
Multi-Index Monte Carlo (MIMC) and
Multi-Index Stochastic Collocation (MISC)

When sparsity meets sampling

A.–L. Haji–Ali∗ F. Nobile+ L. Tamellini+ R. Tempone∗

*King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
+Ecole Polytechnique Fédérale de Lausanne, Switzerland.
sri-uq.kaust.edu.sa, stochastic numerics.kaust.edu.sa

February 22, 2016, Data Assimilation and Inverse Problems EQUIP/AIB Meeting, Warwick, UK



MIMC 1/54

Motivation

Problem

Motivational Example: Let (Ω,F ,P) be a complete probability
space and D =

∏d
i=1[0,Di ] for Di ⊂ R+ be a hypercube domain in

Rd .
The solution u : D × Ω→ R here solves almost surely (a.s.) the
following equation:

−∇ · (a(x ;ω)∇u(x ;ω)) = f (x ;ω) for x ∈ D,
u(x ;ω) = 0 for x ∈ ∂D.

Goal: to approximate E[S ] ∈ R where S = Ψ(u) for some
sufficiently “smooth” a, f and functional Ψ.

Later, in our numerical example we use

S = 100
(
2πσ2

)−3
2

∫
D

exp

(
−‖x − x0‖2

2

2σ2

)
u(x)dx .

for x0 ∈ D and σ > 0.
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Motivation

Problem

Numerical Approximation

We assume we have an approximation of u (FEM,
FD, FV, . . . ) based on discretization parameters
hi for i = 1 . . . d . Here

hi = hi ,0 β
−αi
i ,

with βi > 1 and the multi-index

α = (αi )
d
i=1 ∈ Nd .

Notation: Sα is the approximation of S calcu-
lated using a discretization defined by α.
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Motivation

Problem

Monte Carlo complexity analysis
Recall the Monte Carlo method and its error splitting:
E[Ψ(u(y))]− 1

M

∑M
m=1 Ψ(uh(y(ωm))) = EΨ(h) + EΨ

h (M) with

|EΨ
h | = |E [Ψ(u(y))−Ψ(uh(y))]|︸ ︷︷ ︸

discretization error

≤ Chα

|EΨ
M | = |E [Ψ(uh(y))]− 1

M

M∑
m=1

Ψ(uh(y(ωm)))|︸ ︷︷ ︸
statistical error

. c0
std[Ψ(uh)]√

M

The last approximation is motivated by the Central Limit Theorem.
Assume: computational work for each u(y(ωm)) is O(h−dγ).

Total work : W ∝ Mh−dγ

Total error : |EΨ(h)|+ |EΨ
h (M)| ≤ C1h

α +
C2√
M
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Motivation

Problem

We want now to choose optimally h and M. Here we minimize the
computational work subject to an accuracy constraint, i.e. we solve{

minh,M M h−dγ

s.t. C1h
α + C2√

M
≤ TOL

We can interpret the above as a tolerance splitting into statistical
and space discretization tolerances, TOL = TOLS + TOLh, such
that

TOLh =
TOL

(1 + 2α/(dγ))
and TOLS = TOL

(
1− 1

(1 + 2α/(dγ))

)
.

The resulting complexity (error versus computational work) is then

W ∝ TOL−(2+dγ/α)
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Motivation

Multilevel Monte Carlo (MLMC)

Take βi = β and for each ` = 1, 2, . . . use discretizations with
α = (`, . . . , `). Recall the standard MLMC difference operator

∆̃S` =

{
S0 if ` = 0,

S`·1 − S(`−1)·1 if ` > 0.

Observe the telescopic identity

E[S ] ≈ E[SL·1] =
L∑
`=0

E
[
∆̃S`

]
.

