

Generalized pCN Metropolis algorithms for Bayesian inference in Hilbert spaces

Oliver Ernst, Daniel Rudolf, Björn Sprungk

Data Assimilation and Inverse Problems (U Warwick) 23rd February, 2016

Warwick, Feb 2016 · B. Sprungk

1. Problem setting and Metropolis-Hastings algorithms in Hilbert spaces

2. The gpCN-Metropolis algorithm

3. Convergence

1. Problem setting and Metropolis-Hastings algorithms in Hilbert spaces

2. The gpCN-Metropolis algorithm

3. Convergence

Groundwater flow modelling:

▶ PDE model for groundwater pressure head *p*, e.g.,

$$-\nabla \cdot (\mathrm{e}^{\kappa(x)} \nabla p(x)) = 0$$

▶ Noisy observations of κ and p at locations x_j , j = 1, ..., J

 Interested in functional f of flux u(x) = -e^{κ(x)} ∇p(x) (e.g., breakthrough time of pollutants)

UQ approach:

- Model unknown coefficient κ as (Gaussian) random function
- Employ observational data to fit stochastic model for κ
- \blacktriangleright Compute expectations or probabilities for resulting random f

Groundwater flow modelling:

 \blacktriangleright PDE model for groundwater pressure head p, e.g.,

$$-\nabla \cdot (\mathrm{e}^{\kappa(x)} \nabla p(x)) = 0$$

- ▶ Noisy observations of κ and p at locations x_j , $j = 1, \ldots, J$
- Interested in functional f of flux u(x) = -e^{κ(x)} ∇p(x) (e.g., breakthrough time of pollutants)

UQ approach:

- Model unknown coefficient κ as (Gaussian) random function
- \blacktriangleright Employ observational data to fit stochastic model for κ
- Compute expectations or probabilities for resulting random f

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Obtain stochastic model for κ via Bayes

▶ Random function in Hilbert space \mathscr{H} with CONS $\{\phi_m\}_{m \in \mathbb{N}}$

$$\kappa(x,\omega) = \sum_{m \ge 1} \xi_m(\omega) \ \phi_m(x),$$

where $\pmb{\xi} = (\xi_m)_{m\in\mathbb{N}}$ random vector in ℓ^2

• Employ measurements of κ to fit Gaussian prior μ_0 for κ resp. ξ : $\xi \sim \mu_0 = N(0, C_0)$ on ℓ^2

• Conditioning prior μ_0 on noisy observations $\boldsymbol{p} \in \mathbb{R}^J$ of p $\boldsymbol{p} = G(\boldsymbol{\xi}) + \varepsilon, \qquad (\boldsymbol{\xi}, \varepsilon) \sim \mu_0 \otimes N(0, \Sigma)$ results in posterior via Bayes' rule [Stuart, 2010]

 $\mu(\mathrm{d}\boldsymbol{\xi})\propto\exp\left(-\Phi(\boldsymbol{\xi})
ight)\;\mu_0(\mathrm{d}\boldsymbol{\xi}),\qquad \Phi(\boldsymbol{\xi})=rac{1}{2}|\boldsymbol{p}-G(\boldsymbol{\xi})|^2_{\Sigma^{-1}}.$

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Obtain stochastic model for κ via Bayes

▶ Random function in Hilbert space \mathscr{H} with CONS $\{\phi_m\}_{m \in \mathbb{N}}$

$$\kappa(x,\omega) = \sum_{m\geq 1} \xi_m(\omega) \phi_m(x),$$

where $\boldsymbol{\xi} = (\xi_m)_{m \in \mathbb{N}}$ random vector in ℓ^2

• Employ measurements of κ to fit Gaussian prior μ_0 for κ resp. ξ : $\xi \sim \mu_0 = N(0, C_0)$ on ℓ^2

• Conditioning prior μ_0 on noisy observations $\boldsymbol{p} \in \mathbb{R}^J$ of p $\boldsymbol{p} = G(\boldsymbol{\xi}) + \varepsilon, \qquad (\boldsymbol{\xi}, \varepsilon) \sim \mu_0 \otimes N(0, \Sigma)$ results in posterior via Bayes' rule [Stuart, 2010]

 $\mu(\mathrm{d}\boldsymbol{\xi}) \propto \exp\left(-\Phi(\boldsymbol{\xi})\right) \ \mu_0(\mathrm{d}\boldsymbol{\xi}), \qquad \Phi(\boldsymbol{\xi}) = \frac{1}{2}|\boldsymbol{p} - G(\boldsymbol{\xi})|^2_{\Sigma^{-1}}.$

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Obtain stochastic model for κ via Bayes

