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From least squares to Bayes theorem

Inverse problem Hwu =~ d with background knowledge u =~ uf
2 2 .
u —ul 3,1+ |d — H (u)[51 — min

uf:forecast, what we think the state should be, d=data,
H=observation operator, H (u)=what the data should be given state

—1{ ju—uo|? ) 1 2 1 2
—1 L= _Lu—uf
€ 2( @7) — 2 W 2 |Q—1J — max
< p*(u) ~ p(d[u) ~ p(u)
analysis (posterior) density data likelihood forecast (prior) density

o means proportional

w is the Maximum Aposteriori Probability (MAP) estimate.
We got the Bayes theorem for Gaussian probability densities



Bayes theorem in infinite dimension

e Forecast and analysis are probability distributions, densities pf, p?
e Bayes theorem: p® (u)  p (d|u) pf (u)

e In infinite dimension do not have densities, integrate over an arbitrary
set A instead:

u? (A) /p (dw) dpt (uw),Vu! — measurable set A
A

d a
e Data likelihood is the Radon-Nikodym derivative: p (d|u) d’uf
L
(e.g., Stuart 2010)
e @ — pr(d|u)d,uf(u)
e Normalize: p?(A) = T p(dw)did (u)

e But how do we know that [ p (d|u)dp/ (u) > 07
Vv



Infinite dimensional Gaussian case

o1 —LHu—d|?
e data likelihood: d = Hu+¢, e ~ N (0, R), p(dlu) =€ 2 r-1

° ,uf Is Gaussian measure on U, data d € V
e state space U and data space V are separable Hilbert spaces

e Difficulties when the data are infinite dimensional...



Infinite-dimensional data, Gaussian measure error bad

e The simplest example: uf = N (0,Q), H=1,d=0,R=0Q,U =V.
The whole state is observed, data error distribution = state error
distribution. Come half-way? Wrong.

— Ll —1<R_1/2u R_1/2u>
e p(d|u) = conste 21UR-1 = conste 2 ’

o data likelihood p (d|u) > 0 if u € RY/2 (V) = D (R71/2)
o p(du) =e >®=0ifug RY/2(V)=QY? (V)

° Q1/2 (V') is the Cameron-Martin space of the measure N (0, Q)
e But u = N (0,Q) = u(QY2(V)) =0. Thus,/p (dlw) dud (u) = 0
Vv

Note. The MAP estimate can still be defined in a generalized sense
(Dashti et al, 2013).



Commutative case

e State and data covariance commute = same eigenvectors ¢;

o Qe; = gje;, Y721 q; < o0, Re; = rie;

—Lld—u)?
e Recall that p(d|u) =e 2 1 uf = N(0,Q)
Theorem.

m .
/ p(dlu) du! (u) >0 < Z@ < 00

vV i—1Ti
That is, Bayesian estimation is well posed if the eigenvalues of the
state covariance decay fast enough compared to the eigenvalues of
data covariance.

1 2

e In particular r; = 1, white data noise R = I, p(d|u) = e 2ld—ul" g
always OK because > 2, q; < oo is needed for ,uf to be a probability
measure.



Infinite-dimensional data, white noise error good

e All is good when data is finite-dimensional and R not singular
e More generally, when data covariance R is bounded below:

(u, Ru) > a|u|®> Yu,a >0
= |u|§%_1 < oo Vu

—|Hu—d|?

= p(dlu) =e RF1>0 VYu

~ /p (dlw) duf (v) > 0
U

e But if V is infinite dimensional, then N (0, R) is not a probability
measure on V' - the trace condition is violated, Tr (R) = >_°,7; = oo.
e But this is not a problem. The data likelihood p (d|u) is just a
function of u on the state state U for a fixed d.

e For a fixed u, p(-|u) does not need to be a probability density.



Positive data likelihood

Theorem. If the forecast ,uf Is a probability measure on the state space
V', and, for a fixed realization of the data d, the function u — p(d|u) is
,uf—measurable, and

0<p(d)<C nl-as.,

for some constant C', and p(d|-) > 0 on some set of positive measure
uf. Then the analysis measure

_ Jap(du) dut (u)

KA = () di (u)

iIs well defined.

Proof. Because p/ (V) = 1, from the assumption,

0 < fyp(du)dul (u) <1.