Then, using MC to approximate each level independently, the
MLMC estimator can be written as

AMLMC =
L∑
`=0

1

M`

M∑̀
m=1

∆̃S`(ω`,m).
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Motivation

Multilevel Monte Carlo (MLMC)

Variance reduction: MLMC
Recall: With Monte Carlo we have to satisfy

Var[AMC ] =
1

ML
Var[SL] ≈ 1

ML
Var[S ] ≤ TOL2.

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

Var[AMLMC] =
1

M0
Var[S0]

+
L∑
`=1

1

M`
Var[∆S`] ≤ TOL2.

Observe: Level 0 in MLMC is usually deter-
mined by both stability and accuracy, i.e.
Var[∆S1] << Var[S0] ≈ Var[S ] <∞.
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Motivation

Multilevel Monte Carlo (MLMC)

Classical assumptions for MLMC
For every `, we assume the following:

Assumption 1̃ (Bias): |E[S − S`]| . β−w`,

Assumption 2̃ (Variance): Var
[
∆̃S`

]
. β−s`,

Assumption 3̃ (Work): Work(∆̃S`) . βdγ`,

for positive constants γ,w and s ≤ 2w .

Work(MLMC) =
L∑
`=0

M` Work(∆̃S`) .
L∑
`=0

M` β
dγ`,

Example: Our smooth linear elliptic PDE example approximated
with Multilinear piecewise continuous FEM:

2w = s = 4 and 1 ≤ γ ≤ 3.
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Motivation

Multilevel Monte Carlo (MLMC)

MLMC Computational Complexity
We choose the number of levels to bound the bias

|E[S − SL]| . β−Lw ≤ CTOL ⇒ L ≥ log(TOL−1)− log(C )

w log(β)
,

and choose the samples (M`)
L
`=0 optimally to bound

Var[AMLMC] . TOL2, then the optimal work satisfies (Giles et al.,
2008, 2011):

Work(MLMC) =


O
(
TOL−2

)
, s > dγ,

O
(
TOL−2

(
log(TOL−1)

)2
)
, s = dγ,

O
(
TOL

−
(

2+ (dγ−s)
w

))
, s < dγ.

Recall: Work(MC) = O
(
TOL−(2+ dγ

w
)
)
.
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Motivation

Multilevel Monte Carlo (MLMC)

Questions related to MLMC
I How to choose the mesh hierarchy h`? [H-ASNT, 2015]
I How to efficiently and reliably estimate V`? How to find the

correct number of levels, L? [CH-ASNT, 2015]
I Can we do better? Especially for d > 1? [H-ANT, 2015]

[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “Optimization of mesh
hierarchies in Multilevel Monte Carlo samplers”. arXiv:1403.2480, Stochastic
Partial Differential Equations: Analysis and Computations, Accepted (2015).

[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “A continuation
multilevel Monte Carlo algorithm”. BIT Numerical Mathematics, 55(2):399-432,
(2015).

[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. “Multi-Index Monte Carlo: When Sparsity
Meets Sampling”. arXiv:1405.3757, Numerische Mathematik, Accepted (2015).

Time adaptivity for MLMC in Itô SDEs:
I Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and

R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci.
Eng., (2011).

I Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H.
Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20,
(2014).

I Construction of a mean square error adaptive Euler-Maruyama method with applications in
multilevel Monte Carlo, by H. Hoel, J. Häppöla, and R. T. To appear in MC and Q-MC
Methods 2014, Springer Verlag, (2016).



MIMC 10/54

Motivation

Multilevel Monte Carlo (MLMC)

Hybrid MLMC for Stochastic Reaction Networks

I A. Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical
Mathematics, April 2015.

I A. Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation
method for stochastic reaction networks. arXiv:1406.1989. Submitted, (2014).

