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Inclusion process

Interacting particles system with N particles moving on a (finite)
set S following a given Markovian dynamics.
[Giardinà, Kurchan, Redig, Vafayi (2009); Giardinà, Redig, Vafayi (2010)]

Configurations: η ∈ {0, 1, 2, . . .}S η = (ηx )x∈S

with ηx = #particles on x s.t.
∑
x∈S

ηx = N

Markovian dynamics:

Lf (η) =
∑

x ,y∈S

r(x , y)ηx (dN + ηy ) (f (ηx ,y )− f (η)) generator

r(x , y) ≥ 0 transition rates of a m-reversible RW on S
dN > 0 constant tuning the rates of the underlying RW
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Example:

Remarkable facts:
Under suitable hypotheses, e.g. letting N →∞ and dN −→ 0, the
model displays condensation (particles concentrate on single site)
and metastable behavior (condensate may appears in different
sites of S)
[Grosskinsky, Redig, Vafayi 2011], [Chleboun 2012].
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Metastable behavior

Symmetric IP [Grosskinsky, Redig, Vafayi 2013]

At the timescale 1/dN :
formation of the condensate
condensate jumps between x , y ∈ S at rate r(x , y)

Reversible IP [B., Dommers, Giardinà 2016]

At the timescale 1/dN :
the condensate jumps between x , y ∈ S∗ at rate r(x , y)

S∗ = arg max{m(x) : x ∈ S}
m(x) rev. measure for r s.t. max{m(x) : x ∈ S} = 1
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Remarks/Open questions:

The RW restricted to S∗ need not to be irreducible
=⇒ the condensate may be trapped in subsets of S∗

=⇒ existence of a second metastable timescale.

For similar reasons, condensation time is in general unknown.

In contrast to zero-range processes, large clusters are mobile
in the coarsening regime.

[Chleboun, Grosskinsky 2014], [Cao, Chleboun, Grosskinsky 2014], [Evans, Waklaw (2014)]

Main goal: Characterization of further metastable timescales, and
motion of the condensate between traps.
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Simulations and heuristics

First example

On the timescale 1/dN , the condensate moves between sites
maximizing the measure m.
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Simulations and heuristics

Second example

On the timescale 1/dN , condensation takes place (though at a
long scaled time), while once created, the condensate remains
trapped for very long time on a vertex of S∗.
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Metastable timescale(s)

Assume {r(x , y)}x ,y∈S∗ is reducible, and let C1, . . . ,Cm, m ≥ 2,
the connected components of (S∗, r|S∗ )

S∗ =
m⋃

j=1

Cj , Ci ∪ Cj = ∅, for i 6= j

As for the derivation of the first metastable timescale, 1/dN ,
we apply the martingale approach to metastability.
[Beltrán, Landim, 2010-2015]

Define a new set of metastable sets E1, . . . , Em:

Ej =
⋃

x∈Cj

ηN,x , where ηN,x
x = N

Verify the hypotheses H0, H1 and H2 of [Beltrán, Landim, 2010]

−→ compute capacities CapN(Ei , Ej).
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Capacity versus Metastability

Capacity is a key quantity in the analysis of metastable systems
[Bovier, Eckhoff, Gayrard, Klein ’01-’04]-[Beltrán, Landim ’10-’15]

Its definition comes from correspondence btw reversible dynamics
and electrical networks. If A,B ⊂ Ω, and µ reversible measure

Cap(A,B) :=
∑
η∈A

µ(η)Pη[τB < τ+A ]
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Advantages:

I Fact. If A e B are metastable sets, the mean metastable time btw
A e B is (roughly) ∼ µ(A)/Cap(A,B).
[Bovier, Eckhoff, Gayrard, Klein ’01-’04]

II Fact. A good control over capacities allows to characterize the
limiting dynamics on metastable states. [Beltrán, Landim ’10-’15]

III Fact. Capacity satisfies two variational principles
as inf in the Dirichlet principle , as sup in the Thompson principle
and in Berman-Konsowa principle.

