Multi-Index Monte Carlo (MIMC) and Multi-Index Stochastic Collocation (MISC)

When sparsity meets sampling

A.-L. Haji-Ali* F. Nobile ${ }^{+}$L. Tamellini ${ }^{+} \quad$ R. Tempone*

*King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
+Ecole Polytechnique Fédérale de Lausanne, Switzerland. sri-uq.kaust.edu.sa, stochastic_numerics.kaust.edu.sa

February 22, 2016, Data Assimilation and Inverse Problems EQUIP/AIB Meeting, Warwick, UK

Motivational Example: Let (Ω, \mathcal{F}, P) be a complete probability space and $\mathcal{D}=\prod_{i=1}^{d}\left[0, D_{i}\right]$ for $D_{i} \subset \mathbb{R}_{+}$be a hypercube domain in \mathbb{R}^{d}.
The solution $u: \mathcal{D} \times \Omega \rightarrow \mathbb{R}$ here solves almost surely (a.s.) the following equation:

$$
\begin{aligned}
-\nabla \cdot(a(\boldsymbol{x} ; \omega) \nabla u(\boldsymbol{x} ; \omega)) & =f(\boldsymbol{x} ; \omega) & & \text { for } \boldsymbol{x} \in \mathcal{D} \\
u(\boldsymbol{x} ; \omega) & =0 & & \text { for } \boldsymbol{x} \in \partial \mathcal{D} .
\end{aligned}
$$

Goal: to approximate $\mathrm{E}[S] \in \mathbb{R}$ where $S=\Psi(u)$ for some sufficiently "smooth" a, f and functional Ψ.

Motivational Example: Let (Ω, \mathcal{F}, P) be a complete probability space and $\mathcal{D}=\prod_{i=1}^{d}\left[0, D_{i}\right]$ for $D_{i} \subset \mathbb{R}_{+}$be a hypercube domain in \mathbb{R}^{d}.
The solution $u: \mathcal{D} \times \Omega \rightarrow \mathbb{R}$ here solves almost surely (a.s.) the following equation:

$$
\begin{aligned}
-\nabla \cdot(a(\boldsymbol{x} ; \omega) \nabla u(\boldsymbol{x} ; \omega)) & =f(\boldsymbol{x} ; \omega) & \text { for } \boldsymbol{x} \in \mathcal{D} \\
u(\boldsymbol{x} ; \omega) & =0 & \text { for } \boldsymbol{x} \in \partial \mathcal{D} .
\end{aligned}
$$

Goal: to approximate $\mathrm{E}[S] \in \mathbb{R}$ where $S=\Psi(u)$ for some sufficiently "smooth" a, f and functional Ψ.
Later, in our numerical example we use

$$
S=100\left(2 \pi \sigma^{2}\right)^{\frac{-3}{2}} \int_{\mathcal{D}} \exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2}}{2 \sigma^{2}}\right) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} .
$$

for $x_{0} \in \mathcal{D}$ and $\sigma>0$.

Numerical Approximation

We assume we have an approximation of u (FEM, FD, FV, ...) based on discretization parameters h_{i} for $i=1 \ldots d$. Here

$$
h_{i}=h_{i, 0} \beta_{i}^{-\alpha_{i}}
$$

with $\beta_{i}>1$ and the multi-index

$$
\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i=1}^{d} \in \mathbb{N}^{d}
$$

Notation: S_{α} is the approximation of S calculated using a discretization defined by α.

Monte Carlo complexity analysis

Recall the Monte Carlo method and its error splitting:
$\mathrm{E}[\Psi(u(\boldsymbol{y}))]-\frac{1}{M} \sum_{m=1}^{M} \Psi\left(u_{h}\left(\boldsymbol{y}\left(\omega_{m}\right)\right)\right)=\mathcal{E}^{\Psi}(h)+\mathcal{E}_{h}^{\Psi}(M)$ with

$$
\left|\mathcal{E}_{h}^{\Psi}\right|=\underbrace{\left|E\left[\Psi(u(\boldsymbol{y}))-\Psi\left(u_{h}(\boldsymbol{y})\right)\right]\right|}_{\text {discretization error }} \leq C h^{\alpha}
$$

$$
\left|\mathcal{E}_{M}^{\Psi}\right|=\underbrace{\left|E\left[\Psi\left(u_{h}(\boldsymbol{y})\right)\right]-\frac{1}{M} \sum_{m=1}^{M} \Psi\left(u_{h}\left(\boldsymbol{y}\left(\omega_{m}\right)\right)\right)\right|}_{\text {statistical error }} \lesssim c_{0} \frac{\operatorname{std}\left[\Psi\left(u_{h}\right)\right]}{\sqrt{M}}
$$

The last approximation is motivated by the Central Limit Theorem.
Assume: computational work for each $u\left(\boldsymbol{y}\left(\omega_{m}\right)\right)$ is $\mathcal{O}\left(h^{-d \gamma}\right)$.
Total work: $W \propto M h^{-d \gamma}$
Total error : $\left|\mathcal{E}^{\Psi}(h)\right|+\left|\mathcal{E}_{h}^{\psi}(M)\right| \leq C_{1} h^{\alpha}+\frac{C_{2}}{\sqrt{M}}$

We want now to choose optimally h and M. Here we minimize the computational work subject to an accuracy constraint, i.e. we solve

$$
\left\{\begin{array}{l}
\min _{h, M} M h^{-d \gamma} \\
\text { s.t. } \quad C_{1} h^{\alpha}+\frac{C_{2}}{\sqrt{M}} \leq \mathrm{TOL}
\end{array}\right.
$$

We can interpret the above as a tolerance splitting into statistical and space discretization tolerances, $\mathrm{TOL}=\mathrm{TOL}_{S}+\mathrm{TOL}_{h}$, such that

$$
\mathrm{TOL}_{h}=\frac{\mathrm{TOL}}{(1+2 \alpha /(d \gamma))} \text { and } \mathrm{TOL}_{S}=\mathrm{TOL}\left(1-\frac{1}{(1+2 \alpha /(d \gamma))}\right)
$$

The resulting complexity (error versus computational work) is then

$$
W \propto \mathrm{TOL}^{-(2+d \gamma / \alpha)}
$$

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\alpha=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot 1}-S_{(\ell-1) \cdot 1} & \text { if } \ell>0\end{cases}
$$

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\alpha=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot 1}-S_{(\ell-1) \cdot 1} & \text { if } \ell>0\end{cases}
$$

Observe the telescopic identity

$$
\mathrm{E}[S] \approx \mathrm{E}\left[S_{L \cdot \mathbf{1}}\right]=\sum_{\ell=0}^{L} \mathrm{E}\left[\widetilde{\Delta} S_{\ell}\right]
$$