I Multilevel drift-implicit tau-leap, by C. Ben Hammouda, A. Moraes and R. T.
arXiv:1512.00721. Submitted (2015).
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Motivation

Multilevel Monte Carlo (MLMC)

Variance reduction: MLMC
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Motivation

Multilevel Monte Carlo (MLMC)

Variance reduction: Further potential
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Multi-Index Monte Carlo

General Framework

MIMC Estimator

For i = 1, . . . , d , define the first order difference operators

∆iSα =

{
Sα if αi = 0,

Sα − Sα−ei if αi > 0,

and construct the first order mixed difference

∆Sα =
(
⊗d

i=1∆i

)
Sα.

Then the MIMC estimator can be written as

AMIMC =
∑
α∈I

1

Mα

Mα∑
m=1

∆Sα(ωα,m)

for some properly chosen index set I ⊂ Nd and samples (Mα)α∈I .
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Multi-Index Monte Carlo

General Framework

Example: On mixed differences

Consider d = 2. In this case, let-
ting α = (α1, α2), we have

∆S(α1,α2) = ∆2(∆1S(α1,α2))

= ∆2 (Sα1,α2 − Sα1−1,α2)

= (Sα1,α2 − Sα1−1,α2)

− (Sα1,α2−1 − Sα1−1,α2−1) .

Notice that in general, ∆Sα re-
quires 2d evaluations of S at dif-
ferent discretization parameters,
the largest work of which corre-
sponds precisely to the index ap-
pearing in ∆Sα, namely α.

α1

α2
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Multi-Index Monte Carlo

General Framework

Our objective is to build an estimator A = AMIMC where

P(|A − E[S ]| ≤ TOL) ≥ 1− ε (1)

for a given accuracy TOL and a given confidence level determined
by 0 < ε� 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint: |E[A− S ]| ≤ (1− θ)TOL, (2)

Statistical constraint: P (|A − E[A]| ≤ θTOL) ≥ 1− ε. (3)

For a given fixed θ ∈ (0, 1). Moreover, motivated by the
asymptotic normality of the estimator, A, we approximate (3) by

Var[A] ≤
(
θTOL

Cε

)2

. (4)

Here, 0 < Cε is such that Φ(Cε) = 1− ε
2 , where Φ is the

cumulative distribution function of a standard normal random var.
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Multi-Index Monte Carlo

General Framework

Assumptions for MIMC

For every α, we assume the following

Assumption 1 (Bias) : Eα = |E[∆Sα]| .
∏d

i=1
β−αiwi
i

Assumption 2 (Variance) : Vα = Var[∆Sα] .
∏d

i=1
β−αi si
i ,

Assumption 3 (Work) : Wα = Work(∆Sα) .
∏d

i=1
βαiγi
i ,

For positive constants γi ,wi , si ≤ 2wi and for i = 1 . . . d .

Work(MIMC) =
∑
α∈I

MαWα .
∑
α∈I

Mα

(∏d

i=1
βαiγi
i

)
.
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Multi-Index Monte Carlo

Choosing the Index Set I

Given variance and work estimates we can already optimize for the
optimal number of samples M∗α ∈ R to satisfy the variance
constraint (4)

M∗α = C 2
ε θ
−2TOL−2

√
Vα
Wα

(∑
α∈I

√
VαWα

)
.

Taking M∗α ≤ Mα ≤ M∗α + 1 such that Mα ∈ N and substituting
in the total work gives

Work(I) ≤ C 2
ε θ
−2TOL−2

(∑
α∈I

√
VαWα

)2

+
∑
α∈I

Wα︸ ︷︷ ︸
Min. cost of I

.

The work now depends on I only.



MIMC 17/54

Multi-Index Monte Carlo

Choosing the Index Set I

An obvious choice of I is the Full Tensor
index-set

I(L) = {α ∈ Nd : αi ≤ Li

for i ∈ {1 · · · d}}

for some L ∈ Rd .

It turns out, unsurprisingly, that Full
Tensor (FT) index-sets impose restrictive
conditions on the weak rates wi and yield
sub-optimal complexity rates.