If [, p(dlu)dul (u) =0, then p(d|-) = 0 u/- a.s., hence
Jv p(d|u) dp? (u) > 0.



Examples of positive data likelihood

e White noise: (V,(-,-)) is a Hilbert space and

D (d|’LL) _ e—%(d—Hu,d—Hu>

e Pointwise: uf is a random field on D C R? with a.s. continuous
realizations u, data is a function d:D — R, and

p(d|u) = e—2 Jp 9(d(@)u(z))dz

(the satellite sensing application will be like that)

e General case:
p(du) = e falw),
where f;(u) > 0 for all v and d.



Application 1: Mean field convergence of randomized EnKF
with white noise data error in infinite dimension



Curse of dimensionality? Not for probability measures!

EnKE, N =10, m = 25
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One EnKF analysis. Constant covariance eigenvalues A\, = 1 and the

An = 1/n are not probability measures in the limit because > >~ A, = oco.
Inverse square law )\, = 1/n? gives a probability measure because 22021 Ap < 00.
m=25 uniformly sampled data points from 1D state, N=10 ensemble members.

From the thesis Beezley (2009), Fig. 4.7. Similarly for particle filters.



Randomized data EnKF

Lemma. Let U/ ~ N(u/,Q/), D=d+ E, E~ N(0,R) and
Ut=U/+K(D-HU'), K=Q/'H'(HQ'H" + R) L.

Then U% ~ N (u®, Q%), i.e., U has the correct analysis distribution
from the Bayes theorem.

Proof. Computation in Burgers at al., 1998.

e EnKF: update every ensemble member separately by this, replacing
covariance by an approximation from the ensemble.

e R = I guarantees that the posterior measure is well defined. But

D ~ N (0,1) is not a random element in infinite dimension. How do
we know that U? is random element? (=measurable function with
values in the state space)



There is no probability measure on infinite dimensional
Hilbert space that is translation or rotation invariant, with
balls measurable

Proof: There are infinitely many orthonormal vectors. Put a ball with
radius 1/2 at the end of each, the balls all have the same positive
measure and fit in a ball at zero with radius 3/2, which, therefore,
cannot have a finite measure. In particular, N (0, 1) cannot be a
(o-additive) probability measure such that balls are measurable.



How to define N (0,1) on a separable Hilbert space

e 1 (whole space Y) = 1, rotation invariant = balls not measurable
e Defined on the algebra C of cylinder sets with finite dimensional Borel
measurable base

7]

Cylinder set Ball = () untable CYlinder sets

e ., cannot be extended to a o-algebra, which would contain balls
e 1, cannot be o-additive, only finitely additive. Balls would be
measurable.

Consider 1D base => weak random variable



Weak random vectors on Hilbert space

e U : Q — H such that Vv € H the function (U,v) : 2 — R is
measurable

e Mean m of U defined by (m,v) = E[(U,v)] VYve H
e Covariance C' of U defined by (Cu,v) = E [(U,u) (U,v)] VYu,ve H

e U ~ N (0,) (white noise) means
(U,v) ~ N (0,1) Vv € H, and E [(U,u) (U,v)] =0 Vu,v € H,u 1 v



Hilbert-Schmidt operators

Denote Vg the space of Hilbert-Schmidt operators

@) oo

A% 6= Y (Aen, Aen) < 0o, (A, BYgg= > (Aen, Ben),

n=1 n=1
where {en} is any complete orthonormal sequence in V. Vg is Hilbert
space. In finite dimension, the Hilbert-Schmidt norm becomes the
Frobenius norm

2

aﬁ

1,]

Al = JZ

Hilbert-Schmidt operators are compact, with singular values o}, and

0
> >
Alfrs = D ok
n=1

If V' is separable, Vg is also separable.