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\alpha=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot \mathbf{1}}-S_{(\ell-1) \cdot \mathbf{1}} & \text { if } \ell>0\end{cases}
$$

Observe the telescopic identity

$$
\mathrm{E}[S] \approx \mathrm{E}\left[S_{\llcorner\cdot \mathbf{1}}\right]=\sum_{\ell=0}^{L} \mathrm{E}\left[\widetilde{\Delta} S_{\ell}\right]
$$

Then, using MC to approximate each level independently, the MLMC estimator can be written as

$$
\mathcal{A}_{\mathrm{MLMC}}=\sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} \widetilde{\Delta} S_{\ell}\left(\omega_{\ell, m}\right)
$$

Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy

$$
\operatorname{Var}\left[A_{M C}\right]=\frac{1}{M_{L}} \operatorname{Var}\left[S_{L}\right] \approx \frac{1}{M_{L}} \operatorname{Var}[S] \leq \mathrm{TOL}^{2}
$$

Main point: MLMC reduces the variance of the deepest level using samples on coarser (less expensive) levels!

$$
\begin{aligned}
& \operatorname{Var}\left[A_{\mathrm{MLMC}}\right]=\frac{1}{M_{0}} \operatorname{Var}\left[S_{0}\right] \\
& \quad+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[\Delta S_{\ell}\right] \leq \mathrm{TOL}^{2}
\end{aligned}
$$

Observe: Level 0 in MLMC is usually determined by both stability and accuracy, i.e.
$\operatorname{Var}\left[\Delta S_{1}\right] \ll \operatorname{Var}\left[S_{0}\right] \approx \operatorname{Var}[S]<\infty$.

Classical assumptions for MLMC

For every ℓ, we assume the following:

Assumption $\widetilde{1}$ (Bias):
Assumption $\tilde{2}$ (Variance):
Assumption $\widetilde{3}$ (Work):

$$
\begin{aligned}
\left|\mathrm{E}\left[S-S_{\ell}\right]\right| & \lesssim \beta^{-w \ell}, \\
\operatorname{Var}\left[\widetilde{\Delta} S_{\ell}\right] & \lesssim \beta^{-s \ell}, \\
\operatorname{Work}\left(\widetilde{\Delta} S_{\ell}\right) & \lesssim \beta^{d \gamma \ell},
\end{aligned}
$$

for positive constants γ, w and $s \leq 2 w$.

$$
\text { Work }(M L M C)=\sum_{\ell=0}^{L} M_{\ell} \operatorname{Work}\left(\widetilde{\Delta} S_{\ell}\right) \lesssim \sum_{\ell=0}^{L} M_{\ell} \beta^{d \gamma \ell}
$$

Example: Our smooth linear elliptic PDE example approximated with Multilinear piecewise continuous FEM:

$$
2 w=s=4 \text { and } 1 \leq \gamma \leq 3 .
$$

MLMC Computational Complexity

We choose the number of levels to bound the bias

$$
\left|\mathrm{E}\left[S-S_{L}\right]\right| \lesssim \beta^{-L w} \leq \mathrm{CTOL} \quad \Rightarrow \quad L \geq \frac{\log \left(\mathrm{TOL}^{-1}\right)-\log (C)}{w \log (\beta)}
$$

and choose the samples $\left(M_{\ell}\right)_{\ell=0}^{\llcorner }$optimally to bound $\operatorname{Var}\left[\mathcal{A}_{\text {MLMC }}\right] \lesssim$ TOL 2, then the optimal work satisfies (Giles et al., 2008, 2011):

$$
\text { Work }(\mathrm{MLMC})= \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s>d \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & s=d \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{(d \gamma-s)}{w}\right)}\right), & s<d \gamma\end{cases}
$$

Recall: $\operatorname{Work}(\mathrm{MC})=\mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{d \gamma}{w}\right)}\right)$.

Questions related to MLMC

- How to choose the mesh hierarchy \boldsymbol{h}_{ℓ} ? [H-ASNT, 2015]
- How to efficiently and reliably estimate V_{ℓ} ? How to find the correct number of levels, L? [CH-ASNT, 2015]
- Can we do better? Especially for $d>1$? [H-ANT, 2015]
[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. "Optimization of mesh hierarchies in Multilevel Monte Carlo samplers". arXiv:1403.2480, Stochastic Partial Differential Equations: Analysis and Computations, Accepted (2015).
[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. "A continuation multilevel Monte Carlo algorithm". BIT Numerical Mathematics, 55(2):399-432, (2015).
[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. "Multi-Index Monte Carlo: When Sparsity Meets Sampling". arXiv:1405.3757, Numerische Mathematik, Accepted (2015).
Time adaptivity for MLMC in Itô SDEs:
- Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci. Eng., (2011).
- Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H. Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20, (2014).
- Construction of a mean square error adaptive Euler-Maruyama method with applications in multilevel Monte Carlo, by H. Hoel, J. Häppöla, and R. T. To appear in MC and Q-MC Methods 2014, Springer Verlag, (2016).

Hybrid MLMC for Stochastic Reaction Networks

- A. Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical Mathematics, April 2015.
- A. Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation method for stochastic reaction networks. arXiv:1406.1989. Submitted, (2014).
- Multilevel drift-implicit tau-leap, by C. Ben Hammouda, A. Moraes and R. T. arXiv:1512.00721. Submitted (2015).

$\left\llcorner_{\text {Motivation }}\right.$
-Multilevel Monte Carlo (MLMC)
Variance reduction: MLMC

ᄂMotivation

- Multilevel Monte Carlo (MLMC)

Variance reduction: Further potential

MIMC Estimator

For $i=1, \ldots, d$, define the first order difference operators

$$
\Delta_{i} S_{\alpha}= \begin{cases}S_{\alpha} & \text { if } \alpha_{i}=0 \\ S_{\alpha}-S_{\alpha-e_{i}} & \text { if } \alpha_{i}>0\end{cases}
$$

and construct the first order mixed difference

$$
\Delta S_{\alpha}=\left(\otimes_{i=1}^{d} \Delta_{i}\right) S_{\alpha}
$$

MIMC Estimator

For $i=1, \ldots, d$, define the first order difference operators

$$
\Delta_{i} S_{\alpha}= \begin{cases}S_{\alpha} & \text { if } \alpha_{i}=0 \\ S_{\alpha}-S_{\alpha-\boldsymbol{e}_{i}} & \text { if } \alpha_{i}>0\end{cases}
$$

and construct the first order mixed difference

$$
\Delta S_{\alpha}=\left(\otimes_{i=1}^{d} \Delta_{i}\right) S_{\alpha}
$$

Then the MIMC estimator can be written as

$$
\mathcal{A}_{\mathrm{MIMC}}=\sum_{\alpha \in \mathcal{I}} \frac{1}{M_{\alpha}} \sum_{m=1}^{M_{\alpha}} \Delta S_{\alpha}\left(\omega_{\alpha, m}\right)
$$

for some properly chosen index set $\mathcal{I} \subset \mathbb{N}^{d}$ and samples $\left(M_{\alpha}\right)_{\alpha \in \mathcal{I}}$.

