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Scaling Cascades in Complex SystemsSequential Data Assimilation Strategies

É Ensemble Kalman Filters (Gaussian Approach)
+ Robust
+ Computationally affordable
– Inconsistent for non-Gaussian PDFs

É Particle Filters (Non-parametric Approach)
+ consistent, suitable for

non-Gaussian PDFs
– Liable to the "Curse of

Dimensionality”
É Hybrid schemes

+ trade-off between accuracy and
stability
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Ensemble Transform Particle Filter
[Reich and Cotter, 2015]
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Hybrid Ensemble Transform Filter
[Chustagulprom et al., 2015]
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Bayesian Inference

for bimodal prior

and

Gaussian likelihood

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Baysian inference

prior
likelihood
posterior

,

UofP/ UofR, Hybrid ensemble transform filter, University of Warwick, February 22nd 2016 9



Scaling Cascades in Complex SystemsExample: Single 1D Assimilation Step

ETPF-ESRF

performance vs

ensemble size

for optimally chosen

bridging parameter

(α = 0: EnKF

α = 1 : ETPF)

10
1

10
2

10
3

R
M

S
 e

rr
o

r

0

0.1

0.2

0.3

0.4
ETPF-ESRF

ensemble size
10

1
10

2
10

3

o
p

ti
m

a
l 
α

0

0.2

0.4

0.6

0.8

1

,

UofP/ UofR, Hybrid ensemble transform filter, University of Warwick, February 22nd 2016 10



Scaling Cascades in Complex SystemsOutline

Motivation

Hybrid Scheme
Ensemble Transform Particle Filter [Reich and Cotter, 2015]
Hybrid Ensemble Transform Filter [Chustagulprom et al., 2015]
Example: Single 1D Assimilation Step

Non-spatially extended systems
Likelihood splitting strategies
Ensemble Inflation and Particle Rejuvenation
Example: Lorenz 63 model

Spatially extended systems
Localization
Example: Lorenz 96 model

Conclusions and Prospect

,

UofP/ UofR, Hybrid ensemble transform filter, University of Warwick, February 22nd 2016 11



Scaling Cascades in Complex SystemsLikelihood splitting strategies

É Fixed:
keeping bridging parameter constant

É α = 0 ⇒ Pure Kalman Filter
É α = 1 ⇒ Pure Particle Filter

É Adaptive:
keeping ETPF effective sample size

METPF
eff (α) :=

1
∑M

i=1wi(α)2

constant
METPF

eff (α) = θM (4)

É θ = 0 ⇒ α = 1 (pure PF)
É θ = 1 ⇒ α = 0 (pure EnkF)
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Scaling Cascades in Complex SystemsEnsemble Inflation and Particle Rejuvenation

In order to prevent
É Ensemble under-dispersion
É Particle degeneracy

Particle rejuvenation is applied to the analysis ensemble:

za
j
→ za

j
+

M
∑

i=1

(zf
i
− z̄f)

βξij
p
M− 1

(5)

É β: Rejuvenation parameter
É ξij’s: i.i.d. Gaussian random variables with

mean zero and variance one
É

∑M
j=1 ξij = 0 so as to preserve the ensemble mean
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ẋ1 = 10(x2 − x1)

ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 − 8/3x3
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Perfect model DA experiments:
É Implicit midpoint method with time step ∆t = 0.01.
É x1 observed every 12 time-steps with error variance R = 8
É Particle rejuvenation β = 0.2
É 100,000 assimilation cycles
É OTP solved using FastEMD algorithm
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Localized measurement error covariance elements:

rLOC
qq

(xk) =
rqq

ρ
�

‖xk−xq‖
Rloc

� ,

with ρ a compactly supported tempering function,
e.g., Gaspari-Cohn function.

É Local updates for each gridpoint
É Directly applicable to Kalman Filters
É Directly applicable to ETPF [Cheng and Reich, 2015] (local weights

and transport cost)

,
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ẋj = (xj+1 − xj−2)xj−1 − xj + F,

xj = xj+N

where F = 8 and N = 40.

Perfect model DA experiments:
É Implicit midpoint method with time step ∆t = 0.005.
É Odd variables observed every 22 time-steps
É Particle rejuvenation β = 0.2
É Localisation radius is Rloc = 4
É 50,000 assimilation cycles
É OTP solved using FastEMD algorithm

,
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Skill dependence on
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Scaling Cascades in Complex SystemsConclusions

É Hybrid approach outperforms both ETKF/ESRF and ETPF

for a suitable bridging parameter

É Applying ETPF before the ensemble Kalman filter

appeared more profitable, especially for Lorenz 63

model. Arguably due to its strongly nonlinear dynamics.

É Adaptive likelihood splitting was beneficial for Lorenz-96

system and detrimental for Lorenz-63 model.

Other adaptation criteria must be tested

É Proposed hybrid filter can be combined with

R-localization.

,
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É Hybrid scheme being currently implemented into the DA

system of the Deutsche Wetterdienst

É Spatial regularity of analysis fields after localisation

É Impact of systematic model errors on hybrid scheme

É Hybrid ensemble transform smoother

,
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Thanks!
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Oberwolfach Seminars 2016
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Date (ID): 15 – 21 May 2016 (1620a)
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•  e-mail address
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pdf format) to:

Prof. Dr. Dietmar Kröner 
Mathematisches Forschungsinstitut Oberwolfach 
Schwarzwaldstr. 9 – 11 
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Germany

seminars@mfo.de

www.mfo.de/scientific-programme/meetings/oberwolfach-seminars

Mathematisches
Forschungsinstitut
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