Large noise in variational regularization

Tapio Helin

Department of Mathematics and Statistics

University of Helsinki

Warwick, February 23, 2016

Martin Burger University of Münster Hanne Kekkonen University of Helsinki

向下 イヨト イヨト

preprint: Burger M, Helin T and Kekkonen H, Large noise in variational regularization, arXiv: 1602.00520.

We consider a linear ill-posed problem

$$f = Ku$$

for a continuous linear operator $K : X \to Y$, where X and Y are separable Banach and Hilbert spaces, respectively. Suppose we are given noisy data by

$$f^{\delta} = Ku^* + \delta n,$$

where u^* is the true solution and $\delta \cdot n$ is the noise vector with parameter $\delta > 0$ describing the noise level.

We would like to understand **convergence rates** in Tikhonov regularization for general **convex** regularization terms...

ヨット イヨット イヨッ

Example. Suppose $\operatorname{Range}(\mathcal{K}) \subset L^2(\mathbb{T})$ and our data is given by

 $\{\langle f^{\delta}, e_{j} \rangle\}_{j=1}^{J}$

in some basis $\{e_j\}_{j\in\mathbb{N}} \subset L^2(\mathbb{T})$. In inverse problem literature involving practical statistical inference the corresponding noise vector

$$n_J = \{\langle n, e_j \rangle\}_{j=1}^J \in \mathbb{R}^J$$

is assumed to have white noise statistics, i.e., $\langle n, e_j \rangle \sim \mathcal{N}(0,1)$ i.i.d. Hence

$$\mathbb{E} \|n_J\|_2^2 = \sum_{j=1}^J \mathbb{E} \langle n, e_j \rangle^2 = J \to \infty$$

as J grows and consequently n cannot be asymptotically modelled in $L^2(\mathbb{T})!$

Earlier work towards large noise in regularization:

- Egger 2008, Mathé and Tautenhahn, 2011,
- Eggermont, LaRiccia and Nashed 2009,
- Kekkonen, Lassas and Siltanen, 2014

Other connections:

- Frequentist cost: N. Bissantz, A. Munk, L. Cavalier, S. Agapiou and many others
- Schuster, Kaltenbacher, Hofmann and Kazimierski: Regularization methods in Banach spaces, de Gruyter, 2012.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let (Z, Y, Z^*) be a triplet such that $Z \subset Y$ is a dense subspace with Banach structure and assume

$$\langle u, v \rangle_{Z \times Z^*} = \langle u, v \rangle_Y$$

whenever $u \in Z$ and $v \in Y = Y^* \subset Z^*$.

Two assumptions:

(1) noise can be modelled in Z^* , i.e. $n \in Z^*$ and (2) $K : X \to Z$ is continuous.

Solution

We take the regularized solution u_{α}^{δ} to be the minimizer of

$$J_{\alpha}^{\delta}(u) = \frac{1}{2} \| K u \|_{Y}^{2} - \langle K u, f^{\delta} \rangle_{Z \times Z^{*}} + \alpha R(u)$$

with a convex regularization functional $R: X \to \mathbb{R} \cup \{\infty\}$.

Our main assumptions on R are

(R1) R is lower semicontinuous in some topology τ on X,

- (R2) the sub-level sets $\{R \le \rho\}$, $\rho > 0$, are compact in the topology τ on X and
- (R3) the convex conjugate R^* is finite on a ball in X^* centered at zero.

Moreover, we employ a symmetry condition R(-u) = R(u) for all $u \in X$ for convenience.

Optimality condition

The functional J^{δ}_{α} is minimized by u^{δ}_{α} that satisfies $K^*(Ku^{\delta}_{\alpha} - f^{\delta}) + \alpha \xi^{\delta}_{\alpha} = 0$

for some $\xi_{\alpha}^{\delta} \in \partial R(u_{\alpha}^{\delta})$, where the subdifferential ∂R is defined by $\partial R(u) = \{\xi \in X^* \mid R(u) - R(v) \le \langle \xi, u - v \rangle_{X^* \times X} \text{ for all } v \in X\}$

Assumptions on R guarantee

- existence of u_{α}^{δ} and
- an a priori bound to *R*(u^δ_α).

Figure: Subdifferential set at x_0 .

Definition

For $\xi_u \in \partial R(u)$ we define symmetric Bregman distance between u and v as

$$D_R^{\xi_u,\xi_v}(u,v) = \langle \xi_u - \xi_v, u - v \rangle_{X^* \times X}.$$

Example. Suppose $R(u) = \frac{1}{2} ||u||_X^2$ with X Hilbert. Then $\partial R(u) = \{u\}$ and

$$D_R(u,v) = ||u-v||_X^2$$
.