Example: On mixed differences

Consider $d=2$. In this case, letting $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$, we have

$$
\begin{aligned}
\Delta S_{\left(\alpha_{1}, \alpha_{2}\right)}= & \Delta_{2}\left(\Delta_{1} S_{\left(\alpha_{1}, \alpha_{2}\right)}\right) \\
= & \Delta_{2}\left(S_{\alpha_{1}, \alpha_{2}}-S_{\alpha_{1}-1, \alpha_{2}}\right) \\
= & \left(S_{\alpha_{1}, \alpha_{2}}-S_{\alpha_{1}-1, \alpha_{2}}\right) \\
& -\left(S_{\alpha_{1}, \alpha_{2}-1}-S_{\alpha_{1}-1, \alpha_{2}-1}\right) .
\end{aligned}
$$

Notice that in general, ΔS_{α} requires 2^{d} evaluations of S at different discretization parameters, the largest work of which corresponds precisely to the index appearing in ΔS_{α}, namely α.

Our objective is to build an estimator $\mathcal{A}=\mathcal{A}_{\text {MIMC }}$ where

$$
\begin{equation*}
P(|\mathcal{A}-\mathrm{E}[S]| \leq \mathrm{TOL}) \geq 1-\epsilon \tag{1}
\end{equation*}
$$

for a given accuracy TOL and a given confidence level determined by $0<\epsilon \ll 1$. We instead impose the following, more restrictive, two constraints:

$$
\begin{array}{rr}
\text { Bias constraint: } & |\mathrm{E}[\mathcal{A}-S]| \leq(1-\theta) \mathrm{TOL}, \\
\text { Statistical constraint: } & P(|\mathcal{A}-\mathrm{E}[\mathcal{A}]| \leq \theta \mathrm{TOL}) \geq 1-\epsilon \tag{3}
\end{array}
$$

For a given fixed $\theta \in(0,1)$. Moreover, motivated by the asymptotic normality of the estimator, \mathcal{A}, we approximate (3) by

$$
\begin{equation*}
\operatorname{Var}[\mathcal{A}] \leq\left(\frac{\theta \mathrm{TOL}}{C_{\epsilon}}\right)^{2} \tag{4}
\end{equation*}
$$

Here, $0<C_{\epsilon}$ is such that $\Phi\left(C_{\epsilon}\right)=1-\frac{\epsilon}{2}$, where Φ is the cumulative distribution function of a standard normal random var.

Assumptions for MIMC

For every $\boldsymbol{\alpha}$, we assume the following

Assumption 1 (Bias) :

$$
E_{\alpha}=\left|\mathrm{E}\left[\Delta S_{\alpha}\right]\right| \lesssim \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} w_{i}}
$$

Assumption 2 (Variance) :

$$
V_{\alpha}=\operatorname{Var}\left[\Delta S_{\alpha}\right] \lesssim \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} s_{i}}
$$

Assumption 3 (Work) :

$$
W_{\alpha}=\operatorname{Work}\left(\Delta S_{\alpha}\right) \lesssim \prod_{i=1}^{d} \beta_{i}^{\alpha_{i} \gamma_{i}}
$$

For positive constants $\gamma_{i}, w_{i}, s_{i} \leq 2 w_{i}$ and for $i=1 \ldots d$.

$$
\text { Work }(\mathrm{MIMC})=\sum_{\alpha \in \mathcal{I}} M_{\alpha} W_{\alpha} \lesssim \sum_{\alpha \in \mathcal{I}} M_{\alpha}\left(\prod_{i=1}^{d} \beta_{i}^{\alpha_{i} \gamma_{i}}\right)
$$

Given variance and work estimates we can already optimize for the optimal number of samples $M_{\alpha}^{*} \in \mathbb{R}$ to satisfy the variance constraint (4)

$$
M_{\alpha}^{*}=C_{\epsilon}^{2} \theta^{-2} \mathrm{TOL}^{-2} \sqrt{\frac{V_{\alpha}}{W_{\alpha}}}\left(\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}}\right)
$$

Taking $M_{\alpha}^{*} \leq M_{\alpha} \leq M_{\alpha}^{*}+1$ such that $M_{\alpha} \in \mathbb{N}$ and substituting in the total work gives

$$
\operatorname{Work}(\mathcal{I}) \leq C_{\epsilon}^{2} \theta^{-2} \mathrm{TOL}^{-2}\left(\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}}\right)^{2}+\underbrace{\sum_{\alpha \in \mathcal{I}} W_{\alpha}}_{\text {Min. cost of } \mathcal{I}} .
$$

The work now depends on \mathcal{I} only.

An obvious choice of \mathcal{I} is the Full Tensor index-set

$$
\mathcal{I}(\boldsymbol{L})=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \alpha_{i} \leq L_{i}\right.
$$

$$
\text { for } i \in\{1 \cdots d\}\}
$$

for some $\boldsymbol{L} \in \mathbb{R}^{d}$.

An obvious choice of \mathcal{I} is the Full Tensor index-set

$$
\begin{aligned}
& \mathcal{I}(\boldsymbol{L})=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \alpha_{i} \leq L_{i}\right. \\
& \qquad \text { for } i \in\{1 \cdots d\}\}
\end{aligned}
$$

for some $L \in \mathbb{R}^{d}$.

It turns out, unsurprisingly, that Full Tensor (FT) index-sets impose restrictive conditions on the weak rates w_{i} and yield sub-optimal complexity rates.

Question: How do we find optimal index set \mathcal{I} for MIMC?
Then the MIMC work depends only on \mathcal{I} and our goal is to solve

$$
\min _{\mathcal{I} \subset \mathbb{N}^{d}} \operatorname{Work}(\mathcal{I}) \quad \text { such that Bias }=\sum_{\alpha \notin \mathcal{I}} E_{\alpha} \leq(1-\theta) \text { TOL, }
$$

We assume that the work of MIMC is not dominated by the work to compute a single sample corresponding to each $\boldsymbol{\alpha}$. Then, minimizing equivalently $\sqrt{\operatorname{Work}(\mathcal{I})}$, the previous optimization problem can be recast into a knapsack problem with profits defined for each multi-index $\boldsymbol{\alpha}$. The corresponding profit is

$$
\mathcal{P}_{\alpha}=\frac{\text { Bias contribution }}{\text { Work contribution }}=\frac{E_{\alpha}}{\sqrt{V_{\alpha} W_{\alpha}}}
$$