L1

L2

α1

α2
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Multi-Index Monte Carlo

Choosing the Index Set I

Question: How do we find optimal index set I for MIMC?
Then the MIMC work depends only on I and our goal is to solve

min
I⊂Nd

Work(I) such that Bias =
∑
α/∈I

Eα ≤ (1− θ)TOL,

We assume that the work of MIMC is not dominated by the work
to compute a single sample corresponding to each α. Then,
minimizing equivalently

√
Work(I), the previous optimization

problem can be recast into a knapsack problem with profits defined
for each multi-index α. The corresponding profit is

Pα =
Bias contribution

Work contribution
=

Eα√
VαWα
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Multi-Index Monte Carlo

Choosing the Index Set I

Define the total error associated with an index-set I as

E(I) =
∑
α/∈I

Eα

and the corresponding total work estimate as

W(I) =
∑
α∈I

√
VαWα.

Then we can show the following optimality result with respect to
E(I) and W(I), namely:

Lemma (Optimal profit sets)

The index-set I(ν) = {α ∈ Nd : Pα ≥ ν} for Pα = Eα√
VαWα

is

optimal in the sense that any other index-set, Ĩ, with smaller work,
W(Ĩ) <W(I(ν)), leads to a larger error, E(Ĩ) > E(I(ν)).
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Multi-Index Monte Carlo

Choosing the Index Set I

Defining the optimal index-set for MIMC
In particular, under Assumptions 1-3, the optimal index-set can
be written as

Iδ(L) = {α ∈ Nd : α · δ =
d∑

i=1

αiδi ≤ L}. (5)

Here L ∈ R,

δi =
log(βi )(wi + γi−si

2 )

Cδ
, for all i ∈ {1 · · · d},

and Cδ =
d∑

j=1

log(βj)(wj +
γj − sj

2
).

(6)

Observe that 0 < δi ≤ 1, since si ≤ 2wi and γi > 0. Moreover,∑d
i=1 δi = 1.
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Multi-Index Monte Carlo

Choosing the Index Set I

s

L

α1

α2
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Multi-Index Monte Carlo

Main Theorem

MIMC work estimate

η = min
i∈{1···d}

log(βi )wi

δi
, ζ = max

i∈{1···d}

γi − si
2wi

, z = #{i ∈ {1 · · · d} :
γi − si

2wi
= ζ}.

Theorem (Work estimate with optimal weights)
Let the total-degree index set Iδ(L) be given by (5) and (6), taking

L =
1

η

(
log(TOL−1) + (z− 1) log

(
1

η
log(TOL−1)

)
+ C

)
.

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically
and the total work, W (Iδ), of the MIMC estimator, A, subject to the variance
constraint (4) satisfies:

lim sup
TOL↓0

W (Iδ)

TOL−2−2 max(0,ζ)
(
log
(
TOL−1

))p <∞,
where 0 ≤ p ≤ 3d + 2(d − 1)ζ is known and depends on d ,γ,w , s and β.
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Multi-Index Monte Carlo

Main Theorem

Powers of the logarithmic term

ξ = min
i∈{1···d}

2wi − si
γi

, d2 = #{i ∈ {1 · · · d} : γi = si},

ζ = max
i∈{1···d}

γi − si
2wi

, z = #{i ∈ {1 · · · d} :
γi − si

2wi
= ζ}.

Cases for p:

A) if ζ ≤ 0 and ζ < ξ,
or ζ = ξ = 0 then p = 2d2.

B) if ζ > 0 and ξ > 0 then p = 2(z− 1)(ζ + 1).

C-D) if ζ ≥ 0 and ξ = 0 then p = d − 1 + 2(z− 1)(ζ + 1).
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Multi-Index Monte Carlo

Comparisons

Fully Isotropic Case: Rough noise case
Assume wi = w , si = s < 2w , βi = β and γi = γ for all
i ∈ {1 · · · d}. Then the optimal work is

Work(MC) = O
(
TOL−2− dγ

w

)
.