Hilbert-Schmidt operators
make weak random variables strong

Recall standard (strong) LP -norms ||[U]|,, = (£ [\U|p])1/p

Define weak LP-norms: ||U||, ,, = SUP e H,|v]=1 (E[|{U, v>|p])1/p

Lemma. If A is a Hilbert-Schmidt operator and U a weak random
element on a Hilbert space, ||U], ,, < 00, 2 < p < oo then

AU, < [[Allns U],

Lemma If A is a random Hilbert-Schmidt operator and U a weak
random element on a Hilbert space, ||U||,,, < oo, p>2, Aand U
independent, then

AU, < [lAlpsll, 1T,



Convergence of EnKF in the large ensemble limit

e LP laws of large numbers to guarantee that the EnKF gives correct
results for large ensembles, in the Gaussian case: Le Gland et al.
(2011), Mandel et al (2011).

e In general, the EnKF converges to a mean-field limit (Le Gland et al.
2011), Law et al. (2014).

- mean-field approximation = the effect of all other particles on
any one particle is replaced by a single averaged effect, in the limit of
many particles.

- mean field limit = large number of particles, the influence of
each becomes negligible.

- Here, mean field simply means using the covariance of random
variable passed through the model and the analysis step.



Convergence of the EnKF to mean-field limit in finite
dimension

e Legland et al. (2011): analysis step as nonlinear transformation of
probability measures

e Law et al. (2014): mean field convergence for model as general
Markov chain

e Nonlinear tranformation of ensemble as vector of exchangeable
random variables [ X1, Xo,..., Xn]| — [Y71,Y2,...,YyN]. LP continuity
of the model.

e Using exact covariance Q:

YkMean field _ X}L\Aean field + K(Q)(Dk _ HX’L\Aean fleld)’ Q = Cov (Xl)
e Randomized EnKF:

YkComputed _ X}Somputed + K(Qn)(Dy, — HX}(CZomputed),

QN =ensemble covariance

e Subtract the two...



Convergence of the EnKF to mean-field limit in infinite
dimension

e Subtract, continuity of Kalman gain:

IK(Q) — K(QN)Igsll, < const||Q — Qnlla,

e Same realization of white noise Dy,

I(K(Q) — K(QnN)) Dill, < IK(Q) = K(QN) sl 1Dkl
e LP law of large numbers for sample covariance in Hilbert-Schmidt

norm
e Apriori bound on the state HX,"{;”HP < const (m) for all m from
(HQH*+ R)™Y < Lby R>al

e Induction over m: HXT’Comp'Jted _ Xin,l\/lean field

1<p<ox

< constm, p

‘P_\/N'




Extensions of EnKF analysis

e Computational experiments confirm that EnKF converges uniformly
for high-dimensional distributions that approximate a Gaussian measure
on Hilbert space. (J. Beezley, Ph.D. thesis, 2009). EnKF for
distributions with slowly decaying eigenvalues of the covariance
converges very slowly and requires large ensembles.

e Square root EnKF (SREnKF) has no randomization, convergence in
the linear Gaussian case Kwiatkowski and Mandel (2015) including
infinite dimension, but controls mean and covariance only, not
individual ensemble members

e SREnKF analysis in the nonlinear case requires control of ensemble
members. In progress with lvan Kasanicky and Kody Law

e Long-term convergence of the EnKF: combine with ergodic

estimation. In progress with Kody Law.
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Application 2: Data Assimilation of
Satellite Active Fire Detection in Wildfire
Simulations



HRRR forecast
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2013 Patch Springs Fire
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MODIS scanning

Source: NASA



Satellite Fire Detection — 2010
Fourmile Canyon Fire, Boulder, CO
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MODIS/VIIRS Active Fire
Detection Data

Detection squares - fire sensed somewhere in
the square, not that the whole square would be
burning.

Level 3 product — 1km detection squares (used
here)

Level 2 product — 0.1deg grid, confidence levels,
cloud mask

MODIS instrument native resolution 750m at nadir to 1.6km, geo-
location uncertainty up to 1.5km, VIIRS resolution 375m.

MODIS processed to 1.1km detection squares, VIIRS 375m. Much
coarser scale than fire behavior models (10-100m)

False negatives are common. 90% detection at best. 100m? flaming fire
has 50% detection probability (MODIS. VIIRS is better but nothing can
be ever 100% accurate).

No detection under cloud cover — cloud mask in Level 2 product



MODIS active fires detection
with simulated fire arrival time
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Assimilation of active fires detection

* Fire model state = fire arrival time

* Modify the fire arrival time to simultaneously minimize the change
and to maximize the likelihood of the observed fire detection.