Define the total error associated with an index-set \mathcal{I} as

$$
\mathfrak{E}(\mathcal{I})=\sum_{\alpha \notin \mathcal{I}} E_{\alpha}
$$

and the corresponding total work estimate as

$$
\mathfrak{W}(\mathcal{I})=\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}} .
$$

Then we can show the following optimality result with respect to $\mathfrak{E}(\mathcal{I})$ and $\mathfrak{W}(\mathcal{I})$, namely:

Lemma (Optimal profit sets)
The index-set $\mathcal{I}(\nu)=\left\{\alpha \in \mathbb{N}^{d}: \mathcal{P}_{\alpha} \geq \nu\right\}$ for $\mathcal{P}_{\alpha}=\frac{E_{\alpha}}{\sqrt{V_{\alpha} W_{\alpha}}}$ is optimal in the sense that any other index-set, $\tilde{\mathcal{I}}$, with smaller work, $\mathfrak{W}(\tilde{\mathcal{I}})<\mathfrak{W}(\mathcal{I}(\nu))$, leads to a larger error, $\mathfrak{E}(\tilde{\mathcal{I}})>\mathfrak{E}(\mathcal{I}(\nu))$.

Defining the optimal index-set for MIMC

In particular, under Assumptions 1-3, the optimal index-set can be written as

$$
\begin{equation*}
\mathcal{I}_{\boldsymbol{\delta}}(L)=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \boldsymbol{\alpha} \cdot \boldsymbol{\delta}=\sum_{i=1}^{d} \boldsymbol{\alpha}_{i} \delta_{i} \leq L\right\} \tag{5}
\end{equation*}
$$

Here $L \in \mathbb{R}$,

$$
\delta_{i}=\frac{\log \left(\beta_{i}\right)\left(w_{i}+\frac{\gamma_{i}-s_{i}}{2}\right)}{C_{\delta}}, \quad \text { for all } i \in\{1 \cdots d\}
$$

$$
\begin{equation*}
\text { and } \quad C_{\delta}=\sum_{j=1}^{d} \log \left(\beta_{j}\right)\left(w_{j}+\frac{\gamma_{j}-s_{j}}{2}\right) \tag{6}
\end{equation*}
$$

Observe that $0<\delta_{i} \leq 1$, since $s_{i} \leq 2 w_{i}$ and $\gamma_{i}>0$. Moreover, $\sum_{i=1}^{d} \delta_{i}=1$.

L Multi-Index Monte Carlo

MIMC work estimate

$\eta=\min _{i \in\{1 \cdots d\}} \frac{\log \left(\beta_{i}\right) w_{i}}{\delta_{i}}, \quad \zeta=\max _{i \in\{1 \cdots d\}} \frac{\gamma_{i}-s_{i}}{2 w_{i}}, \quad \mathfrak{z}=\#\left\{i \in\{1 \cdots d\}: \frac{\gamma_{i}-s_{i}}{2 w_{i}}=\zeta\right\}$.

Theorem (Work estimate with optimal weights)
Let the total-degree index set $\mathcal{I}_{\delta}(L)$ be given by (5) and (6), taking

$$
L=\frac{1}{\eta}\left(\log \left(\mathrm{TOL}^{-1}\right)+(\mathfrak{z}-1) \log \left(\frac{1}{\eta} \log \left(\mathrm{TOL}^{-1}\right)\right)+C\right)
$$

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically and the total work, $W\left(\mathcal{I}_{\delta}\right)$, of the MIMC estimator, \mathcal{A}, subject to the variance constraint (4) satisfies:

$$
\limsup _{\mathrm{TOL} \downarrow 0} \frac{W\left(\mathcal{I}_{\boldsymbol{\delta}}\right)}{\mathrm{TOL}^{-2-2 \max (0, \zeta)}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{\mathfrak{p}}}<\infty
$$

where $0 \leq \mathfrak{p} \leq 3 d+2(d-1) \zeta$ is known and depends on $d, \gamma, \boldsymbol{w}, \boldsymbol{s}$ and $\boldsymbol{\beta}$.

Powers of the logarithmic term

$$
\begin{array}{ll}
\xi=\min _{i \in\{1 \cdots d\}} \frac{2 w_{i}-s_{i}}{\gamma_{i}}, & d_{2}=\#\left\{i \in\{1 \cdots d\}: \gamma_{i}=s_{i}\right\}, \\
\zeta=\max _{i \in\{1 \cdots d\}} \frac{\gamma_{i}-s_{i}}{2 w_{i}}, & \mathfrak{z}=\#\left\{i \in\{1 \cdots d\}: \frac{\gamma_{i}-s_{i}}{2 w_{i}}=\zeta\right\} .
\end{array}
$$

Cases for \mathfrak{p} :
A) if $\zeta \leq 0$ and $\zeta<\xi$,

$$
\text { or } \zeta=\xi=0
$$

B) if $\zeta>0$ and $\xi>0$

C-D) if $\zeta \geq 0$ and $\xi=0$
then $\mathfrak{p}=2 d_{2}$.
then $\mathfrak{p}=2(\mathfrak{z}-1)(\zeta+1)$.
then $\mathfrak{p}=d-1+2(\mathfrak{z}-1)(\zeta+1)$.

Fully Isotropic Case: Rough noise case

Assume $w_{i}=w, s_{i}=s<2 w, \beta_{i}=\beta$ and $\gamma_{i}=\gamma$ for all $i \in\{1 \cdots d\}$. Then the optimal work is

$$
\operatorname{Work}(\mathrm{MC})=\mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d \gamma}{w}}\right)
$$

$$
\begin{aligned}
& \text { Work }(\mathrm{MLMC})= \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s>d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & s=d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{(d \gamma-s)}{w}\right)}\right), & s<d \gamma\end{cases} \\
& \text { Work }(\mathrm{MIMC})= \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s=\gamma, \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2 d}\right), & s<\gamma \\
\mathcal{O}\left(\mathrm{TOL}^{\left.-\left(2+\frac{\gamma-s}{w}\right) \log \left(\mathrm{TOL}^{-1}\right)^{(d-1) \frac{\gamma-s}{w}}\right),}\right.\end{cases}
\end{aligned}
$$

Fully Isotropic Case: Smooth noise case

Assume $w_{i}=w, s_{i}=2 w, \beta_{i}=\beta$ and $\gamma_{i}=\gamma$ for all $i \in\{1 \cdots d\}$ and $d \geq 3$. Then the optimal work is

$$
\begin{aligned}
\text { Work }(\mathrm{MC}) & =\mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d \gamma}{w}}\right) . \\
\text { Work }(\mathrm{MLMC}) & = \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & 2 w>d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & 2 w=d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-\frac{d \gamma}{w}}\right), & 2 w<d \gamma\end{cases} \\
\text { Work }(\mathrm{MIMC}) & = \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & 2 w>\gamma, \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{3(d-1)}\right), & 2 w=\gamma, \\
\mathcal{O}\left(\mathrm{TOL}^{-\frac{\gamma}{w}}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{(d-1)(1+\gamma / w)}\right), & 2 w<\gamma,\end{cases}
\end{aligned}
$$

Up to a multiplicative logarithmic term, Work(MIMC) is the same as solving just a one dimensional deterministic problem.