On the other hand, unless very simple systems, the precise
computation of capacities may be complicated.
−→ we start from a simple IP dynamics to understand traps.
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Analysis of a 3- sites IP

Consider the IP defined through the underlying RW on
S = {v , x , y} with transition rates s.t.{

r(y , x) = r(x , y) = 0
m(x) = m(y) = 1 > m(v)

=⇒ ηN,x , ηN,y are disconnected components of (S∗, r|S∗ )

x v y

qp

q p

p<q
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Capacities for the 3-sites IP

Proposition 1.
In the above notation and for dN log N → 0,

lim
N→∞

N
d2

N
· CapN(ηN,x , ηN,y ) =

(
1

r(v , x)
+

1
r(v , y)

)−1

· m(v)

1−m(v)

In particular

CapN(ηN,x , ηN,y ) ∼ d2
N/N � dN −→ second timescale ∼ N/d2

N

Following [Beltrán, Landim 2010], hypothesis H0 is verified:

lim
N→∞

N
d2

N
pN(ηN,x , ηN,y ) =

(
1

r(v , x)
+

1
r(v , y)

)−1

· m(v)

1−m(v)
=: p(2)(x , y)
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Dynamics of the condensate in the 3-sites IP

As a consequence (hypotheses H1 and H2 are easily verified), for

XN(t) =
∑
z∈S∗

z1{ηz(t) = N}

Proposition 2.

Let dN log N → 0 as N →∞, and ηz(0) = N for some z ∈ S∗.
Then

XN(t · N/d2
N) converges weakly to x(t) as N →∞

where x(t) is a Markov process on S∗ with symmetric rates
p(2)(x , y).

Alessandra Bianchi Metastability in the reversible inclusion process II



Condensation in the IP Metastable timescales Analysis of IP on 1D lattice Projects and open problems

Easy extension I

Consider the IP defined through the following underlying RW

x y

with transition rates s.t.
S∗ = {x , y}

In the above notation and for dN log N → 0,

lim
N→∞

N
d2

N
· CapN(ηN,x , ηN,y ) =

∑
v 6={x ,y}

(
1

r(v , x)
+

1
r(v , y)

)−1

· m(v)

1−m(v)
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Easy extension II

Consider the IP defined through the following underlying RW

v v v v v v
21 LL-1L-23

with transition rates s.t. d(x ,S∗ \ {x}) ≤ 2 for all x ∈ S∗.

For S∗ =
⋃

j∈J Cj , Cj connected component of (S∗,R|S∗ ). For I ( J

S∗1 =
⋃
i∈I

Ci , S∗2 =
⋃

i∈J\I

Ci and E1 =
⋃

x∈S∗
1

ηN,x , E2 =
⋃

y∈S∗
2

ηN,y

Then, for dN log N → 0,

lim
N→∞

N
d2

N
· CapN(E1, E2) =

∑
x∈S∗1
y∈S∗2

∑
v∈S\S∗

(
1

r(v , x)
+

1
r(v , y)

)−1

· m(v)

1−m(v)
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v v v v v v
21 LL-1L-23

with transition rates s.t. d(x ,S∗ \ {x}) ≤ 2 for all x ∈ S∗.

For S∗ =
⋃

j∈J Cj , Cj connected component of (S∗,R|S∗ ). For I ( J

S∗1 =
⋃
i∈I

Ci , S∗2 =
⋃

i∈J\I

Ci and E1 =
⋃

x∈S∗
1

ηN,x , E2 =
⋃

y∈S∗
2

ηN,y

Then, for dN log N → 0,

lim
N→∞

N
d2

N
· CapN(E1, E2) =

∑
x∈S∗1
y∈S∗2

∑
v∈S\S∗

(
1

r(v , x)
+

1
r(v , y)

)−1

· m(v)

1−m(v)
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Analysis of a IP on on {1, 2, . . . , L}, L ≥ 4

Let S = {x = v1, v2, . . . , vL = y} with L ≥ 4 and consider the IP
defined through the following RW

x=v v v v v y=v
21 LL-1L-23

with transition rates s.t. S∗ = {x , y}
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Capacities for the IP on {1, 2, . . . , L}

Proposition 3.
In the above notation and for dN log N → 0,

lim
N→∞

N2

dL−1
N

· CapN(ηN,x , ηN,y ) ≥ c > 0

Upper bound on these capacities is still under investigation, but
rough (not-matching) estimates show

CapN(ηN,x , ηN,y ) ≤ d3
N/N2 � d2

N/N −→ third timescale

Are there further metastable timescales associated to length of
minimal path btw connected components? (to investigate)
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Comment on the results

Main goal of the work (in progress) −→ characterization of the
condensate dynamics for the IP with reversible rates.

Though results rigorously obtained only for simple underlying RW
(1D RW), we expect that the mechanism highlighted here hold in
generality.
We conjecture the existence of many (at least three) metastable
timescales:

Consider the IP on a finite set S with reversible rates r(x , y).