▶ Random function in Hilbert space \mathscr{H} with CONS $\{\phi_m\}_{m \in \mathbb{N}}$

$$\kappa(x,\omega) = \sum_{m\geq 1} \xi_m(\omega) \phi_m(x),$$

where $\boldsymbol{\xi} = (\xi_m)_{m \in \mathbb{N}}$ random vector in ℓ^2

• Employ measurements of κ to fit Gaussian prior μ_0 for κ resp. $\boldsymbol{\xi}$:

$$\boldsymbol{\xi} \sim \mu_0 = N(0, C_0) \qquad ext{ on } \ell^2$$

▶ Conditioning prior μ_0 on noisy observations $oldsymbol{p} \in \mathbb{R}^J$ of p

$$\boldsymbol{p} = G(\boldsymbol{\xi}) + \varepsilon, \qquad (\boldsymbol{\xi}, \varepsilon) \sim \mu_0 \otimes N(0, \Sigma)$$

results in posterior via Bayes' rule [Stuart, 2010]

$$\mu(\mathrm{d}\boldsymbol{\xi}) \propto \exp\left(-\Phi(\boldsymbol{\xi})\right) \ \mu_0(\mathrm{d}\boldsymbol{\xi}), \qquad \Phi(\boldsymbol{\xi}) = \frac{1}{2}|\boldsymbol{p} - G(\boldsymbol{\xi})|_{\Sigma^{-1}}^2.$$

- Employ MCMC sampling to compute $\mathbb{E}_{\mu}[f] = \int_{\mathscr{H}} f(\boldsymbol{\xi}) \, \mu(\mathrm{d}\boldsymbol{\xi}).$
- ▶ Construct Markov chain $(\boldsymbol{\xi}_k)_{k \in \mathbb{N}}$ in $\mathscr{H} = \ell^2$ with transition kernel

$$M(\boldsymbol{\eta},A):=\mathbb{P}(\boldsymbol{\xi}_{k+1}\in A|\boldsymbol{\xi}_k=\boldsymbol{\eta})$$

which is μ -reversible:

$$M(\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta})\;\mu(\mathrm{d}\boldsymbol{\xi})=M(\boldsymbol{\eta},\mathrm{d}\boldsymbol{\xi})\;\mu(\mathrm{d}\boldsymbol{\eta})$$

• Then μ stationary measure of chain and (under suitable conditions)

$$\frac{1}{n}\sum_{k=1}^n f(\pmb{\xi}_k) \quad \xrightarrow{n \to \infty} \quad \mathbb{E}_\mu[f] \qquad \text{a.s.}$$

- μ -reversible Markov chain geometrically ergodic and $\pmb{\xi}_1 \sim \mu$, then

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^{n}f(\boldsymbol{\xi}_{k})-\mathbb{E}_{\mu}\left[f\right]\right) \xrightarrow{d} N(0,\sigma_{f}^{2}),$$

see [Roberts & Rosenthal, 1997], where

$$\sigma_f^2 = \sum_{k=-\infty}^{\infty} \gamma_f(k), \qquad \gamma_f(k) = \operatorname{Cov}\left(f(\boldsymbol{\xi}_1), f(\boldsymbol{\xi}_{1+k})\right)$$

- ► Rapid decay of autocovariance function *γ_f* yields high statistical efficiency.
- Common measure of efficiency is effective sample size:

$$\mathsf{ESS}_f(n) = n \; \frac{\sigma_f^2}{\operatorname{Var}_\mu(f)}.$$

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces The Metropolis-Hastings (MH) algorithm

Metropolis-Hastings algorithm for generating state $\boldsymbol{\xi}_{k+1}$ of Markov chain

1. Draw a new state η from proposal kernel $P(\boldsymbol{\xi}_k, \mathrm{d}\boldsymbol{\eta})$:

$$\boldsymbol{\eta} \sim P(\boldsymbol{\xi}_k).$$

2. Accept proposal η with acceptance probability $\alpha(\boldsymbol{\xi}_k, \boldsymbol{\eta})$, i.e., draw $a \sim \mathrm{Uni}[0,1]$ and set

$$oldsymbol{\xi}_{k+1} = egin{cases} oldsymbol{\eta}, & a \leq lpha(oldsymbol{\xi}_k,oldsymbol{\eta}), \ oldsymbol{\xi}_{k+1} = egin{cases} oldsymbol{\eta}, & a \leq lpha(oldsymbol{\xi}_k,oldsymbol{\eta}), \ oldsymbol{\xi}_{k+1} = oldsymbol{\xi}_k, & otherwise. \end{cases}$$

Transition kernel of resulting chain is called Metropolis kernel and reads

$$M(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) = \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) + \left[1 - \int \alpha(\boldsymbol{\xi}, \boldsymbol{\zeta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\zeta})\right] \delta_{\boldsymbol{\xi}}(\mathrm{d}\boldsymbol{\eta}).$$

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces The Metropolis-Hastings (MH) algorithm

Metropolis-Hastings algorithm for generating state $\pmb{\xi}_{k+1}$ of Markov chain

