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Problem statement

Sample from a target distribution π that is a product of a prior
distribution (Gaussian) and a likelihood function with additive
Gaussian errors

• π may be multimodal

• Dimension of model space may be relatively large (targeted at
geoscience problems).
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Motivation

Numerical models are used for forecasting and decisions.

• Many parameters (105–106).

• Observations are generally sparse (1 km apart, but daily
observations for several years).

• Likelihood function evaluations expensive (0.1–10 hour)

Figure source: http://www.sintef.no/
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Current methodology

Currently use iterative ensemble smoothers for reservoir “history
matching”. Multiple approximations:

1. Based on Randomized Maximum Likelihood without weighting

2. Updates are computed from correlations between data and
model variables

3. Ignore model error
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Background

Several methods use optimization to place candidate states in
regions of high probability.

Quasi-Linear Estimation did not apply a MH test to correct the
sampling for nonlinear (Kitanidis, 1995).

Randomized Maximum Likelihood applied MH test to obtain
correct sampling but required marginalization (Oliver
et al., 1996).

Randomize-Then-Optimize MH acceptance test limited the
application to distributions with a single mode
(Bardsley et al., 2014).

In this paper, the RML method is modified so that marginalization
is not required. Applicable to multimodal distributions.
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Simulation methods based on minimization

Many methods can be used to generate realizations from
multi-normal distributions. Two are particularly interesting because
of the contrast in approaches.

• One approach is to generate a “rough” field (an unconditional
simulation) with the same covariance as the true field, then to
subtract a smooth correction that forces the simulated field to
pass through the data.

• A second approach is to compute a “smooth” estimate that
passes through the data, then use the LU decomposition of
the estimation error covariance to add a stochastic component
to the estimate.

It is known that these methods are equivalent for data without
errors (Krzanowski, 1988) and for data with errors (Oliver, 1996).
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Smooth plus rough — Gauss-linear problem

The maximum a posteriori estimate minimizes

mmap = argmin(m −mprior)
TC−1

M (m −mprior)

+ (Gm − dobs)
TC−1

D (Gm − dobs),

= mprior + CMGT (GCMGT + CD)−1(dobs − Gmprior).

Samples from posterior can be generated

mi = mmap + LZi for i = 1, . . . ,N

where Zi ∼ N[0, I ], LLT = CM′ , and

CM′ = (C−1
M + GTC−1

D G )−1
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Rough plus smooth — Gauss-linear problem

In this algorithm, we first generate unconditional realizations of the
model (and data), then make a correction to the unconditional
model.

• Sample mu ∼ N[mprior,CM].

• Sample du ∼ N[dobs,CD].

• Compute the model mc that minimizes

mc = argmin(m −mu)TC−1
M (m −mu)

+ (Gm − du)TC−1
D (Gm − du),

= mu − CMGT [GCMGT + CD]−1(Gmu − du)

Does not require mmap or posteriori covariance.
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Illustration: Truth
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The truth with three (inaccurate) observations.
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Smooth plus rough — Compute maximum a posteriori
estimate
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Smooth plus rough
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The MAP estimate of the standard deviation in the estimate
(square root of posteriori variance).
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Smooth plus rough
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mi = mmap + C
1/2
M′ Zi for i = 1, . . . ,N
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Alternative: Rough plus smooth
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mi = mprior + C
1/2
M Zi for i = 1, . . . ,N
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Illustration: Rough plus smooth
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Add a smooth correction to an unconditional realization to make it
conditional to data.

δm = −CMGT [GCMGT + CD]−1(Gmu − du).

14/45



Introduction Standard RML Augmented RML Examples Summary References

Illustration: Rough plus smooth
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The 10 conditional realizations resulting from smooth corrections
to the unconditional realizations.
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Smooth plus rough and rough plus smooth— Summary

Both algorithms are valid methods for sampling the posterior for
linear problems with gaussian measurement errors and a gaussian
prior PDF for the model variables.

