates on
Bregman-distance based frequentist cost of

f = Ku + N,

where N is random.

I Take X = Y = L2(T) and Z = Hs(T), s > 1
2 and

I assume N is Gaussian white noise ⇒ N ∈ Z ∗ a.s.

We want to find converge rates for ED
ξδα,ξ

∗

R (Uδ
α, u
∗).
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Frequentist cost

For one-homogeneous R the Bregman-based frequentist cost can
be estimated by

ED
ξδα,ξ

∗

R (uδα, u
∗)

. inf
ζ1>0

(ζ1R(u∗) + eα,ζ1(ξ∗))+E inf
ζ2>0

(
δ

α
ζ2R(u∗) +

δ

α
eδ,ζ2(K ∗N)

)
. inf

ζ1>0
(ζ1R(u∗) + eα,ζ1(ξ∗))+ inf

ζ2>0

(
δ

α
ζ2R(u∗) +

δ

α
Eeδ,ζ2(K ∗N)

)
Probabilistic source condition ≈ decay rate of Eeδ,ζ2(K ∗N).
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Quadratic regularization

For R(u) = 1
2 ‖u‖

2
L2(T), we have

Eeα,ζ(K ∗N) =
α

2
TrL2(T)(K (K ∗K + αζI )−1K ∗)

Theorem
Suppose R(u) = 1

2 ‖u‖
2
L2(T) and one has an exact source condition

on ξ∗. Moreover, we assume that {λj}∞j=1 are eigenvalues of

KK ∗ : L2(T)→ L2(T) and there exists 0 < ε ≤ 1 such that∑∞
j=1 λ

ε
j <∞. It follows that for α ' δκ for κ = 2

2+ε we obtain

ED
ξδα,ξ

∗

R (Uδ
α, u
∗) = E‖Uδ

α − u∗‖2L2(T) . δ
2

2+ε .
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Besov norm regularization

Theorem
Let us assume that K : Bs

1(T)→ L2(T), R is defined by

R(u) = ‖u‖Bs
1(T)

=
∞∑
`=1

`s−1/2|u`|,

where u =
∑

` u`ψ` in some smooth wavelet basis {ψ`} and ξ∗

satisfies the approximate source condition of order r1 ≥ 0. Then
for the choice

α ' δκ for κ = (1 + t) · 1 + r1
2 + r1

,

where t > 0 describes the smoothness of K . Then

ED
ξδα,ξ

∗

R (Uδ
α, u
∗) . δ

1+t
2+r1 .
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Total variation regularization

Theorem
Let us assume that K is of order s + t, t > 0, smoothing
pseudodifferential operator, R(u) =

∫
T |∇u| dx , and ξ∗ satisfies the

approximate source condition of order r1 ≥ 0. Then for the choice

α ' δκ for κ =
1 + r1

(2 + r1)(1− µ)

we obtain the convergence rate

ED
ξδα,ξ

∗

R (Uδ
α, u
∗) . δ

1
(2+r1)(1−µ) ≤ δ

1
2+r1

where µ = t
2(s+t) .
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Conclusions

I Convergence rates (or consistency estimates) are possible for
large noise and general convex regularization terms

I Infinite-dimensional frequentist cost for penalties like Besov
and TV

I Bayesian cost - see earlier work by Kekkonen

preprint: Burger M, Helin T and Kekkonen H, Large noise in variational

regularization, arXiv: 1602.00520.
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