Work(MLMC) =


O
(
TOL−2

)
, s > dγ,

O
(
TOL−2

(
log
(
TOL−1

))2
)
, s = dγ,

O
(
TOL

−
(

2+ (dγ−s)
w

))
, s < dγ.

Work(MIMC) =


O
(
TOL−2

)
, s > γ,

O
(
TOL−2

(
log
(
TOL−1

))2d
)
, s = γ,

O
(
TOL−(2+ γ−s

w ) log
(
TOL−1

)(d−1) γ−s
w

)
, s < γ.
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Multi-Index Monte Carlo

Comparisons

Fully Isotropic Case: Smooth noise case
Assume wi = w , si = 2w , βi = β and γi = γ for all i ∈ {1 · · · d}
and d ≥ 3. Then the optimal work is

Work(MC) = O
(
TOL−2− dγ

w

)
.

Work(MLMC) =


O
(
TOL−2

)
, 2w > dγ,

O
(
TOL−2

(
log
(
TOL−1

))2
)
, 2w = dγ,

O
(
TOL−

dγ
w

)
, 2w < dγ.

Work(MIMC) =


O
(
TOL−2

)
, 2w > γ,

O
(
TOL−2

(
log
(
TOL−1

))3(d−1)
)
, 2w = γ,

O
(
TOL−

γ
w

(
log
(
TOL−1

))(d−1)(1+γ/w)
)
, 2w < γ,

Up to a multiplicative logarithmic term, Work(MIMC) is the same as

solving just a one dimensional deterministic problem.
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Multi-Index Monte Carlo

Comparisons

MIMC: Case with a single worst direction
Recall ζ = maxi∈{1···d}

γi−si
2wi

and z = #{i ∈ {1 · · · d} : γi−si2wi
= ζ}.

In the special case when ζ > 0 and z = 1, i.e. when the directions
are dominated by a single “worst” direction with the maximum
difference between the work rate and the rate of variance
convergence. In this case, the value of L becomes

L =
1

η

(
log(TOL−1) + log(C )

)
and MIMC with a TD index-set achieves a better rate for the
computational complexity, namely O

(
TOL2−2ζ

)
. In other words,

the logarithmic term disappears from the computational
complexity.
Observe: TD-MIMC with a single worst direction has the same
rate of computational complexity as a one-dimensional MLMC
along that single direction.
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Numerical Results

Problem description

We test our methods on a three-dimensional, linear elliptic PDE
with variable, smooth, stochastic coefficients. The problem is
isotropic and we have

γi = 2,

wi = 2,

and
si = 4

as TOL→ 0.
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Numerical Results

Problem description

−∇ · (a(x ;ω)∇u(x ;ω)) = 1 for x ∈ (0, 1)3,

u(x ;ω) = 0 for x ∈ ∂(0, 1)3,

where a(x ;ω) = 1 + exp
(

2Y1Φ121(x) + 2Y2Φ877(x)
)
.

Here, Y1 and Y2 are i.i.d. uniform random variables in the range [−1, 1]. We
also take

Φijk(x) = φi (x1)φj(x2)φk(x3),

and φi (x) =

{
cos
(
i
2
πx
)

i is even,
sin
(
i+1

2
πx
)

i is odd,

Finally, the quantity of interest, S , is

S = 100
(

2πσ2
)−3

2

∫
D

exp

(
−‖x − x0‖2

2

2σ2

)
u(x)dx ,

and the selected parameters are σ = 0.04 and x0 = [0.5, 0.2, 0.6].
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Numerical Results

Numerical test: Computational Errors
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Numerical Results

Numerical test: Maximum degrees of freedom
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Numerical Results

Numerical test: Running time, 3D problem
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Numerical Results

Numerical test: Running time, 4D problem
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Numerical test: QQ-plot
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Conclusions

Conclusions and Extra Points

I MIMC is a generalization of MLMC and performs better,
especially in higher dimensions.