1. Draw a new state η from proposal kernel $P(\boldsymbol{\xi}_k, \mathrm{d}\boldsymbol{\eta})$:

$$\boldsymbol{\eta} \sim P(\boldsymbol{\xi}_k).$$

2. Accept proposal η with acceptance probability $\alpha(\boldsymbol{\xi}_k, \eta)$, i.e., draw $a \sim \mathrm{Uni}[0, 1]$ and set

$$oldsymbol{\xi}_{k+1} = egin{cases} oldsymbol{\eta}, & a \leq lpha(oldsymbol{\xi}_k,oldsymbol{\eta}), \ oldsymbol{\xi}_{k+1} = egin{cases} oldsymbol{\eta}, & a \leq lpha(oldsymbol{\xi}_k,oldsymbol{\eta}), \ oldsymbol{\xi}_{k+1} = oldsymbol{\xi}_k, & otherwise. \end{cases}$$

Transition kernel of resulting chain is called Metropolis kernel and reads

$$M(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) = \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) + \left[1 - \int \alpha(\boldsymbol{\xi}, \boldsymbol{\zeta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\zeta})\right] \,\delta_{\boldsymbol{\xi}}(\mathrm{d}\boldsymbol{\eta}).$$

To ensure $\mu\text{-}\mathrm{reversibility}$ of Metropolis kernel we need to choose

$$\alpha(\boldsymbol{\xi}_k, \boldsymbol{\eta}) = \min\left\{1, \frac{\mathrm{d}\nu^{\top}}{\mathrm{d}\nu}(\boldsymbol{\xi}_k, \boldsymbol{\eta})\right\},\,$$

where $\nu(\mathrm{d}\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}):=P(\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta})\;\mu(\mathrm{d}\boldsymbol{\xi})$ and $\nu^{\top}(\mathrm{d}\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}):=\nu(\mathrm{d}\boldsymbol{\eta},\mathrm{d}\boldsymbol{\xi}).$

Since μ and μ_0 are equivalent (Bayes' rule), a μ_0 -reversible proposal P, $P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) \ \mu_0(\mathrm{d}\boldsymbol{\xi}) = P(\boldsymbol{\eta}, \mathrm{d}\boldsymbol{\xi}) \ \mu_0(\mathrm{d}\boldsymbol{\eta}),$

will yield

$$\frac{\mathrm{d}\nu^{\top}}{\mathrm{d}\nu}(\boldsymbol{\xi},\boldsymbol{\eta}) = \frac{\mathrm{d}\mu}{\mathrm{d}\mu_0}(\boldsymbol{\eta}) \ \left(\frac{\mathrm{d}\mu}{\mathrm{d}\mu_0}(\boldsymbol{\xi})\right)^{-1} = \exp\left(\Phi(\boldsymbol{\xi}) - \Phi(\boldsymbol{\eta})\right).$$

To ensure $\mu\text{-}\mathrm{reversibility}$ of Metropolis kernel we need to choose

$$lpha(oldsymbol{\xi}_k,oldsymbol{\eta}) = \min\left\{1,rac{\mathrm{d}
u^ op}{\mathrm{d}
u}(oldsymbol{\xi}_k,oldsymbol{\eta})
ight\},$$

where $\nu(\mathrm{d}\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}) := P(\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}) \ \mu(\mathrm{d}\boldsymbol{\xi})$ and $\nu^{\top}(\mathrm{d}\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}) := \nu(\mathrm{d}\boldsymbol{\eta},\mathrm{d}\boldsymbol{\xi}).$

Since μ and μ_0 are equivalent (Bayes' rule), a μ_0 -reversible proposal P,

$$P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) \ \boldsymbol{\mu}_0(\mathrm{d}\boldsymbol{\xi}) \ = \ P(\boldsymbol{\eta}, \mathrm{d}\boldsymbol{\xi}) \ \boldsymbol{\mu}_0(\mathrm{d}\boldsymbol{\eta}),$$

will yield

$$\frac{\mathrm{d}\nu^{\top}}{\mathrm{d}\nu}(\boldsymbol{\xi},\boldsymbol{\eta}) = \frac{\mathrm{d}\mu}{\mathrm{d}\mu_0}(\boldsymbol{\eta}) \left(\frac{\mathrm{d}\mu}{\mathrm{d}\mu_0}(\boldsymbol{\xi})\right)^{-1} = \exp\left(\Phi(\boldsymbol{\xi}) - \Phi(\boldsymbol{\eta})\right).$$

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Examples

Gaussian random walk-proposal: $P(\boldsymbol{\xi}) = N(\boldsymbol{\xi}, s^2C_0)$

• $s \in \mathbb{R}_+$ is a stepsize parameter typically tuned such that acceptance rate

$$\bar{\alpha} := \int_{\mathscr{H}} \int_{\mathscr{H}} \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) \, \mu(\mathrm{d}\boldsymbol{\xi}) \approx 0.234.$$

• This proposal P is not μ_0 reversible.

Preconditioned Crank-Nicolson-proposal: $P(\boldsymbol{\xi}) = N(\sqrt{1-s^2}\boldsymbol{\xi}, s^2C_0)$

Derived from a CN-scheme for (the drift of) the SDE

$$\mathrm{d}\boldsymbol{\xi}_t = (0 - \boldsymbol{\xi}_t) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}B_t$$

where B_t is C_0 -Brownian motion in \mathcal{H} , see [Cotter et al., 2013].

