Random walks on the East model

Oriane Blondel

CNRS; Université Lyon 1 Claude Bernard

Warwick, January 2016
j.w. L. Avena and A. Faggionato

East model

Markov process $\left(\xi_{t}\right)_{t \in \mathbb{R}_{+}}$on $\{0,1\}^{\mathbb{Z}} . \rho \in(0,1)$ density parameter.
At site $x,\left\{\begin{array}{lll}0 & \xrightarrow{\rho} & 1 \\ 1 & \xrightarrow{1-\rho} & 0\end{array}\right.$ if $x+1$ (the East neighbor of x) is empty.

$$
L_{E} f(\xi)=\sum_{x}(1-\xi(x+1))(\rho(1-\xi(x))+(1-\rho) \xi(x))\left[f\left(\xi^{x}\right)-f(\xi)\right]
$$

$\rho=1 / 2$; space horizontal, time goes down, $1=\bullet, 0=\bullet$.

A few properties of the East model

- Reversible w.r.t. $\mu:=\operatorname{Ber}(\rho)^{\otimes \mathbb{Z}}$.
- Mixing in $L^{2}(\mu)$ [Aldous-Diaconis '00]:

$$
\begin{aligned}
& \forall \rho \in(0,1), \exists \gamma>0 \text { s.t. } \forall f, g \in L^{2}(\mu) \\
& \qquad\left|\mathbb{E}_{\mu}\left[f\left(\eta_{0}\right) g\left(\eta_{t}\right)\right]-\mu(f) \mu(g)\right| \leq C(f, g) e^{-\gamma t} .
\end{aligned}
$$

A few properties of the East model

- Reversible w.r.t. $\mu:=\operatorname{Ber}(\rho)^{\otimes \mathbb{Z}}$.
- Mixing in $L^{2}(\mu)$ [Aldous-Diaconis '00]:

$$
\begin{aligned}
& \forall \rho \in(0,1), \exists \gamma>0 \text { s.t. } \forall f, g \in L^{2}(\mu) \\
& \qquad\left|\mathbb{E}_{\mu}\left[f\left(\eta_{0}\right) g\left(\eta_{t}\right)\right]-\mu(f) \mu(g)\right| \leq C(f, g) e^{-\gamma t}
\end{aligned}
$$

Some non-properties of the East model
Not attractive.
No uniform or cone-mixing property.

RW in (dynamic) random environment

$\left(Z_{t}\right)_{t \geq 0}$ process on \mathbb{Z}^{d} such that

$$
\mathbb{P}\left(Z_{t+d t}=x+y \mid Z_{t}=x\right)=r\left(y, \tau_{x} \xi_{t}\right) d t
$$

where $\left(\xi_{t}\right)_{t \geq 0}$ is the random environment, with values in $\{0,1\}^{\mathbb{Z}^{d}}$.
Today: ξ is the East model.

RW in (dynamic) random environment

$\left(Z_{t}\right)_{t \geq 0}$ process on \mathbb{Z}^{d} such that

$$
\mathbb{P}\left(Z_{t+d t}=x+y \mid Z_{t}=x\right)=r\left(y, \tau_{x} \xi_{t}\right) d t
$$

where $\left(\xi_{t}\right)_{t \geq 0}$ is the random environment, with values in $\{0,1\}^{\mathbb{Z}^{d}}$.
Today: ξ is the East model.

Environment seen from the walker

$$
\eta_{t}:=\tau_{Z_{\mathbf{t}}} \xi_{t}
$$

has generator

$$
L f(\eta)=L_{E} f(\eta)+\sum_{y} r(y, \eta)\left[f\left(\tau_{y} \eta\right)-f(\eta)\right]
$$

Jumps of $\left(X_{t}\right)_{t \geq 0} \longleftrightarrow$ spatial shifts for $\left(\eta_{t}\right)_{t \geq 0}$. Z_{t} depends on $\left(\xi_{s}\right)_{s \leq t}$.

Random walks
X (unperturbed walker) and $X^{(\epsilon)}$ (perturbed walker) with continuous rates $r(y, \eta), r_{\epsilon}(y, \eta) \geq 0$ such that

- $r_{\epsilon}(y, \eta)=r(y, \eta)+\hat{r}_{\epsilon}(y, \eta)$.
- $\eta_{t}:=\tau_{X_{t}} \xi_{t}$ has invariant measure μ.