I For optimal rate of computational complexity, MIMC requires
mixed regularity between discretization parameters.

I MIMC may have better complexity rates when applied to
non-isotropic problems, for example problems with a single
worst direction.

I A different set of regularity assumptions would yield a
different optimal index-set and related complexity results.

I A direction does not have to be a spatial dimension. It can
represent any form of discretization parameter!
Example: 1-DIM Stochastic Particle Systems, MIMC brings
complexity down from O(TOL−5) to

O(TOL−2 log
(
TOL−1

)2
)
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Beyond MIMC: Multi-Index Stochastic Collocation

I Can we do even better if additional smoothness is available?

[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
“Multi-Index Stochastic Collocation for random
PDEs”. arXiv:1508.07467. Submitted, August
2015.

[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
”Multi-Index Stochastic Collocation convergence
rates for random PDEs with parametric regularity”.
arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!
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Preliminary: Interpolation
Let Γ ⊆ R, Pq(Γ) be the space of polynomials of degree q over Γ,
and C0(Γ) the set of real-valued continuous functions over Γ. Given
m interpolation points y1, y2 . . . ym ∈ Γ define the one-dimensional
Lagrangian interpolant operator Um : C0(Γ)→ Pm−1(Γ) as

Um[u](y) =
m∑
j=1

u(y j)ψj(y), where ψj(y) =
∏
k 6=j

y − yk
yj − yk

.

Then, given a tensor grid
⊗n

j=1{y
j
1, y

j
2 . . . y

j
mj ∈ Γn} with

cardinality
∏n

j=1 mj , the n-variate lagrangian interpolant

Um[u] : C0(Γ)→ Pm−1(Γ) can be written as

Um[u](y) = (Um1 ⊗ · · · ⊗ Umn) [u](y)

=

m1∑
i1=1

· · ·
mn∑
in=1

u(y i11 , . . . y
in
n ) · (ψi1(y1) · · ·ψin(yn)) .
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Preliminary: Stochastic Collocation
It is also straightforward to deduce a n-variate quadrature rule
from the lagrangian interpolant. In particular, if (Γ,B(Γ), ρ) is a
probability space, where B(Γ) is the Borel σ-algebra and ρ(y)dy is
a probability measure, the expected value of the tensor interpolant
can be computed as

E[Um[u](y)] =

m1∑
i1=1

· · ·
mn∑
i1=1

u(y i11 , . . . y
in
n ) · E[ψi1(y1) · · ·ψin(yn)].

Moreover, if (y1, . . . , yn) are jointly independent then the
probability density function ρ factorizes, i.e. ρ(y) =

∏N
n=1 ρn(yn),

and there holds

E[ψi1(y1) · · ·ψin(yn)] =
N∏

n=1

E[ψin(yn)]
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MISC Main Operator

Assume S is a function of n random variables. Instead of
estimating E[Sα] using Monte Carlo we can use Stochastic
Collocation with τ ∈ Nn points, as follows

E[Sα] = Sα,τ (Y ) = U(τ1,...,τn)[Sα](Y ).

Then we can define the Delta operators along the stochastic and
deterministic dimensions

∆d
i Sα,τ =

{
Sα.τ − Sα−ei ,τ , if αi > 0,

Sα,τ if αi = 0,

∆n
j Sα,τ =

{
Sα,τ − Sα,τ−ej , if τj > 0,

Sα,τ if τj = 0,
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MISC Estimator

We use these operator to define the following Multi-index
Stochastic Collocation (MISC) estimator of E[S ],

AMISC(ν) = E

 ∑
(α,τ )∈I

∆n
(
∆dSα,τ

) =
∑

(α,τ )∈I

cα,τE[Sα,τ ],

for some index set I ∈ Nd+n.