• This proposal is μ_0 reversible.

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Examples

Gaussian random walk-proposal: $P(\boldsymbol{\xi}) = N(\boldsymbol{\xi}, s^2C_0)$

• $s \in \mathbb{R}_+$ is a stepsize parameter typically tuned such that acceptance rate

$$\bar{\alpha} := \int_{\mathscr{H}} \int_{\mathscr{H}} \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) \, \mu(\mathrm{d}\boldsymbol{\xi}) \approx 0.234.$$

• This proposal P is not μ_0 reversible.

Preconditioned Crank-Nicolson-proposal: $P(\boldsymbol{\xi}) = N(\sqrt{1-s^2}\boldsymbol{\xi}, s^2C_0)$

Derived from a CN-scheme for (the drift of) the SDE

$$\mathrm{d}\boldsymbol{\xi}_t = (0 - \boldsymbol{\xi}_t) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}B_t$$

where B_t is C_0 -Brownian motion in \mathcal{H} , see [Cotter et al., 2013].

• This proposal is μ_0 reversible.

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Implications for MCMC algorithm performance

Problem: Bayesian inference in 2D groundwater flow model.

Acceptance rate vs. stepsize s for different dimensions M of $\boldsymbol{\xi} \in \mathbb{R}^{M}$.

Warwick, Feb 2016 · B. Sprungk

Problem setting and Metropolis-Hastings algorithms in Hilbert spaces Implications for MCMC algorithm performance

Problem: Bayesian inference in 2D groundwater flow model.

Acceptance rate vs. stepsize s for different dimensions M of $\boldsymbol{\xi} \in \mathbb{R}^{M}$.

Warwick, Feb 2016 · B. Sprungk

1. Problem setting and Metropolis-Hastings algorithms in Hilbert spaces

2. The gpCN-Metropolis algorithm

3. Convergence

The gpCN-Metropolis algorithm Motivation

Observation:

Higher statistical efficiency when proposal employs same covariance as target measure μ , see [Tierney, 1994], [Roberts & Rosenthal, 2001], ...

Example: $\mu = N(\mathbf{0}, \mathbf{C})$ in 2D, MH with different proposal covariances

Warwick, Feb 2016 · B. Sprungk

HAISCHE UNVERSITÄT KARANTZ

Observation:

Higher statistical efficiency when proposal employs same covariance as target measure μ , see [Tierney, 1994], [Roberts & Rosenthal, 2001], ...

Example: $\mu = N(\mathbf{0}, \mathbf{C})$ in 2D, MH with different proposal covariances

Warwick, Feb 2016 · B. Sprungk

The gpCN-Metropolis algorithm

Observation:

Higher statistical efficiency when proposal employs same covariance as target measure μ , see [Tierney, 1994], [Roberts & Rosenthal, 2001], ...

Example: $\mu = N(\mathbf{0}, \mathbf{C})$ in 2D, MH with different proposal covariances

• If forward map G were linear, then

$$\mu = N(m, C), \qquad C = (C_0^{-1} + G^* \Sigma^{-1} G)^{-1}.$$

• Idea: Linearization of nonlinear G at $\boldsymbol{\xi}_0$

$$G(\boldsymbol{\xi}) \approx \widetilde{G}(\boldsymbol{\xi}) := G(\boldsymbol{\xi}_0) + J\boldsymbol{\xi}, \qquad J = \nabla G(\boldsymbol{\xi}_0)$$

yields approximation to posterior covariance

$$C \approx \widetilde{C} = (C_0^{-1} + J^* \Sigma^{-1} J)^{-1}.$$

• Good choice for ξ_0 might be maximum a posteriori estimate:

$$\boldsymbol{\xi}_{\mathrm{MAP}} = \operatorname*{argmin}_{\boldsymbol{\xi}} \left(|\boldsymbol{p} - \boldsymbol{G}(\boldsymbol{\xi})|_{\Sigma^{-1}}^2 + \|\boldsymbol{C}_0^{-1/2}\boldsymbol{\xi}\|^2 \right).$$

• If forward map G were linear, then

$$\mu = N(m, C), \qquad C = (C_0^{-1} + G^* \Sigma^{-1} G)^{-1}.$$

• Idea: Linearization of nonlinear G at $\boldsymbol{\xi}_0$

$$G(\boldsymbol{\xi}) \approx \widetilde{G}(\boldsymbol{\xi}) := G(\boldsymbol{\xi}_0) + J\boldsymbol{\xi}, \qquad J = \nabla G(\boldsymbol{\xi}_0)$$

yields approximation to posterior covariance

$$C\approx \widetilde{C}=(C_0^{-1}+J^*\Sigma^{-1}J)^{-1}.$$

• Good choice for $\boldsymbol{\xi}_0$ might be maximum a posteriori estimate:

$$\boldsymbol{\xi}_{\mathrm{MAP}} = \operatorname*{argmin}_{\boldsymbol{\xi}} \left(|\boldsymbol{p} - \boldsymbol{G}(\boldsymbol{\xi})|_{\Sigma^{-1}}^2 + \|\boldsymbol{C}_0^{-1/2}\boldsymbol{\xi}\|^2 \right).$$