Example. Negative Shannon entropy $R(u) = \int_{\mathbb{R}} (u \ln u - u) dx$ on $L^1_+(\mathbb{R})$ yields "Kullback–Leibler -like" divergence

$$D_R(u,v) = \int_{\mathbb{R}} (u-v) \ln\left(\frac{u}{v}\right) dx.$$

伺 と く き と く き と

How to obtain traditional error estimates

By writing out the optimality condition for $f^{\delta} = Ku^* + n$ we obtain

$$\mathcal{K}^*\mathcal{K}(u^{\delta}_{\alpha}-u^*)+lpha(\xi^{\delta}_{\alpha}-\xi^*)=\mathcal{K}^*n-lpha\xi^*,$$

where $\xi^* \in \partial R(u^*)$ was added on both sides. Taking a duality product with $u_{\alpha} - u^*$ we get

$$\|K(u_{\alpha}^{\delta}-u^{*})\|_{Y}^{2}+\alpha D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(u_{\alpha}^{\delta},u^{*})\leq \langle \delta K^{*}n-\alpha\xi^{*},u_{\alpha}^{\delta}-u^{*}\rangle_{X^{*}\times X}.$$

The nice case leading directly to estimates if $n \in Y$ and the ideal source condition $\xi^* = K^* w^* \in X^*$ for $w^* \in Y$. Then

$$\langle \delta \mathcal{K}^* n - \alpha \xi^*, u_{\alpha}^{\delta} - u^* \rangle_{X^* \times X} = \langle \delta n - \alpha w^*, \mathcal{K}(u_{\alpha}^{\delta} - u^*) \rangle_{Y},$$

and Young's inequality implies

$$\frac{1}{2}\|\mathcal{K}(u_{\alpha}^{\delta}-u^{*})\|_{Y}^{2}+\alpha D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(u_{\alpha}^{\delta},u^{*})\leq \frac{1}{2}\|\delta n-\alpha w^{*}\|_{Y}^{2}.$$

The convex conjugate $R^*: X^* \to \mathbb{R} \cup \{\infty\}$ defined via

$$R^*(q) = \sup_{u \in X} \left(\langle q, u \rangle_{X^* \times X} - R(u) \right).$$

Generalized Young's inequality: $\langle q, u \rangle_{X^* \times X} \leq R(u) + R^*(q)$.

Important example: Let R be one-homogeneous and let

$$S(q) = \sup_{R(u) \leq 1} \langle q, u \rangle_{X^* \times X}$$

. Then we have

$${{\mathcal R}}^*(q) = \left\{egin{array}{cc} 0 & ext{if } S(q) \leq 1 \ +\infty & ext{else} \end{array}
ight.$$

The key idea is to consider how well you are able to approximate ξ^* and K^*n with elements K^*w_1 and K^*w_2 for $w_j \in Y$.

$$\begin{split} \langle \delta K^* n - \alpha \xi^*, u_{\alpha}^{\delta} - u^* \rangle_{X^* \times X} \\ &= \delta \langle K^* n - K^* w_2, u_{\alpha}^{\delta} - u^* \rangle_{X^* \times X} \\ &+ \alpha \langle \xi^* - K^* w_1, u_{\alpha}^{\delta} - u^* \rangle_{X^* \times X} \\ &+ \langle \delta w_2 - \alpha w_1, K(u_{\alpha}^{\delta} - u^*) \rangle_Y, \end{split}$$

For the case $R(u) = ||u||_X^r$ with r > 1 this approximation is quantified in literature by distance function

$$d_{\rho}(\eta) := \inf_{w \in Y} \{ \| K^* w - \eta \|_{X^*} \mid \| w \|_Y \le \rho \}$$

and its asymptotics as $\rho \to \infty$.

Theorem (BHK16)

We have a bound

$$D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(u_{\alpha}^{\delta},u^{*}) \leq (\zeta_{1}+\frac{\delta}{\alpha}\zeta_{2})R(u_{\alpha}^{\delta}-u^{*})+e_{\alpha,\zeta_{1}}(\xi^{*})+\frac{\delta}{\alpha}e_{\delta,\zeta_{2}}(K^{*}n).$$

where $\zeta_1, \zeta_2 > 0$ are arbitrary and

$$e_{\beta,\zeta}(\eta) = \inf_{w \in Y} \left(\zeta R^* \left(\frac{K^* w - \eta}{\zeta} \right) + \frac{\beta}{2} \|w\|_Y^2 \right) \\ = -\inf_{v \in X} \left(\frac{1}{2\beta} \|Kv\|_Y^2 - \langle \eta, v \rangle_{X^* \times X} + \zeta R(v) \right)$$

回 と く ヨ と く ヨ と

æ

Some added structure to move forward

Assume there exists $heta \in [0,1]$ such that

$$R(u-v) \leq C_{\theta}(u,v) \left(D_{R}^{\xi_{u},\xi_{v}}(u,v)\right)^{\theta}$$

for all $u, v \in X$, $\xi_u \in \partial R(u)$ and $\xi_v \in \partial R(v)$. Above the constant C_θ is bounded on sets where R(u) and R(v) are bounded.