In particular: $\left(\tau_{X_{t}} \xi_{t}\right)_{t \geq 0}$ has same invariant measure and mixing property as $\left(\xi_{t}\right)_{t \geq 0}$.

- $2 \epsilon=\left\|\hat{L}_{\epsilon}\right\|<\gamma$.
- $\sum_{y}|y|^{4} \sup _{\eta}\left(r(y, \eta)+\left|\hat{r}_{\epsilon}(y, \eta)\right|\right)<\infty$.
- $r(y, \eta)>0 \Longrightarrow r_{\epsilon}(y, \eta)$.
where

$$
\begin{aligned}
L_{\epsilon} f(\eta) & =L_{E} f(\eta)+\sum_{y} r_{\epsilon}(y, \eta)\left[f\left(\tau_{y} \eta\right)-f(\eta)\right] \\
L f(\eta) & =L_{E} f(\eta)+\sum_{y} r(y, \eta)\left[f\left(\tau_{y} \eta\right)-f(\eta)\right] \\
\hat{L}_{\epsilon} f(\eta) & =\sum_{y} \hat{r}_{\epsilon}(y, \eta)\left[f\left(\tau_{y} \eta\right)-f(\eta)\right]
\end{aligned}
$$

Examples

Driven ghost probe [Jack-Kelsey-Garrahan-Chandler PRE 2008]

$$
\begin{aligned}
r(\pm 1, \eta) & =(1-\eta(0))(1-\eta(\pm 1)) \\
r_{\epsilon}(\pm 1, \eta) & =(1-\eta(0))(1-\eta(\pm 1)) \tilde{r}_{\epsilon}(\pm 1)
\end{aligned}
$$

where $\tilde{\gamma}_{\epsilon}(1)=2 /\left(1+e^{-\epsilon}\right)=e^{\epsilon} \tilde{\gamma}_{\epsilon}(-1)$.

Examples

ϵ-RW
For $\epsilon \in(0,1 / 2)$, jump rates given by

N.B.: In the pictures, $p=1 / 2+\epsilon$.

General results

Theorem

1. The process seen from the walker $\eta_{t}^{(\epsilon)}=\tau_{X_{t}^{(\epsilon)}} \xi_{t}$, started from $\nu \ll \mu$, converges to an ergodic invariant measure μ_{ϵ} such that $\mu_{\epsilon} \sim \mu$ and for all $f \in L^{2}(\mu)$

$$
\mu_{\epsilon}(f)=\mu(f)+\sum_{n=0}^{\infty} \int_{0}^{\infty} \mu\left(\hat{L}_{\epsilon} S^{(n)}(s) f\right) d s
$$

where $S^{(0)}(t)=e^{t L}, S^{n+1}(t)=\int_{0}^{t} S^{(0)}(t-s) \hat{L}_{\epsilon} S^{(n)}(s) d s$.
2. For all $f, g \in L^{\infty}(\mu)$

$$
\left|\mathbb{E}_{\mu_{\epsilon}}\left[f\left(\eta_{0}\right) g\left(\eta_{t}\right)\right]-\mu_{\epsilon}(f) \mu_{\epsilon}(g)\right| \leq C(f, g) e^{-\frac{\gamma-2 \epsilon}{2} t}
$$

3. If r_{ϵ} have finite range and bounded support, $\exists \delta>0$ s.t.

$$
\left|\mu_{\epsilon}(\eta(x))-\rho\right| \leq C e^{-\delta|x|}
$$

General results

Theorem

1. The process seen from the walker $\eta_{t}^{(\epsilon)}=\tau_{X_{t}^{(\epsilon)}} \xi_{t}$, started from $\nu \ll \mu$, converges to an ergodic invariant measure μ_{ϵ} such that $\mu_{\epsilon} \sim \mu$ and for all $f \in L^{2}(\mu)$

$$
\mu_{\epsilon}(f)=\mu(f)+\sum_{n=0}^{\infty} \int_{0}^{\infty} \mu\left(\hat{L}_{\epsilon} S^{(n)}(s) f\right) d s,
$$

$$
\text { where } S^{(0)}(t)=e^{t L}, S^{n+1}(t)=\int_{0}^{t} S^{(0)}(t-s) \hat{L}_{\epsilon} S^{(n)}(s) d s
$$

2. For all $f, g \in L^{\infty}(\mu)$

$$
\left|\mathbb{E}_{\mu_{\epsilon}}\left[f\left(\eta_{0}\right) g\left(\eta_{t}\right)\right]-\mu_{\epsilon}(f) \mu_{\epsilon}(g)\right| \leq C(f, g) e^{-\frac{\gamma-2 \epsilon}{2} t} .
$$

3. If r_{ϵ} have finite range and bounded support, $\exists \delta>0$ s.t.

$$
\left|\mu_{\epsilon}(\eta(x))-\rho\right| \leq C e^{-\delta|x|} .
$$

N.B.: Point 1 proved in [Komorowski-Olla '05] when $d \nu / d \mu \in L^{2}(\mu)$, via a series expansion of the densities rather than semigroups. Perturbation \hat{L}_{ϵ} can be unbounded, should satisfy a sector condition.