• If forward map G were linear, then

$$\mu = N(m, C), \qquad C = (C_0^{-1} + G^* \Sigma^{-1} G)^{-1}.$$

• Idea: Linearization of nonlinear G at $\boldsymbol{\xi}_0$

$$G(\boldsymbol{\xi}) \approx \widetilde{G}(\boldsymbol{\xi}) := G(\boldsymbol{\xi}_0) + J\boldsymbol{\xi}, \qquad J = \nabla G(\boldsymbol{\xi}_0)$$

yields approximation to posterior covariance

$$C \approx \widetilde{C} = (C_0^{-1} + J^* \Sigma^{-1} J)^{-1}.$$

• Good choice for $\boldsymbol{\xi}_0$ might be maximum a posteriori estimate:

$$\boldsymbol{\xi}_{\mathrm{MAP}} = \operatorname*{argmin}_{\boldsymbol{\xi}} \left(|\boldsymbol{p} - G(\boldsymbol{\xi})|_{\Sigma^{-1}}^2 + \|C_0^{-1/2}\boldsymbol{\xi}\|^2 \right).$$

Class of admissible proposal covariances:

 $C_{\Gamma} = (C_0^{-1} + \Gamma)^{-1}, \qquad \Gamma$ positive, self-adjoint and bounded

Define generalized pCN-proposal kernel as

$$P_{\Gamma}(\boldsymbol{\xi}) = N(\boldsymbol{A}_{\Gamma}\boldsymbol{\xi}, s^2 \boldsymbol{C}_{\Gamma}),$$

cf. operator weighted proposals [Law, 2013] and [Cui et al., 2014]

• Enforcing μ_0 -reversibility of P_{Γ} – as for pCN-proposal P_0 – yields

$$A_{\Gamma} = C_0^{1/2} \sqrt{I - s^2 (I + H_{\Gamma})^{-1}} C_0^{-1/2}, \qquad H_{\Gamma} := C_0^{1/2} \Gamma C_0^{1/2}.$$

• Boundedness of A_{Γ} on \mathscr{H} not obvious

Class of admissible proposal covariances:

 $C_{\Gamma} = (C_0^{-1} + \Gamma)^{-1}, \qquad \Gamma$ positive, self-adjoint and bounded

Define generalized pCN-proposal kernel as

$$P_{\Gamma}(\boldsymbol{\xi}) = N(\boldsymbol{A}_{\Gamma}\boldsymbol{\xi}, s^2 \boldsymbol{C}_{\Gamma}),$$

cf. operator weighted proposals [Law, 2013] and [Cui et al., 2014]

• Enforcing μ_0 -reversibility of P_{Γ} – as for pCN-proposal P_0 – yields

$$A_{\Gamma} = C_0^{1/2} \sqrt{I - s^2 (I + H_{\Gamma})^{-1}} C_0^{-1/2}, \qquad H_{\Gamma} := C_0^{1/2} \Gamma C_0^{1/2}.$$

• Boundedness of A_{Γ} on \mathscr{H} not obvious

gpCN Metropolis

The Metropolis algorihtm with the gpCN-proposal kernel

$$P_{\Gamma}(\boldsymbol{\xi}) = N(A_{\Gamma}\boldsymbol{\xi}, s^2 C_{\Gamma}),$$

where $s \in (0, 1)$, and the acceptance probability

$$\alpha(\boldsymbol{\xi}, \boldsymbol{\eta}) = \min\left\{1, \exp(\Phi(\boldsymbol{\xi}) - \Phi(\boldsymbol{\eta}))\right\}$$

is well-defined and yields a μ -reversible Markov chain in \mathscr{H} .

It is called gpCN Metropolis and its Metropolis kernel denoted by M_{Γ} .

Note, for $\Gamma = 0$ we recover the pCN Metropolis algorithm with kernel M_0 .

- Setting
 - ► 1D model: $\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{\kappa(x)} \frac{\mathrm{d}p}{\mathrm{d}x}(x) \right) = 0, \quad p(0) = 0, \ p(1) = 2$
 - Observations: $\boldsymbol{p} = \left[p(0.2j) \right]_{j=1}^4 + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(0, \sigma_{\boldsymbol{\varepsilon}}^2 I)$
 - Prior: κ Brownian bridge on [0, 1], i.e.,

$$\kappa(x, \boldsymbol{\xi}(\omega)) \approx \frac{\sqrt{2}}{\pi} \sum_{m=1}^{M} \xi_m(\omega) \sin(m\pi x), \qquad \xi_m \sim N(0, m^{-2})$$

• Quantity of interest: $f(\boldsymbol{\xi}) = \int_0^1 \exp(\kappa(x, \boldsymbol{\xi})) \, dx$