Question: Optimal choice for I?
Can be found computationally using the knapsack optimization
theory we outlined.
Question: Can we say something about the rate of work
complexity using the optimal I?
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MISC Assumptions

For some strictly positive constant QW , gj , wi , Cwork and γi for
i = 1 . . . d and j = 1 . . . n, there holds

∣∣∣∆n
(
∆dSα,τ

)∣∣∣ ≤ QW

 n∏
j=1

exp(−gjτj)

( d∏
i=1

exp(−wiαi )

)
.

Work
(
∆n

(
∆dSα,τ

))
≤ Cwork

 n∏
j=1

τj

( d∏
i=1

exp(γiαi )

)
.

This a simplified presentation that can be easily generalized to
nested points.
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MISC work estimate

Theorem (Work estimate with optimal weights)

[MISC1, 2015] Under (our usual) assumptions on the error and
work convergence there exists an index-set I such that

lim
TOL↓0

|AMISC(I)− E[g ]|
TOL

≤ 1

and lim
TOL↓0

Work[AMISC(I)]

TOL−ζ
(
log
(
TOL−1

))(z−1)(ζ+1)
= C (n, d) <∞

(7)
where ζ = maxdi=1

γi
wi

and z = #{i = 1, . . . d : wi
γi

= ζ}.
Note that the rate is independent of the number of random
variables n. Moreover, d appears only in the logarithmic power.
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MISC numerical comparison [MISC1, 2015]
Comparison with MIMC and Quasi Optimal (QO) Single &
Multilevel Level Sparse Grid Stochastic Collocation
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MISC (parametric regularity, N =∞) [MISC2, 2015]

We use MISC to compute on a hypercube domain B ⊂ Rd

−∇ · (a(x , y)∇u(x , y)) = f (x) in B

u(x , y) = 0 on ∂B,

where

a(x , y) = eκ(x ,y), with κ(x , y) =
∑
j∈N+

ψj(x)yj .

Here, y are iid uniform and the regularity of a (and hence u) is
determined through the decay of the norm of the derivatives of
ψj ∈ C∞(B).



MIMC 44/54

Multi-index Stochastic Collocation (MISC)

Theorem (MISC convergence theorem)

[MISC2, 2015] Under technical assumptions the profit-based
MISC estimator built using Stochastic Collocation over
Clenshaw-Curtis points and piecewise multilinear finite elements for
solving the deterministic problems, we have∣∣E[S ]−MI [S ]

∣∣ ≤ C̃P Work[MI ]−rMISC .

The rate rMISC is as follows:

Case 1 if γ
rFEM+γ ≥

ps
1−ps , then rMISC <

rFEM
γ ,

Case 2 if γ
rFEM+γ ≤

ps
1−ps , then

rMISC <

(
1

p0
− 2

)(
γ

ps − p0

rFEMp0ps
+ 1

)−1

.
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Ideas for proofs in [MISC2, 2015]

I Given the sequences

b0,j = ‖ψj‖L∞(B) , j ≥ 1, (8)

bs,j = max
s∈Nd :|s|≤s

‖Dsψj‖L∞(B) , j ≥ 1, (9)

we assume that there exist 0 < p0 ≤ ps <
1
2 such that

{b0,j}j∈N+ ∈ `p0 and {bs,j}j∈N+
∈ `ps ,

I Shift theorem: From regularity of a and f to regularity of
u ∈ H1+s(B)⇒ u ∈ H1+q

mix (B), for 0 < q < s/d .

I Extend holomorphically u(·, z) ∈ H1+r (B) on polyellipse
z ∈ Σr (use pr summability of br ) to get stochastic rates and
estimates for ∆.

I Use weighted summability of knapsack profits to prove
convergence rates.
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Example: log uniform field with parametric regularity
[MISC2, 2015]

Here, the regularity of κ = log(a) is determined through ν > 0

κ(x , y) =
∑
k∈Nd

Ak
∑

`∈{0,1}d
yk,`

d∏
j=1

(
cos
(π
L
kjxj

))`j (
sin
(π
L
kjxj

))1−`j
,

where the coefficients Ak are taken as

Ak=
(√

3
)

2
|k|0

2 (1 + |k |2)−
ν+d/2

2 .