MIMC: Case with a single worst direction

Recall $\zeta=\max _{i \in\{1 \cdots d\}} \frac{\gamma_{i}-s_{i}}{2 w_{i}}$ and $\mathfrak{z}=\#\left\{i \in\{1 \cdots d\}: \frac{\gamma_{i}-s_{i}}{2 w_{i}}=\zeta\right\}$. In the special case when $\zeta>0$ and $\mathfrak{z}=1$, i.e. when the directions are dominated by a single "worst" direction with the maximum difference between the work rate and the rate of variance convergence. In this case, the value of L becomes

$$
L=\frac{1}{\eta}\left(\log \left(\mathrm{TOL}^{-1}\right)+\log (C)\right)
$$

and MIMC with a TD index-set achieves a better rate for the computational complexity, namely $\mathcal{O}\left(\mathrm{TOL}^{2-2 \zeta}\right)$. In other words, the logarithmic term disappears from the computational complexity.
Observe: TD-MIMC with a single worst direction has the same rate of computational complexity as a one-dimensional MLMC along that single direction.

Problem description

We test our methods on a three-dimensional, linear elliptic PDE with variable, smooth, stochastic coefficients. The problem is isotropic and we have

$$
\begin{aligned}
& \gamma_{i}=2, \\
& w_{i}=2
\end{aligned}
$$

and

$$
s_{i}=4
$$

as $\mathrm{TOL} \rightarrow 0$.

Problem description

$$
\begin{array}{r}
-\nabla \cdot(a(x ; \omega) \nabla u(x ; \omega))=1 \quad \text { for } x \in(0,1)^{3} \\
u(x ; \omega)=0 \quad \text { for } x \in \partial(0,1)^{3} \\
e \quad a(x ; \omega)=1+\exp \left(2 Y_{1} \Phi_{121}(x)+2 Y_{2} \Phi_{877}(x)\right) .
\end{array}
$$

where
Here, Y_{1} and Y_{2} are i.i.d. uniform random variables in the range $[-1,1]$. We also take

$$
\begin{aligned}
\Phi_{i j k}(x) & =\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right) \phi_{k}\left(x_{3}\right), \\
\text { and } \quad \phi_{i}(x) & = \begin{cases}\cos \left(\frac{i}{2} \pi x\right) & i \text { is even, } \\
\sin \left(\frac{i+1}{2} \pi x\right) & i \text { is odd }\end{cases}
\end{aligned}
$$

Finally, the quantity of interest, S, is

$$
S=100\left(2 \pi \sigma^{2}\right)^{\frac{-3}{2}} \int_{\mathcal{D}} \exp \left(-\frac{\left\|x-x_{0}\right\|_{2}^{2}}{2 \sigma^{2}}\right) u(x) d x
$$

and the selected parameters are $\sigma=0.04$ and $x_{0}=[0.5,0.2,0.6]$.

Numerical test: Computational Errors

Several runs for different TOL values.

Error is
satisfied in probability but not over-killed.

Numerical test: Maximum degrees of freedom

Maximum number of degrees of freedom of a sample PDE solve for different
TOL values.
This is an indication of
required memory.

Numerical test: Running time, 3D problem

Recall that the work complexity of

MC is $\mathcal{O}\left(\mathrm{TOL}^{-5}\right)$

Numerical test: Running time, 4D problem

Numerical test: QQ-plot

Numerical verification of asymptotic normality of the MIMC estimator. A corresponding statement and proof of the normality of an MIMC estimator can be found in (Haji-Ali et al. 2014).

Conclusions and Extra Points

- MIMC is a generalization of MLMC and performs better, especially in higher dimensions.
- For optimal rate of computational complexity, MIMC requires mixed regularity between discretization parameters.
- MIMC may have better complexity rates when applied to non-isotropic problems, for example problems with a single worst direction.
- A different set of regularity assumptions would yield a different optimal index-set and related complexity results.
- A direction does not have to be a spatial dimension. It can represent any form of discretization parameter!
Example: 1-DIM Stochastic Particle Systems, MIMC brings complexity down from $\mathcal{O}\left(\mathrm{TOL}^{-5}\right)$ to $\mathcal{O}\left(\mathrm{TOL}^{-2} \log \left(\mathrm{TOL}^{-1}\right)^{2}\right)$

Beyond MIMC: Multi-Index Stochastic Collocation

- Can we do even better if additional smoothness is available?
[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
"Multi-Index Stochastic Collocation for random PDEs". arXiv:1508.07467. Submitted, August 2015.
[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
"Multi-Index Stochastic Collocation convergence rates for random PDEs with parametric regularity". arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!

Preliminary: Interpolation

Let $\Gamma \subseteq \mathbb{R}, \mathbb{P}^{q}(\Gamma)$ be the space of polynomials of degree q over Γ, and $\mathcal{C}^{0}(\Gamma)$ the set of real-valued continuous functions over Γ. Given m interpolation points $y_{1}, y_{2} \ldots y_{m} \in \Gamma$ define the one-dimensional Lagrangian interpolant operator $\mathcal{U}^{m}: \mathcal{C}^{0}(\Gamma) \rightarrow \mathbb{P}^{m-1}(\Gamma)$ as

$$
\mathcal{U}^{m}[u](y)=\sum_{j=1}^{m} u\left(y^{j}\right) \psi_{j}(y), \quad \text { where } \psi_{j}(y)=\prod_{k \neq j} \frac{y-y_{k}}{y_{j}-y_{k}}
$$

Preliminary: Interpolation

Let $\Gamma \subseteq \mathbb{R}, \mathbb{P}^{q}(\Gamma)$ be the space of polynomials of degree q over Γ, and $\mathcal{C}^{0}(\Gamma)$ the set of real-valued continuous functions over Γ. Given m interpolation points $y_{1}, y_{2} \ldots y_{m} \in \Gamma$ define the one-dimensional Lagrangian interpolant operator $\mathcal{U}^{m}: \mathcal{C}^{0}(\Gamma) \rightarrow \mathbb{P}^{m-1}(\Gamma)$ as

$$
\mathcal{U}^{m}[u](y)=\sum_{j=1}^{m} u\left(y^{j}\right) \psi_{j}(y), \quad \text { where } \psi_{j}(y)=\prod_{k \neq j} \frac{y-y_{k}}{y_{j}-y_{k}} .
$$