Proposals for MH-MCMC

Results

- Setting
- Proposals for MH-MCMC

Gaussian random walk (RW):

pCN:

Gauss-Newton RW (GN-RW):

gpCN:

$$P_1(\boldsymbol{\xi}) = N(\boldsymbol{\xi}, s^2 C_0)$$

$$P_2(\boldsymbol{\xi}) = N(\sqrt{1 - s^2} \boldsymbol{\xi}, s^2 C_0)$$

$$P_3(\boldsymbol{\xi}) = N(\boldsymbol{\xi}, s^2 C_{\Gamma})$$

$$P_4(\boldsymbol{\xi}) = N(A_{\Gamma} \boldsymbol{\xi}, s^2 C_{\Gamma})$$

$$\Gamma = \sigma_{\varepsilon}^{-2} J J^{\top}, \qquad J = \nabla G(\boldsymbol{\xi}_{\text{MAP}})$$

Results

- Setting
- Proposals for MH-MCMC
- Results

Autocorrelation for M = 50, $\sigma_{\varepsilon} = 0.1$

Warwick, Feb 2016 · B. Sprungk

- Setting
- Proposals for MH-MCMC
- Results

Autocorrelation for
$$M=400$$
, $\sigma_{\varepsilon}=0.01$

Warwick, Feb 2016 · B. Sprungk

- Setting
- Proposals for MH-MCMC
- Results

Effective sample size vs. dimension

- Setting
- Proposals for MH-MCMC
- Results

Effective sample size vs. noise variance

1. Problem setting and Metropolis-Hastings algorithms in Hilbert spaces

2. The gpCN-Metropolis algorithm

3. Convergence

Convergence Geometric ergodicity and spectral gaps

Consider Markov chain $\{\boldsymbol{\xi}_k\}_{k\in\mathbb{N}_0}$ with μ -reversible transition kernel M.

▶ Kernel M is L^2_{μ} -geometrically ergodic if r > 0 exists such that

$$\|\mu - \nu M^k\|_{\mathrm{TV}} \le C_{\nu} \exp(-r\,k) \qquad \forall \nu : \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \in L^2_{\mu}(\mathscr{H}).$$

 \blacktriangleright Define associated Markov operator ${\rm M}: L^2_\mu \to L^2_\mu$ by

$$Mf(\boldsymbol{\xi}) := \int_{\mathscr{H}} f(\boldsymbol{\eta}) M(\boldsymbol{\xi}, d\boldsymbol{\eta}).$$

► L^2_μ -spectral gap of operator M: $gap_\mu(M) := 1 - \|M - \mathbb{E}_\mu\|_{L^2_\mu \to L^2_\mu}$

► M is L²_µ-geometrically ergodic iff gap_µ(M) > 0.

► For pCN-Metropolis kernel M_0 an L^2_μ -spectral gap was proven in [Hairer et al., 2014] under certain conditions on $\frac{d\mu}{d\mu_0}$.

Our Strategy:

Take a comparative approach and relate $gap_{\mu}(M_{\Gamma})$ to $gap_{\mu}(M_{0})$ in order to prove

$$0 < gap_{\mu}(M_0) \implies 0 < gap_{\mu}(M_{\Gamma}).$$

Idea behind:

If kernels M_0 and M_{Γ} do not "differ" too much, then (maybe) they inherit convergence properties from each other.

Theorem (Comparison of spectral gaps)

For i = 1, 2 let M_i be μ -reversible Metropolis kernels with proposals P_i and acceptance probability α .

Assume that

- 1. the associated Markov operators M_i are positive,
- 2. the Radon-Nikodym derivative $\rho(\boldsymbol{\xi}; \boldsymbol{\eta}) := \frac{\mathrm{d}P_1(\boldsymbol{\xi})}{\mathrm{d}P_2(\boldsymbol{\xi})}(\boldsymbol{\eta})$ exists,
- 3. and for a $\beta > 1$ we have

$$\sup_{\iota(A)\in(0,\frac{1}{2}]}\frac{\int_A\int_{A^c}\ \rho^{\beta}(\boldsymbol{\xi};\boldsymbol{\eta})\ P_2(\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta})\ \mu(\mathrm{d}\boldsymbol{\xi})}{\mu(A)}<\infty,$$

Then

$$\operatorname{gap}_{\mu}(\mathcal{M}_1)^{2\beta} \le K_{\beta} \operatorname{gap}_{\mu}(\mathcal{M}_2)^{\beta-1}$$

Warwick, Feb 2016 · B. Sprungk

Lemma (Positivity of Markov operators)

The Markov operator M_{Γ} associated to gpCN-Metropolis is positive for any admissible $\Gamma.$

Lemma (Absolute continuity, integrability of density)