We have

p0 >

(
ν

d
+

1

2

)−1

and ps >

(
ν − s

d
+

1

2

)−1

.
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Application of main theorem [MISC2, 2015]
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A similar analysis shows the corresponding ν-dependent
convergence rates of MIMC but based on `2 summability of bs and
Fernique type of results.
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MISC numerical results [MISC2, 2015]
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MISC numerical results [MISC2, 2015]
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Deterministic runs, numerical results [MISC2, 2015]

These plots shows the non-asymptotic effect of the logarithmic
factor for d > 1 (as discussed in [Thm. 1][MISC1, 2015]) on the
linear convergence fit in log-log scale.
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Error Estimation for PDEs with rough stochastic random
coefficients

I E. J. Hall, H. Hoel, M. Sandberg, A. Szepessy and R. T.
”Computable error estimates for finite element approximations of
elliptic partial differential equations with lognormal data”,
Submitted, 2015.

−∇ · a∇u = f , a ∈ C 1/2−ε(D)
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More References: Inverse Probl. and Experimental Design

I H. Hoel, K. J. H. Law, R. T., Multilevel ensemble Kalman filtering. Submitted, 2015.

I F. Bisetti, D. Kim, O. Knio, Q. Long, and R. T. Optimal Bayesian Experimental Design for Priors of
Compact Support with Application to Shock-Tube Experiments for Combustion Kinetics. Accepted, Int. J.
for Num. Met. in Engineering, 2016.

I C. Bayer, A. Moraes, R. T., and P. Vilanova, An Efficient Forward-Reverse Expectation-Maximization
Algorithm for Statistical Inference in Stochastic Reaction Networks. Accepted, Stochastic Analysis and
Applications, 2015.

I A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel Sequential Monte Carlo Samplers.
Submitted, 2015.

I I. Babuska, Z. Sawlan, M. Scavino, B. Szabo and R. T. Bayesian inference and model comparison for
metallic fatigue data. Accepted, Computers and Mathematics with Applications, 2016.

I F. Ruggeri, Z. Sawlan, M. Scavino, R. T. A hierarchical Bayesian setting for an inverse problem in linear
parabolic PDEs with noisy boundary conditions. Submitted, 2014.

I Q. Long, M. Motamed and R. T. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion,
by CMAME, vol. 291, pp. 123-145, 2015.

I Q. Long, M. Scavino, R. T. and S. Wang. A Laplace method for under determined Bayesian experimental
design, CMAME, Vol. 285, pp. 849–876, March 2015.

I Q. Long, M. Scavino, R. T. and S. Wang. Fast Estimation of Expected Information Gains for Bayesian
Experimental Designs Based on Laplace Approximations. CMAME, 259(1), pp. 24–39, 2013.
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More References: more on forward problems

I F. Nobile, L. Tamellini, and R. T., Convergence of quasi-optimal
sparse-grid approximation of Hilbert-space-valued functions:
application to random elliptic PDEs, Accepted, Num. Mat., 2015.

I F. Nobile, L. Tamellini, R. T. and F. Tesei, An adaptive sparse grid
algorithm for elliptic PDEs with lognormal diffusion coefficient.
Accepted, Lecture Notes in Comp. Sci. and Eng. 2015.

I G. Migliorati, F. Nobile and R. T., Convergence estimates in
probability and in expectation for discrete least squares with noisy
evaluations in random points, Journal of Multivariate Analysis, 2015

I G. Malenova, M. Motamed, O. Runborg, R. T., A Sparse Stochastic
Collocation Technique for High Frequency Wave Propagation with
Uncertainty, Submitted July 2015.
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