Let
{

C(k)
1 , . . .C(k)

m(k)

}
, for k = 1, 2, be partitions of S∗, of

cardinality 0 ≤ m(k) ≤ |S∗|, such that

C(1)
j ’s are the connected components of (S∗, r|S∗ )

C(2)
j ’ are s.t x ∈ S∗ if d(x ,S∗ \ {x}) ≤ 2

(d graph distance on (S, r)).
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Let T1 = N/d2
N and T2 = N2/d3

N , and

E(k)j =
⋃

x∈C(k)
j
ηN,i , ∀j , k = 1, 2

(metastable sets at timescale Tk )

X (k)
N (t) =

∑m(k)

j=1 j1{
η(t)∈E(k)j

} , k = 1, 2

(processes projected on metastable sets)

Following the techniques of [Beltrán, Landim, 2010-2014],

Conjecture 1.

Let dN log N → 0 as N →∞, and ηz(0) = N for some z ∈ S∗.
Then, for k = 1, 2

X (k)
N (t · Tk ) converges weakly to x(k)(t) as N →∞

where x(k)(t) is a Markov process on {1, . . . ,m(k)} with
x(k)(0) =

∑m(k)
j=1 j1{η(0)∈E(k)j }

.
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Upper and lower bound on capacities

Recall that by the Dirichlet principle

CapN(A,B) = inf
f :f|A=1,f|B=0

{DN(f )}

where the Dirichlet form of the IP is

DN(f ) =
1
2

∑
η

µN(η)
∑

x ,y∈S

R(η, ηx ,y ) (f (ηx ,y )− f (η))2

with µN(η) =
1

ZN

∏
x∈S

m(x)ηx wN(ηx )

wN(k) =
Γ(k + dN)

k!Γ(dN)

R(η, ηx ,y ) = r(x , y)ηx (ηy + dN)

(see computation at the blackboard)
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Future projects

Formation of the condensate in the TASIP
(joint with S. Dommers, S. Grosskinsky)

Consider the IP on S = Z/LZ in the totally asymmetric case, with
r(x , x − 1) = 0 ∀x ∈ S (jumps to the right).

In [Cao, Chleboun, Grosskinsky ’14], condensation in the limit
NdN → 0 is shown, and heuristics and simulations on the
coarsening dynamics dynamics are discussed.

Main goal: Provide rigourous arguments to compute the
condensation time.
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Strategy for solution

By simulations, the slower dynamical step along nucleation is the
union of two half-condensates, of size m1 > m2.
This can be represented by a cyclic mechanism of 4 main steps:

I step The largest condensate (of size m1) loses a particle which is
absorbed by the other component (of size m2). This happens O(1)
times before the II step.
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Strategy for solution

By simulations, the slower dynamical step along nucleation is the
union of two half-condensates, of size m1 > m2.
This can be represented by a cyclic mechanism of 4 main steps:
II step The largest condensate loses O(m1 −m2) particles before
they are absorbed by the other condensate. At the hand, the two
condensates had roughly exchanged mass.
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Strategy for solution

By simulations, the slower dynamical step along nucleation is the
union of two half-condensates, of size m1 > m2.
This can be represented by a cyclic mechanism of 4 main steps:
III step As in the first step, the smallest condensate (now on the
left) loses one particle which is absorbed by the other condensate.
Difference m2 −m1 increases.
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Strategy for solution

By simulations, the slower dynamical step along nucleation is the
union of two half-condensates, of size m1 > m2.
This can be represented by a cyclic mechanism of 4 main steps:
IV step The largest condensate (on the right) moves faster until
reaches the configuration at step I .
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Reduction to a random walk{
m1 = #particles of condensate on the left
m2 = #particles of condensate on the right

with

m1 + m2 = N.

m1

m2

1

2

3

4
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Conclusions and open problems

We studied the reversible IP on a finite set in the limit N →∞ and
for dN → 0 with dN log N → 0 by martingale approach:

We derive the dynamics of the condensate at timescale
∼ 1/dN ;

We prove the existence of a longer metastable timescale
∼ N/d2

N and derive dynamics of the condensate in simple IP
processes (1D RW);

We conjecture the existence of longer metastable timescales
(at least one) ∼ N2/da

N
with a = a(r) ≥ 3 and possibly dependent on the shortest
length of paths between components of (S∗, r|S∗ ).
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Open problems

Conjecture on metastable timescales longer than N/d2
N and

derivation of asymptotic rates

=⇒ connected with computation of relaxation time ∼ longest
metastable timescale

Analysis of the nucleation time and coarsening dynamics

Thermodynamic limit |S| → ∞ with N/|S| → ρ > 0

Asymmetric systems: TASIP and ASIP with drift in one
direction.

Thank you for your attention!
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