There exists a density between the pCN- and gpCN-proposal

$$ho_{\Gamma}(oldsymbol{\xi};oldsymbol{\eta}) := rac{\mathrm{d}P_0(oldsymbol{\xi})}{\mathrm{d}P_{\Gamma}(oldsymbol{\xi})}(oldsymbol{\eta})$$

and constants $b, K < \infty$ such that for $\beta < 1 + \frac{1}{2||H_{\Gamma}||}$

$$\int_{\mathscr{H}} \rho_{\Gamma}^{\beta}(\boldsymbol{\xi};\boldsymbol{\eta}) \ P_{\Gamma}(\boldsymbol{\xi},\mathrm{d}\boldsymbol{\eta}) \leq K \ \exp\Big(\frac{b^2}{2} \|\boldsymbol{\xi}\|^2\Big).$$

Convergence Restricted measures and Markov chains

► For
$$R > 0$$
 set $B_R := \{ \boldsymbol{\xi} \in \mathscr{H} : \| \boldsymbol{\xi} \| < R \}$ and define

$$\mu_R(\mathrm{d} \boldsymbol{\xi}) := \frac{1}{\mu(B_R)} \boldsymbol{1}_{B_R}(\boldsymbol{\xi}) \, \mu(\mathrm{d} \boldsymbol{\xi}).$$

 \blacktriangleright For Metropolis kernel M with proposal P and acceptance probability α set

$$\begin{split} M_{R}(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) &:= \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) + \left[1 - \int_{\mathscr{H}} \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\zeta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\zeta}) \right] \delta_{\boldsymbol{\xi}}(\mathrm{d}\boldsymbol{\eta}) \\ \text{where } \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\eta}) &:= \boldsymbol{1}_{B_{R}}(\boldsymbol{\eta}) \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}). \end{split}$$

emma

If M is self-adjoint and positive on $L^2_\mu(\mathscr{H}),$ then so is M_R on $L^2_{\mu_R}(\mathscr{H})$ and

$$\operatorname{gap}_{\mu_R}(\mathbf{M}_R) \ge \operatorname{gap}_{\mu}(\mathbf{M}) - \sup_{\boldsymbol{\xi} \in B_R} M(\boldsymbol{\xi}, B_R^c).$$

Convergence Restricted measures and Markov chains

► For
$$R > 0$$
 set $B_R := \{ \boldsymbol{\xi} \in \mathscr{H} : \| \boldsymbol{\xi} \| < R \}$ and define

$$\mu_R(\mathrm{d} \boldsymbol{\xi}) := \frac{1}{\mu(B_R)} \boldsymbol{1}_{B_R}(\boldsymbol{\xi}) \, \mu(\mathrm{d} \boldsymbol{\xi}).$$

 \blacktriangleright For Metropolis kernel M with proposal P and acceptance probability α set

$$\begin{split} M_{R}(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) &:= \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\eta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) + \left[1 - \int_{\mathscr{H}} \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\zeta}) P(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\zeta}) \right] \delta_{\boldsymbol{\xi}}(\mathrm{d}\boldsymbol{\eta}) \\ \text{where } \alpha_{R}(\boldsymbol{\xi}, \boldsymbol{\eta}) &:= \boldsymbol{1}_{B_{R}}(\boldsymbol{\eta}) \alpha(\boldsymbol{\xi}, \boldsymbol{\eta}). \end{split}$$

Lemma

If M is self-adjoint and positive on $L^2_\mu(\mathscr{H}),$ then so is M_R on $L^2_{\mu_R}(\mathscr{H})$ and

$$\operatorname{gap}_{\mu_R}(\mathcal{M}_R) \ge \operatorname{gap}_{\mu}(\mathcal{M}) - \sup_{\boldsymbol{\xi} \in B_R} M(\boldsymbol{\xi}, B_R^c).$$

lf

Theorem (Spectral gap of gpCN-Metropolis for restricted measure)

 $\operatorname{gap}_{\mu}(M_0) > 0,$

then for any admissible Γ and any $\epsilon>0$ there exists a number $R<\infty$ such that

$$\|\mu - \mu_R\|_{TV} < \epsilon$$
 and $\operatorname{gap}_{\mu_R}(M_{\Gamma,R}) > 0.$

Proof employs previous lemmas and comparison theorem to show

$$\operatorname{gap}_{\mu}(\mathcal{M}_0) > 0 \quad \Longrightarrow \quad \operatorname{gap}_{\mu_R}(\mathcal{M}_{0,R}) > 0 \quad \Longrightarrow \quad \operatorname{gap}_{\mu_R}(\mathcal{M}_{\Gamma,R}) > 0.$$

Convergence Outlook: qpCN-Metropolis with local proposal covariance

Density $\rho_{\Gamma}(\boldsymbol{\xi}) = \frac{dP_0(\boldsymbol{\xi})}{dP_{\Gamma}(\boldsymbol{\xi})}$ allows for state-dependent proposal covariances:

 \blacktriangleright Let $\pmb{\xi}\mapsto \Gamma(\pmb{\xi})$ be measurable and define proposal kernel

$$P_{\text{loc}}(\boldsymbol{\xi}) := N(A_{\Gamma(\boldsymbol{\xi})}\boldsymbol{\xi}, s^2 C_{\Gamma(\boldsymbol{\xi})}).$$