Neither is correct for nonlinear problems, but the method of adding
a smooth correction to unconditional realizations appeared to be
more robust to nonlinearity.
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Application to nonlinear problems

Let X be multivariate normal with mean µ and covariance Cx such
that the prior probability density for X is

p(x) = cp exp

(
−1

2
(x − µ)TC−1

x (x − µ)

)
.

Observations do = g(x) + εd with εd ∼ N(0,Cd) are assimilated
resulting in a posterior density

π(x) ∝ exp

(
−1

2
(x − µ)TC−1

x (x − µ)

−1

2
(g(x)− do)TC−1

d (g(x)− do)

)
.
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Standard RML for MCMC

1. Generate candidate state x∗:

1.1 Independently sample

xuc ∼ N[xpr,Cx ] and duc ∼ N[dobs,Cd ].

1.2 Minimize a nonlinear least-squares functional:

x∗ = argmin
x

[1

2

Model parameter mismatch︷ ︸︸ ︷
(x − xuc)TC−1

x (x − xuc)

+
1

2
(g(x)− duc)TC−1

d (g(x)− duc)︸ ︷︷ ︸
Sum of squared data mismatch

]

(Need to compute the probability of proposing x∗.)
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Standard RML for MCMC (2)

2. Compute probability of proposing (x∗, duc).

2.1 Probability of proposing (xuc, duc)

f (xuc, duc) ∝ exp
(
−1

2
(xuc − µ)TC−1

x (xuc − µ)

− 1

2
(duc − dobs)

TC−1
d (duc − dobs)

)
2.2 Probability of proposing (x∗, duc)

q(x∗, duc) = f (xuc(x∗, duc), duc)| det J|

where
xuc = x∗ + CxG (x∗)TC−1

d (g(x∗)− duc)

from the necessary condition for x∗ to be a minimum.
G (x∗) = ∂g/∂x |x∗ .
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Standard RML for MCMC (3)

3. Compute marginal probability of proposing x∗.

qx(x∗) =

∫
D
q(x∗, duc) dduc.

4. Accept proposed state x∗ with probability

α(x , x∗) = min

(
1,
π(x∗)qx(x)

π(x)qx(x∗)

)
.

else retain state x (Metropolis-Hastings).
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EXAMPLE FROM 1996
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Comments on Randomized Maximum Likelihood

• The proposal density was typically close to the target density
(identical for linear observations).

• Acceptance rate was high in multimodal experiments

• MH acceptance ratio was difficult to compute

• In practice — ignored MH test (accepted all transitions)

• Formed the basis for several iterative variants of ensemble
Kalman filter-like methods
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Augmented state RML1

1. Augment the state with data variables

2. Modify the target joint pdf such that the marginal pdf for
model variables is identical to the true posterior pdf for model
variables

3. Modify the proposal density to improve MH acceptance

1Oliver (2015)
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Modify the target joint pdf

Define the target joint probability for the augmented state is

π(x , d) ∝ exp
[
−1

2
(x−µ)TC−1

x (x−µ)− 1

2γ
(g(x)−d)TC−1

d (g(x)−d)

− 1

2(1− γ)
(d − dobs)

TC−1
d (d − dobs)

]
.

The marginal target density for model variable x can be shown to
be

π(x) ∝ exp
[
−1

2
(x−µ)TC−1

x (x−µ)−1

2
(g(x)−dobs)TC−1

d (g(x)−dobs)
]

independent of γ.
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Modify the target joint pdf

Define the target joint probability for the augmented state is

π(x , d) ∝ exp
[
−1

2
(x−µ)TC−1

x (x−µ)− 1

2γ
(g(x)−d)TC−1

d (g(x)−d)

− 1

2(1− γ)
(d − dobs)

TC−1
d (d − dobs)

]
.