Then, given a tensor grid $\bigotimes_{j=1}^{n}\left\{y_{1}^{j}, y_{2}^{j} \ldots y_{m_{j}}^{j} \in \Gamma_{n}\right\}$ with cardinality $\prod_{j=1}^{n} m_{j}$, the n-variate lagrangian interpolant $\mathcal{U}^{\boldsymbol{m}}[u]: \mathcal{C}^{0}(\Gamma) \rightarrow \mathbb{P}^{\boldsymbol{m}-1}(\Gamma)$ can be written as

$$
\begin{aligned}
\mathcal{U}^{\boldsymbol{m}}[u](\boldsymbol{y}) & =\left(\mathcal{U}^{m_{1}} \otimes \cdots \otimes \mathcal{U}^{m_{n}}\right)[u](\boldsymbol{y}) \\
& =\sum_{i_{1}=1}^{m_{1}} \cdots \sum_{i_{n}=1}^{m_{n}} u\left(y_{1}^{i_{1}}, \ldots y_{n}^{i_{n}}\right) \cdot\left(\psi_{i_{1}}\left(y_{1}\right) \cdots \psi_{i_{n}}\left(y_{n}\right)\right) .
\end{aligned}
$$

Preliminary: Stochastic Collocation

It is also straightforward to deduce a n-variate quadrature rule from the lagrangian interpolant. In particular, if $(\Gamma, \mathcal{B}(\Gamma), \rho)$ is a probability space, where $\mathcal{B}(\Gamma)$ is the Borel σ-algebra and $\rho(\boldsymbol{y}) d \boldsymbol{y}$ is a probability measure, the expected value of the tensor interpolant can be computed as

$$
\mathrm{E}\left[U^{\boldsymbol{m}}[u](\boldsymbol{y})\right]=\sum_{i_{1}=1}^{m_{1}} \cdots \sum_{i_{1}=1}^{m_{n}} u\left(y_{1}^{i_{1}}, \ldots y_{n}^{i_{n}}\right) \cdot \mathrm{E}\left[\psi_{i_{1}}\left(y_{1}\right) \cdots \psi_{i_{n}}\left(y_{n}\right)\right]
$$

Preliminary: Stochastic Collocation

It is also straightforward to deduce a n-variate quadrature rule from the lagrangian interpolant. In particular, if $(\Gamma, \mathcal{B}(\Gamma), \rho)$ is a probability space, where $\mathcal{B}(\Gamma)$ is the Borel σ-algebra and $\rho(\boldsymbol{y}) d \boldsymbol{y}$ is a probability measure, the expected value of the tensor interpolant can be computed as

$$
\mathrm{E}\left[\chi^{\boldsymbol{m}}[u](\boldsymbol{y})\right]=\sum_{i_{1}=1}^{m_{1}} \cdots \sum_{i_{1}=1}^{m_{n}} u\left(y_{1}^{i_{1}}, \ldots y_{n}^{i_{n}}\right) \cdot \mathrm{E}\left[\psi_{i_{1}}\left(y_{1}\right) \cdots \psi_{i_{n}}\left(y_{n}\right)\right] .
$$

Moreover, if $\left(y_{1}, \ldots, y_{n}\right)$ are jointly independent then the probability density function ρ factorizes, i.e. $\rho(\boldsymbol{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$, and there holds

$$
\mathrm{E}\left[\psi_{i_{1}}\left(y_{1}\right) \cdots \psi_{i_{n}}\left(y_{n}\right)\right]=\prod_{n=1}^{N} \mathrm{E}\left[\psi_{i_{n}}\left(y_{n}\right)\right]
$$

MISC Main Operator

Assume S is a function of n random variables. Instead of estimating $\mathrm{E}\left[S_{\alpha}\right]$ using Monte Carlo we can use Stochastic Collocation with $\tau \in \mathbb{N}^{n}$ points, as follows

$$
\mathrm{E}\left[S_{\alpha}\right]=S_{\alpha, \tau}(\boldsymbol{Y})=U^{\left(\tau_{1}, \ldots, \tau_{n}\right)}\left[S_{\alpha}\right](\boldsymbol{Y}) .
$$

MISC Main Operator

Assume S is a function of n random variables. Instead of estimating $\mathrm{E}\left[S_{\alpha}\right]$ using Monte Carlo we can use Stochastic Collocation with $\tau \in \mathbb{N}^{n}$ points, as follows

$$
\mathrm{E}\left[S_{\alpha}\right]=S_{\alpha, \tau}(\boldsymbol{Y})=U^{\left(\tau_{1}, \ldots, \tau_{n}\right)}\left[S_{\alpha}\right](\boldsymbol{Y}) .
$$

Then we can define the Delta operators along the stochastic and deterministic dimensions

$$
\begin{aligned}
& \Delta_{i}^{d} S_{\alpha, \tau}= \begin{cases}S_{\alpha, \tau}-S_{\alpha-\boldsymbol{e}_{i}, \tau}, & \text { if } \alpha_{i}>0, \\
S_{\alpha, \tau} & \text { if } \alpha_{i}=0,\end{cases} \\
& \Delta_{j}^{n} S_{\alpha, \tau}= \begin{cases}S_{\alpha, \tau}-S_{\alpha, \tau-\boldsymbol{e}_{j}}, & \text { if } \tau_{j}>0, \\
S_{\alpha, \tau} & \text { if } \tau_{j}=0,\end{cases}
\end{aligned}
$$

MISC Estimator

We use these operator to define the following Multi-index Stochastic Collocation (MISC) estimator of E[S],

$$
\mathcal{A}_{\mathrm{MISC}}(\nu)=\mathrm{E}\left[\sum_{(\alpha, \tau) \in \mathcal{I}} \Delta^{n}\left(\Delta^{d} S_{\alpha, \tau}\right)\right]=\sum_{(\alpha, \tau) \in \mathcal{I}} c_{\alpha, \tau} \mathrm{E}\left[S_{\alpha, \tau}\right]
$$

for some index set $\mathcal{I} \in \mathbb{N}^{d+n}$.

MISC Estimator

We use these operator to define the following Multi-index Stochastic Collocation (MISC) estimator of E[S],

$$
\mathcal{A}_{\mathrm{MISC}}(\nu)=\mathrm{E}\left[\sum_{(\alpha, \tau) \in \mathcal{I}} \Delta^{n}\left(\Delta^{d} S_{\alpha, \tau}\right)\right]=\sum_{(\alpha, \tau) \in \mathcal{I}} c_{\alpha, \tau} \mathrm{E}\left[S_{\alpha, \tau}\right]
$$

for some index set $\mathcal{I} \in \mathbb{N}^{d+n}$.

Question: Optimal choice for \mathcal{I} ?