Following an approach as in [Beskos et al., 2008] we get

$$P_{\rm loc}(\boldsymbol{\xi}, \mathrm{d}\boldsymbol{\eta}) \, \mu_0(\mathrm{d}\boldsymbol{\xi}) = \, \frac{\rho_{\Gamma(\boldsymbol{\eta})}(\boldsymbol{\eta}, \boldsymbol{\xi})}{\rho_{\Gamma(\boldsymbol{\xi})}(\boldsymbol{\xi}, \boldsymbol{\eta})} \, P_{\rm loc}(\boldsymbol{\eta}, \mathrm{d}\boldsymbol{\xi}) \, \mu_0(\mathrm{d}\boldsymbol{\eta}).$$

• Obtain μ -reversible MH algorithm with proposal P_{loc} and

$$\alpha_{\rm loc}(\boldsymbol{\xi},\boldsymbol{\eta}) := \min\left\{1, \exp(\Phi(\boldsymbol{\eta}) - \Phi(\boldsymbol{\xi})) \; \frac{\rho_{\Gamma(\boldsymbol{\xi})}(\boldsymbol{\xi},\boldsymbol{\eta})}{\rho_{\Gamma(\boldsymbol{\eta})}(\boldsymbol{\eta},\boldsymbol{\xi})}\right\}$$

• Same approach works for $P'_{loc}(\boldsymbol{\xi}) := N(\sqrt{1-s^2}\boldsymbol{\xi}, s^2 C_{\Gamma(\boldsymbol{\xi})}).$

Same problem setting as before, but now also consider "local" proposals local pCN: $P_5(\boldsymbol{\xi}) = N(\sqrt{1-s^2}\boldsymbol{\xi}, s^2C_{\Gamma(\boldsymbol{\xi})})$ local gpCN: $P_6(\boldsymbol{\xi}) = N(A_{\Gamma(\boldsymbol{\xi})}\boldsymbol{\xi}, s^2C_{\Gamma(\boldsymbol{\xi})})$

with $\Gamma(\boldsymbol{\xi}) = \nabla G(\boldsymbol{\xi})^{\top} \Sigma^{-1} \nabla G(\boldsymbol{\xi}).$

Effective sample size vs. dimension

Warwick, Feb 2016 · B. Sprungk

Same problem setting as before, but now also consider "local" proposals local pCN: $P_5(\boldsymbol{\xi}) = N(\sqrt{1-s^2}\boldsymbol{\xi}, s^2C_{\Gamma(\boldsymbol{\xi})})$ local gpCN: $P_6(\boldsymbol{\xi}) = N(A_{\Gamma(\boldsymbol{\xi})}\boldsymbol{\xi}, s^2C_{\Gamma(\boldsymbol{\xi})})$

with $\Gamma(\boldsymbol{\xi}) = \nabla G(\boldsymbol{\xi})^{\top} \Sigma^{-1} \nabla G(\boldsymbol{\xi}).$

Effective sample size vs. noise variance

Warwick, Feb 2016 · B. Sprungk

- Generalized pCN-Metropolis allows to beneficially employ approximation of posterior covariance for proposal kernel
- ▶ gpCN seems to perform independent of dimension and noise variance
- Geometric ergodicity of gpCN-Metropolis proven by general framework for relating spectral gaps of Metropolis algorithms
- ► gpCN-Metropolis with state-dependent proposal covariance possible

Some open issues:

- Proof of higher efficiency of gpCN-Metropolis
- Proof and theoretical understanding of variance-independence

- Generalized pCN-Metropolis allows to beneficially employ approximation of posterior covariance for proposal kernel
- ▶ gpCN seems to perform independent of dimension and noise variance
- Geometric ergodicity of gpCN-Metropolis proven by general framework for relating spectral gaps of Metropolis algorithms
- ► gpCN-Metropolis with state-dependent proposal covariance possible

Some open issues:

- Proof of higher efficiency of gpCN-Metropolis
- Proof and theoretical understanding of variance-independence

- A. Beskos, G. Roberts, A. Stuart, and J. Voss. MCMC methods for diffusion bridges. *Stoch. Dynam.*, 8(3):319–350, 2008.
- - S. Cotter, G. Roberts, A. Stuart, and D. White. MCMC methods for functions: Modifying old algorithms to make them faster. *Stat. Sci.*, 28(3):283–464, 2013.

T. Cui, K. Law, and Y. Marzouk. Dimension-independent likelihood-informed MCMC. arXiv:1411.3688, 2014.

M. Hairer, A. Stuart, and S. Vollmer. Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions. *Ann. Appl. Probab.*, 24(6):2455–2490, 2014.

D. Rudolf, B. Sprungk.

On a generalization of the preconditioned Crank-Nicolson Metropolis algorithm. arXiv:1504.03461, 2015.

A. Stuart. Inverse problems: a Bayesian perspective.

Acta Numer., 19:451–559, 2010.