General results

Theorem

1. LLN.

$$
\frac{1}{t} X_{t}^{(\epsilon)} \underset{t \rightarrow \infty}{\longrightarrow} v(\epsilon)
$$

2. Invariance principle.

$$
\frac{X_{n t}^{(\epsilon)}-v(\epsilon) n t}{\sqrt{n}} \rightarrow \sqrt{2 D_{\epsilon}} B_{t}
$$

3. If the environment seen from the unperturbed walker $\left(\eta_{t}\right)_{t \geq 0}$ is reversible w.r.t. $\mu, D_{\epsilon}>0$ for ϵ small enough.

More on the ϵ-RW

Theorem

1. If $\epsilon>0$ small enough, $\mu_{\epsilon}(\eta(1))<\rho<\mu_{\epsilon}(\eta(-1))$ (and the reverse if $\epsilon>0$).

Numerics by P. Thomann.
2. $v(\epsilon)=2 \epsilon(2 \rho-1)+\epsilon^{3} \kappa_{\rho}+O\left(\epsilon^{5}\right)$.

In particular, if $\rho \neq 1 / 2,|\epsilon| \neq 0$ small enough, $\operatorname{sgn}(v(\epsilon))=\operatorname{sgn}(\epsilon(2 \rho-1))$ (the sign of the speed is given by the dominating type of site in the environment).

What if $\rho=1 / 2$?

Speed as function of p in east and rho 0.5

Numerics by P. Thomann.

More on the speed $v(\epsilon)$

Conjecture
If $\rho=1 / 2, \epsilon \cdot v(\epsilon)<0$.
(Weaker: $\kappa_{1 / 2}<0$.)
A consequence of the orientation choice?

More on the speed $v(\epsilon)$

Conjecture

If $\rho=1 / 2, \epsilon \cdot v(\epsilon)<0$.
(Weaker: $\kappa_{1 / 2}<0$.)
A consequence of the orientation choice?
Theorem
If $2 \epsilon<\gamma$,

$$
v(-\epsilon)=-v(\epsilon) .
$$

More on the speed $v(\epsilon)$

Conjecture

If $\rho=1 / 2, \epsilon \cdot v(\epsilon)<0$.
(Weaker: $\kappa_{1 / 2}<0$.)
A consequence of the orientation choice?
Theorem
If $2 \epsilon<\gamma$,

$$
v(-\epsilon)=-v(\epsilon) .
$$

In particular,

$$
v_{\text {East }}(\epsilon)=v_{\text {West }}(\epsilon) .
$$

Rather, a signature of the space-time correlated bubbles.
N.B.: The antisymmetry holds for any reversible environment with L^{2} exponential mixing.

A degenerate version of the ϵ-RW

"Infinite rates".
$\left(Y_{t}\right)_{t \geq 0}$ lives on edges of \mathbb{Z} of type $\bullet-\bullet$.
When the particle on the left is erased, jumps to the right-most such edge.
When the hole on the right is filled, jumps to the left-most such edge (one step to the right).

$$
\lim \sup Y_{t} / t<0
$$

A degenerate version of the ϵ-RW

"Infinite rates".
$\left(Y_{t}\right)_{t \geq 0}$ lives on edges of \mathbb{Z} of type $\bullet-\bullet$.
When the particle on the left is erased, jumps to the right-most such edge.
When the hole on the right is filled, jumps to the left-most such edge (one step to the right).

$$
\lim \sup Y_{t} / t<0
$$

Three-point correlation function

Proposition

If for any $y \geq 1$, for any $s, t \geq 0$,

$$
\mathbb{E}_{\rho}^{\text {East }}\left[\xi_{0}(0)\left(2 \xi_{t}(y)-1\right) \xi_{t+s}(0)\right]>0,
$$

then $\kappa_{\rho}<0$.

Thank you for your attention.