MISC Estimator

We use these operator to define the following Multi-index Stochastic Collocation (MISC) estimator of E[S],

$$
\mathcal{A}_{\mathrm{MISC}}(\nu)=\mathrm{E}\left[\sum_{(\alpha, \tau) \in \mathcal{I}} \Delta^{n}\left(\Delta^{d} S_{\alpha, \tau}\right)\right]=\sum_{(\alpha, \tau) \in \mathcal{I}} c_{\alpha, \tau} \mathrm{E}\left[S_{\alpha, \tau}\right]
$$

for some index set $\mathcal{I} \in \mathbb{N}^{d+n}$.

Question: Optimal choice for \mathcal{I} ?
Can be found computationally using the knapsack optimization theory we outlined.

MISC Estimator

We use these operator to define the following Multi-index Stochastic Collocation (MISC) estimator of E[S],

$$
\mathcal{A}_{\mathrm{MISC}}(\nu)=\mathrm{E}\left[\sum_{(\alpha, \tau) \in \mathcal{I}} \Delta^{n}\left(\Delta^{d} S_{\alpha, \tau}\right)\right]=\sum_{(\alpha, \tau) \in \mathcal{I}} c_{\alpha, \tau} \mathrm{E}\left[S_{\alpha, \tau}\right]
$$

for some index set $\mathcal{I} \in \mathbb{N}^{d+n}$.

Question: Optimal choice for \mathcal{I} ?
Can be found computationally using the knapsack optimization theory we outlined.
Question: Can we say something about the rate of work complexity using the optimal \mathcal{I} ?

MISC Assumptions

For some strictly positive constant $Q_{W}, g_{j}, w_{i}, C_{\text {work }}$ and γ_{i} for $i=1 \ldots d$ and $j=1 \ldots n$, there holds

$$
\begin{aligned}
& \left|\boldsymbol{\Delta}^{n}\left(\boldsymbol{\Delta}^{d} S_{\alpha, \tau}\right)\right| \leq Q_{W}\left(\prod_{j=1}^{n} \exp \left(-g_{j} \tau_{j}\right)\right)\left(\prod_{i=1}^{d} \exp \left(-w_{i} \alpha_{i}\right)\right) . \\
& \text { Work }\left(\boldsymbol{\Delta}^{n}\left(\boldsymbol{\Delta}^{d} S_{\alpha, \tau}\right)\right) \leq C_{\text {work }}\left(\prod_{j=1}^{n} \tau_{j}\right)\left(\prod_{i=1}^{d} \exp \left(\gamma_{i} \alpha_{i}\right)\right) .
\end{aligned}
$$

This a simplified presentation that can be easily generalized to nested points.

MISC work estimate

Theorem (Work estimate with optimal weights)
[MISC1, 2015] Under (our usual) assumptions on the error and work convergence there exists an index-set \mathcal{I} such that

$$
\text { and } \begin{array}{ll}
& \lim _{\operatorname{TOL} \downarrow 0} \frac{\left|\mathcal{A}_{\text {MISC }}(\mathcal{I})-\mathrm{E}[g]\right|}{\operatorname{TOL}} \leq 1 \\
\operatorname{TOL}^{2} \mid 0 & \text { Work }\left[\mathcal{A}_{\text {MISC }}(\mathcal{I})\right] \tag{7}\\
\mathrm{TOL}^{-\zeta}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{(\mathfrak{z}-1)(\zeta+1)}
\end{array}=C(n, d)<\infty
$$

where $\zeta=\max _{i=1}^{d} \frac{\gamma_{i}}{w_{i}}$ and $\mathfrak{z}=\#\left\{i=1, \ldots d: \frac{w_{i}}{\gamma_{i}}=\zeta\right\}$.
Note that the rate is independent of the number of random variables n. Moreover, d appears only in the logarithmic power.

MISC numerical comparison [MISC1, 2015]

Comparison with MIMC and Quasi Optimal (QO) Single \& Multilevel Level Sparse Grid Stochastic Collocation

$\bullet-$	a-prior MISC
\longmapsto	a-post MISC
\hookleftarrow	SCC
$\nabla-\nabla$	MIMC
$\longleftrightarrow \Delta$	SGSC-QO
\triangleright	a-prior MLSC-QO
$\triangleleft \triangleleft$	a-post MLSC-QO
$--\cdot$	$E=W^{-2} \log (W)^{6}$
\cdots	$E=W^{-0.5}$

MISC (parametric regularity, $N=\infty$) [MISC2, 2015]

We use MISC to compute on a hypercube domain $\mathcal{B} \subset \mathbb{R}^{d}$

$$
-\nabla \cdot(a(\boldsymbol{x}, \boldsymbol{y}) \nabla u(\boldsymbol{x}, \boldsymbol{y}))=f(\boldsymbol{x}) \quad \text { in } \quad \mathcal{B}, \begin{aligned}
u(\boldsymbol{x}, \boldsymbol{y})=0 & \text { on } \quad \partial \mathcal{B},
\end{aligned}
$$

where

$$
a(\boldsymbol{x}, \boldsymbol{y})=e^{\kappa(\boldsymbol{x}, \boldsymbol{y})}, \text { with } \kappa(\boldsymbol{x}, \boldsymbol{y})=\sum_{j \in \mathbb{N}_{+}} \psi_{j}(\boldsymbol{x}) y_{j}
$$

Here, \boldsymbol{y} are iid uniform and the regularity of a (and hence u) is determined through the decay of the norm of the derivatives of $\psi_{j} \in C^{\infty}(\mathcal{B})$.

Theorem (MISC convergence theorem)
[MISC2, 2015] Under technical assumptions the profit-based
MISC estimator built using Stochastic Collocation over
Clenshaw-Curtis points and piecewise multilinear finite elements for solving the deterministic problems, we have

$$
\left|\mathrm{E}[S]-\mathcal{M}_{\mathcal{I}}[S]\right| \leq \tilde{C}_{P} \operatorname{Work}\left[\mathcal{M}_{\mathcal{I}}\right]^{-r_{\mathrm{MISC}}}
$$

The rate $r_{\text {MISC }}$ is as follows:
Case 1 if $\frac{\gamma}{r_{\text {FEM }}+\gamma} \geq \frac{p_{s}}{1-p_{s}}$, then $r_{\text {MISC }}<\frac{r_{\text {FEM }}}{\gamma}$,
Case 2 if $\frac{\gamma}{r_{\text {FEM }}+\gamma} \leq \frac{p_{s}}{1-p_{s}}$, then

$$
r_{\mathrm{MISC}}<\left(\frac{1}{p_{0}}-2\right)\left(\gamma \frac{p_{s}-p_{0}}{r_{\mathrm{FEM}} p_{0} p_{s}}+1\right)^{-1}
$$

Ideas for proofs in [MISC2, 2015]