Example

Let
$$R(u) = \frac{1}{2} ||u||_X^2$$
. Then $D_R^{\xi_u,\xi_v}(u,v) = ||u-v||_X^2 = 2R(u-v)$
and above $\theta = 1$ and $C_{\theta}(u,v) \equiv \frac{1}{2}$.

Example

Let R be one-homogeneous, symmetric around zero, and convex. By triangle inequality

$$R(u-v) \leq R(u) + R(v),$$

and hence $\theta = 0$ and $C_0(u, v) = R(u) + R(v)$.

A priori bound:

$$R(u_{\alpha}^{\delta}) \lesssim R(u^*) + rac{\delta}{lpha} e_{\delta,rac{lpha}{\delta}}(K^*n) \lesssim R(u^*)$$

Together with triangle inequality it follows for the one-homogeneous case that

$$D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(u_{\alpha}^{\delta},u^{*})$$

$$\lesssim \inf_{\zeta_{1}>0} \left(\zeta_{1}R(u^{*})+e_{\alpha,\zeta_{1}}(\xi^{*})\right)+\frac{\delta}{\alpha}\inf_{\zeta_{2}>0} \left(\zeta_{2}R(u^{*})+e_{\delta,\zeta_{2}}(K^{*}n)\right).$$

個 と く ヨ と く ヨ と …

Suppose that R is one-homogeneous and recall

$$R^*(cq) = \begin{cases} 0 & \text{if } S(q) = \sup_{R(u) \le 1} \langle q, u \rangle_{X^* \times X} \le \frac{1}{c} \\ +\infty & \text{else} \end{cases}$$

We have

$$e_{\beta,\zeta}(\eta) = \inf_{w \in Y} \left(\zeta R^* \left(\frac{K^* w - \eta}{\zeta} \right) + \frac{\beta}{2} \|w\|_Y^2 \right) \\ = \frac{\beta}{2} \underbrace{\inf_{w \in Y} \left\{ \|w\|_Y^2 \mid S(\eta - K^* w) \le \zeta \right\}}_{\text{assumption on decay} \le \zeta^{-r}}$$

白 ト イヨト イヨト

Quantification of the approximative source condition:

$$e_{\alpha,\zeta_1}(\xi^*) = \frac{\alpha}{2} \underbrace{\inf_{w \in Y} \left\{ \|w\|_Y^2 \mid S(\xi^* - K^*w) \le \zeta_1 \right\}}_{\lesssim \zeta_1^{-r_1}} \lesssim \alpha \zeta_1^{-r_1}$$

and

$$e_{\delta,\zeta_{2}}(K^{*}n) = \frac{\delta}{2} \underbrace{\inf_{w \in Y} \left\{ \|w\|_{Y}^{2} \mid S(K^{*}n - K^{*}w) \leq \zeta_{2} \right\}}_{\lesssim \zeta_{2}^{-r_{2}}} \lesssim \delta\zeta_{2}^{-r_{2}}$$

同 と く ヨ と く ヨ と

Theorem

Let X be a Banach space and R one-homogeneous. Suppose that decay on ξ^* and **n** is described by r_1 and r_2 , respectively. Optimal convergence rate is obtained by choice $\alpha \simeq \delta^{\kappa}$ where

$$\kappa = \begin{cases} \frac{(1+r_1)(2+r_2)}{(2+r_1)(1+r_2)} & \text{for } r_1 \le r_2 \text{ and} \\ 1 & \text{for } r_2 < r_1, \end{cases}$$

we have that

$$D_R^{\xi_\alpha^{\delta},\xi^*}(u_\alpha^{\delta},u^*) \lesssim \begin{cases} \delta^{\frac{2+r_2}{(2+r_1)(1+r_2)}} & \text{for } r_1 \leq r_2 \text{ and} \\ \delta^{\frac{1}{1+r_1}} & \text{for } r_2 < r_1. \end{cases}$$

The pointwise theory can be applied to obtain estimates on Bregman-distance based frequentist cost of

$$f = Ku + N,$$

where N is random.