The marginal target density for model variable x can be shown to
be

π(x) ∝ exp
[
−1

2
(x−µ)TC−1

x (x−µ)−1

2
(g(x)−dobs)TC−1

d (g(x)−dobs)
]

independent of γ.
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Target joint pdf

25

50

75

100

125

150

175

200

225

225

225

1.45 1.50 1.55 1.60 1.65
2.9

3.0

3.1

3.2

3.3

d

x

γ = 0.02

10

20 30

40

50

60

1.50 1.55 1.60 1.65

3.00

3.05

3.10

3.15

3.20

3.25

x

γ = 0.40

20

40

60

80

100

1.50 1.55 1.60 1.65

3.06

3.08

3.10

3.12

3.14

3.16

x

γ = 0.90

Figure 1: Dependence of the joint density for (x , d) on magnitude of the
modelization error γ.
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Generate independent candidates for MCMC

1. Draw unconditional samples from the prior distribution of
model and data variables,

xuc ∼ N[µ,Cx ] and duc ∼ N[dobs,Cd ].

2. Candidate joint states are obtained by minimizing a nonlinear
least squares function

(x∗, d∗) = argmin
x ,d

[
(x − xuc)TC−1

x (x − xuc)

+
1

ρ
(g(x)− d)TC−1

d (g(x)− d)

+
1

(1− ρ)
(d − duc)TC−1

d (d − duc)
]
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Proposal probability density
The inverse transformation is straightforward,

xuc = x∗ +
1

ρ
CxG

TC−1
d (g(x∗)− d∗)

and

duc =
1

ρ
d∗ −

(
1− ρ
ρ

)
g(x∗).

So the joint proposal density is

q(x∗, d∗) = p (xuc(x∗, d∗), duc(x∗, d∗)) | det J|

= cp exp

[
−1

2
(xuc(x∗, d∗)− µ)TC−1

x (xuc(x∗, d∗)− µ)

−1

2
(duc(x∗, d∗)− dobs)

TC−1
d (duc(x∗, d∗)− dobs)

]
| det J|
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Dependence of proposal density on ρ
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Figure 2: Dependence of the joint density for proposed transitions
(x∗, d∗) on magnitude of ρ.

Increasing ρ provides a wider proposal density.
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Bimodal example: problem definition
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Observation operator is quadratic: two identical peaks in the
likelihood.
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Bimodal example: augmented state space
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Marginal distribution of model state from Metropolized
RML
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Acceptance rate for independent proposals is 64% (almost
independent of ρ for 0.5 ≤ ρ ≤ 0.8).
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Example with many modes
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g [x1, x2] =

[
sin[2πx1]
sin[2πx2]

]
σD = 0.2, xpr = (0.0, 0.0) and σX = 1., dobs = (0., 0.)
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Proposed transitions
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Sample independently from the prior distribution.
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Proposed transitions
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Solve a minimization problem which maps samples from the prior
to samples from a proposal distribution.
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Distribution of proposed transitions
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Need to apply Metropolis-Hastings test for samples of x∗, d∗.
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MCMC samples
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Samples from MH independence sampler with 40,000 elements.
Acceptance rate = 0.875± 0.002.
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Compare sampling to exact pdf

1

11

2
2

2
3 3 3

4

4

4

5

5 5

1

1

1

2

2
23 3

3

4

4

4

5

5 5

-0.4 -0.2 0.0 0.2 0.4

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

-0.6 -0.4 -0.2 0.2 0.4 0.6

1
2
3
4
5
6

Red is true model density. Black is density estimated by kernel
smoothing (bandwidth 0.01) of 4200 samples in the regions of
three central peaks.
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Benefit of Metropolization
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Small difference in total absolute error (0.0178 vs 0.0169).

38/45



Introduction Standard RML Augmented RML Examples Summary References

Summary

• A new augmented variable independence Metropolis sampler
• Minimization to place proposals in regions of high probability
• Relatively high acceptance rate, even in multimodal

distributions (rapid mixing).

• Open issues
• Computation of the Jacobian determinant in high dimensions
• Requirement for obtaining global minimum
• Generalization to nongaussian priors
• Applicability with EnKF-like methods
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Example: non-Gaussian prior
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The Jacobian of transformation
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Example: non-Gaussian prior
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Results from Metropolized RML with variable transformation.

Acceptance rate is 74%.
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