- Given the sequences

$$
\begin{align*}
& b_{0, j}=\left\|\psi_{j}\right\|_{L^{\infty}(\mathcal{B})}, \quad j \geq 1, \tag{8}\\
& b_{s, j}=\max _{\boldsymbol{s} \in \mathbb{N}^{d}:|\boldsymbol{s}| \leq s}\left\|D^{s} \psi_{j}\right\|_{L^{\infty}(\mathcal{B})}, \quad j \geq 1 \tag{9}
\end{align*}
$$

we assume that there exist $0<p_{0} \leq p_{s}<\frac{1}{2}$ such that $\left\{b_{0, j}\right\}_{j \in \mathbb{N}_{+}} \in \ell^{p_{0}}$ and $\left\{b_{s, j}\right\}_{j \in \mathbb{N}_{+}} \in \ell^{p_{s}}$,

- Shift theorem: From regularity of a and f to regularity of $u \in H^{1+s}(\mathcal{B}) \Rightarrow u \in \mathcal{H}_{\text {mix }}^{1+q}(\mathcal{B}), \quad$ for $0<q<s / d$.
- Extend holomorphically $u(\cdot, \boldsymbol{z}) \in H^{1+r}(\mathcal{B})$ on polyellipse $\boldsymbol{z} \in \Sigma_{r}$ (use p_{r} summability of \boldsymbol{b}_{r}) to get stochastic rates and estimates for Δ.
- Use weighted summability of knapsack profits to prove convergence rates.

Example: log uniform field with parametric regularity [MISC2, 2015]

Here, the regularity of $\kappa=\log (a)$ is determined through $\nu>0$

$$
\kappa(\boldsymbol{x}, \boldsymbol{y})=\sum_{\boldsymbol{k} \in \mathbb{N}^{d}} A_{\boldsymbol{k}} \sum_{\ell \in\{0,1\}^{d}} y_{\boldsymbol{k}, \ell} \prod_{j=1}^{d}\left(\cos \left(\frac{\pi}{L} k_{j} x_{j}\right)\right)^{\ell_{j}}\left(\sin \left(\frac{\pi}{L} k_{j} x_{j}\right)\right)^{1-\ell_{j}}
$$

where the coefficients $A_{\boldsymbol{k}}$ are taken as

$$
A_{\boldsymbol{k}}=(\sqrt{3}) 2^{\frac{|\boldsymbol{k}|_{0}}{2}}\left(1+|\boldsymbol{k}|^{2}\right)^{-\frac{\nu+d / 2}{2}} .
$$

We have

$$
p_{0}>\left(\frac{\nu}{d}+\frac{1}{2}\right)^{-1} \quad \text { and } \quad p_{s}>\left(\frac{\nu-s}{d}+\frac{1}{2}\right)^{-1} .
$$

Application of main theorem [MISC2, 2015]

Error \propto Work $^{-r_{\text {MISC }}(\nu, d)}$
A similar analysis shows the corresponding ν-dependent convergence rates of MIMC but based on ℓ^{2} summability of \boldsymbol{b}_{s} and Fernique type of results.

MISC numerical results [MISC2, 2015]

Left: $d=1, \nu=2.5$. Right: $d=3, \nu=4.5$.
Error \propto Work $^{-r_{\text {MISC }}(\nu, d)}$

MISC numerical results [MISC2, 2015]

Left: $d=1, \nu=2.5$. Right: $d=3, \nu=4.5$.
Error \propto Work $^{-r_{\text {MISC }}(\nu, d)}$

Deterministic runs, numerical results [MISC2, 2015]

These plots shows the non-asymptotic effect of the logarithmic factor for $d>1$ (as discussed in [Thm. 1][MISC1, 2015]) on the linear convergence fit in log-log scale.

Left: $d=1$. Right: $d=3$.

Error Estimation for PDEs with rough stochastic random coefficients

- E. J. Hall, H. Hoel, M. Sandberg, A. Szepessy and R. T. "Computable error estimates for finite element approximations of elliptic partial differential equations with lognormal data", Submitted, 2015.

More References: Inverse Probl. and Experimental Design

- H. Hoel, K. J. H. Law, R. T., Multilevel ensemble Kalman filtering. Submitted, 2015.
- F. Bisetti, D. Kim, O. Knio, Q. Long, and R. T. Optimal Bayesian Experimental Design for Priors of Compact Support with Application to Shock-Tube Experiments for Combustion Kinetics. Accepted, Int. J. for Num. Met. in Engineering, 2016.
- C. Bayer, A. Moraes, R. T., and P. Vilanova, An Efficient Forward-Reverse Expectation-Maximization Algorithm for Statistical Inference in Stochastic Reaction Networks. Accepted, Stochastic Analysis and Applications, 2015.
- A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel Sequential Monte Carlo Samplers. Submitted, 2015.
- I. Babuska, Z. Sawlan, M. Scavino, B. Szabo and R. T. Bayesian inference and model comparison for metallic fatigue data. Accepted, Computers and Mathematics with Applications, 2016.
- F. Ruggeri, Z. Sawlan, M. Scavino, R. T. A hierarchical Bayesian setting for an inverse problem in linear parabolic PDEs with noisy boundary conditions. Submitted, 2014.
- Q. Long, M. Motamed and R. T. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion, by CMAME, vol. 291, pp. 123-145, 2015.
- Q. Long, M. Scavino, R. T. and S. Wang. A Laplace method for under determined Bayesian experimental design, CMAME, Vol. 285, pp. 849-876, March 2015.
- Q. Long, M. Scavino, R. T. and S. Wang. Fast Estimation of Expected Information Gains for Bayesian Experimental Designs Based on Laplace Approximations. CMAME, 259(1), pp. 24-39, 2013.

More References: more on forward problems

- F. Nobile, L. Tamellini, and R. T., Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs, Accepted, Num. Mat., 2015.
- F. Nobile, L. Tamellini, R. T. and F. Tesei, An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient. Accepted, Lecture Notes in Comp. Sci. and Eng. 2015.
- G. Migliorati, F. Nobile and R. T., Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations in random points, Journal of Multivariate Analysis, 2015
- G. Malenova, M. Motamed, O. Runborg, R. T., A Sparse Stochastic Collocation Technique for High Frequency Wave Propagation with Uncertainty, Submitted July 2015.

References

- K.A. Cliffe, M.B. Giles, R. Scheichl, A.L. Teckentrup, "Multilevel Monte Carlo Methods and Applications to Elliptic PDEs with Random Coefficients", Computing and Visualization in Science, 14(1):3-15 (2011).
- A.-L. Haji-Ali, F. Nobile, and R. T. "Multi-Index Monte Carlo: When Sparsity Meets Sampling", arXiv preprint arXiv:1405.3757 (2014).