• Take $X = Y = L^2(\mathbb{T})$ and $Z = H^s(\mathbb{T})$, $s > \frac{1}{2}$ and

► assume N is Gaussian white noise $\Rightarrow N \in Z^*$ a.s. We want to find converge rates for $\mathbb{E}D_R^{\xi_{\alpha}^{\delta},\xi^*}(U_{\alpha}^{\delta},u^*)$. For one-homogeneous ${\cal R}$ the Bregman-based frequentist cost can be estimated by

$$\mathbb{E}D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(u_{\alpha}^{\delta},u^{*})$$

$$\lesssim \inf_{\zeta_{1}>0} \left(\zeta_{1}R(u^{*}) + e_{\alpha,\zeta_{1}}(\xi^{*})\right) + \mathbb{E}\inf_{\zeta_{2}>0} \left(\frac{\delta}{\alpha}\zeta_{2}R(u^{*}) + \frac{\delta}{\alpha}e_{\delta,\zeta_{2}}(K^{*}N)\right)$$

$$\lesssim \inf_{\zeta_{1}>0} \left(\zeta_{1}R(u^{*}) + e_{\alpha,\zeta_{1}}(\xi^{*})\right) + \inf_{\zeta_{2}>0} \left(\frac{\delta}{\alpha}\zeta_{2}R(u^{*}) + \frac{\delta}{\alpha}\mathbb{E}e_{\delta,\zeta_{2}}(K^{*}N)\right)$$

Probabilistic source condition \approx decay rate of $\mathbb{E}e_{\delta,\zeta_2}(K^*N)$.

Quadratic regularization

For
$$R(u) = \frac{1}{2} ||u||_{L^{2}(\mathbb{T})}^{2}$$
, we have

$$\mathbb{E}e_{\alpha,\zeta}(K^*N) = \frac{\alpha}{2} \operatorname{Tr}_{L^2(\mathbb{T})}(K(K^*K + \alpha\zeta I)^{-1}K^*)$$

Theorem

Suppose $R(u) = \frac{1}{2} \|u\|_{L^2(\mathbb{T})}^2$ and one has an exact source condition on ξ^* . Moreover, we assume that $\{\lambda_j\}_{j=1}^{\infty}$ are eigenvalues of $KK^* : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ and there exists $0 < \epsilon \le 1$ such that $\sum_{j=1}^{\infty} \lambda_j^{\epsilon} < \infty$. It follows that for $\alpha \simeq \delta^{\kappa}$ for $\kappa = \frac{2}{2+\epsilon}$ we obtain

$$\mathbb{E} D_R^{\xi_\alpha^\delta,\xi^*}(U_\alpha^\delta,u^*)=\mathbb{E}\|U_\alpha^\delta-u^*\|_{L^2(\mathbb{T})}^2\lesssim \delta^{\frac{2}{2+\epsilon}}.$$

Theorem

Let us assume that $K : B_1^s(\mathbb{T}) \to L^2(\mathbb{T})$, R is defined by

$$R(u) = ||u||_{B_1^s(\mathbb{T})} = \sum_{\ell=1}^{\infty} \ell^{s-1/2} |u_\ell|,$$

where $u = \sum_{\ell} u_{\ell} \psi_{\ell}$ in some smooth wavelet basis $\{\psi_{\ell}\}$ and ξ^* satisfies the approximate source condition of order $r_1 \ge 0$. Then for the choice

$$\alpha \simeq \delta^{\kappa}$$
 for $\kappa = (1+t) \cdot \frac{1+r_1}{2+r_1}$,

where t > 0 describes the smoothness of K. Then

$$\mathbb{E} D_{R}^{\xi_{\alpha}^{\delta},\xi^{*}}(U_{\alpha}^{\delta},u^{*}) \lesssim \delta^{\frac{1+t}{2+r_{1}}}.$$

Theorem

Let us assume that K is of order s + t, t > 0, smoothing pseudodifferential operator, $R(u) = \int_{\mathbb{T}} |\nabla u| dx$, and ξ^* satisfies the approximate source condition of order $r_1 \ge 0$. Then for the choice

$$\alpha \simeq \delta^{\kappa}$$
 for $\kappa = \frac{1+r_1}{(2+r_1)(1-\mu)}$

we obtain the convergence rate

$$\mathbb{E}D_{R}^{\xi_{lpha}^{\delta},\xi^{*}}(U_{lpha}^{\delta},u^{*})\lesssim\delta^{rac{1}{(2+r_{1})(1-\mu)}}\leq\delta^{rac{1}{2+r}}$$
where $\mu=rac{t}{2(s+t)}$.

A 3 1 A 3 1 A

- Convergence rates (or consistency estimates) are possible for large noise and general convex regularization terms
- Infinite-dimensional frequentist cost for penalties like Besov and TV
- Bayesian cost see earlier work by Kekkonen

preprint: Burger M, Helin T and Kekkonen H, *Large noise in variational regularization*, arXiv: 1602.00520.