1

o~
* Need more general data likelihood than e 2 K

* Inspired by computer vision in Microsoft Kinect, which modifies a
level set function for contour detection to simultaneously minimize
the change and to maximize the likelihood of the observed images
(A. Blake, Gibbs lecture at Joint Math Meetings, Baltimore 2014)

e Bayesian statistics view: Maximum Aposteriori Probability, found
by nonlinear least squares.



flt,x,y) : log of the likelihood of fire detection
as a function of the time ¢ elapsed since the

fire arrival at the location (x,y)

Dataloglikelihood
1 T T T ! !
: : — — Naofire detection
: : Fire detected
IS i s ...................... ....... : i
0k __f__b___ ;.i_._._._,_____
'“l,.‘— —_—— ""\:’ :
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||' : \
l| l.l..:
-1 \ { \ | 'y |
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Time from fire amval (h)



Assimilation of MODIS/VIIRS Active Fire
detection: generalized least squares

Fit the fire arrival time 7 to the forecast 7T and the fire detection
data:

J(T)= —jc(x,y)f(TS —T,x,y)a’xa’y+%HT—Tin_1 — min

C(T-TH=0

1> = satellite overpass time

constraint C(7-7°)=0 : no change of fire arrival time at ignition points

f(t.x,y) = log likelihood of detection ¢ hours after time arrival at x,y

c(x,y) = confidence level of the fire detection (0 = cloud)
A =covariance operator to penalize non-smooth changes:

2 2 \ ¢
A:[—a2 —2 ] a>1
0°x 0J°y




Assimilation of MODIS/VIIRS Active Fire
detection as Maximum Aposteriori Probability

Fit the fire arrival time 7 to the forecast Tt and fire detection data

2

04 .
J(T):—J'f(TS—T,x,y)a’xdy+—HT—Tf‘ ,— min
2 A T: C(T-Tt)=0
[ £(r5=T xp)dxdy —%HT—TfW_l
S e e 7 —  max
T: C(T-TH)=0

& p(detection|T) p'(T) — max

T: C(T-TH=0



Minimization by preconditioned steepest descent

J(T)=~[ f(TS =T, x,y)dxdy + %HT -7~ min

C(T-T")=0
VJ(T)=-F(T)+aA(T~T"), F(T)=2 f(T*-T.x,y)
But VJ(T) is a terrible descent direction, 4 ill conditioned

- no progress at all!
Better: preconditioned descent direction AVJ(T)=o(T —T")— AF(T)

00 9
ix J°y

a > 1:spatial smoothing of the forcing by log likelihood maximization

AF(T) = (— ] 2 (T =T.x,y)

T at ignition point does not change = descent direction 6 from
the saddle point problem 46 + CA = % f(T°-T,x,y), C'6=0

Now one descent iteration is enough.

13



Assimilation of the VIIRS Fire Detection into
the Fire Arrival Time for the 2012 Barker Fire

Forecast Search direction

ViRsfre
detections A4 /*!
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But fire is coupled with the atmosphere

Atmosphere
Heat flux
Wind
Fire Heat
propagatlon release

 Heat flux from the fire changes the state of the atmosphere
over time.

* Then the fire model state changes by data assimilation.

« The atmospheric state is no longer compatible with the fire.

* How to change the state of the atmosphere model in
response data assimilation into the fire model?

* And not break the atmospheric model.

15



Spin up the atmospheric model after the fire
model state is updated by data assimilation

Rerun atmosphere
Coupled | ; o model from an
atmosphere-fire Of sync with fire earlier time

- -

Atmosphere and
fire in sync again
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Forecast fire Eire arrival time Replay heat fluxes  Continue coupled
derived from the fire-atmosphere

simulation changed. bY | changed simulation
- data assimilation

Atmosphere out

fire arrival time
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e
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=
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Conclusion 2

A simple and efficient method — implemented by FFT

One iteration is sufficient to minimize the cost function
in practice, further iterations do not improve much

Pixels under cloud cover do not contribute to the cost
function

Standard Bayesian data assimilation framework:
Forecast density - data likelihood = analysis density

In progress: Active fire detection likelihood from the
physics and the instrument properties

Future: Combination with standard data assimilation
into the atmospheric model, e.g., add to 4DVAR cost
function



