# Random walks on the East model

#### Oriane Blondel

CNRS; Université Lyon 1 Claude Bernard



Warwick, January 2016

j.w. L. Avena and A. Faggionato

#### East model

Markov process  $(\xi_t)_{t\in\mathbb{R}_+}$  on  $\{0,1\}^{\mathbb{Z}}$ .  $ho\in(0,1)$  density parameter.

At site x,  $\begin{cases} 0 & \xrightarrow{\rho} & 1 \\ 1 & \xrightarrow{1-\rho} & 0 \end{cases} \xrightarrow{if} x+1 \text{ (the East neighbor of x) is empty.} \end{cases}$ 

$$L_E f(\xi) = \sum_{x} (1 - \xi(x+1)) \big( \rho(1 - \xi(x)) + (1 - \rho)\xi(x) \big) \big[ f(\xi^x) - f(\xi) \big]$$



O. Blondel RW on East

#### A few properties of the East model

- Reversible w.r.t.  $\mu := Ber(\rho)^{\otimes \mathbb{Z}}$ .
- ► Mixing in  $L^2(\mu)$  [Aldous-Diaconis '00]:  $\forall \rho \in (0, 1), \exists \gamma > 0 \text{ s.t. } \forall f, g \in L^2(\mu)$

 $|\mathbb{E}_{\mu}\left[f(\eta_0)g(\eta_t)\right] - \mu(f)\mu(g)| \leq C(f,g)e^{-\gamma t}.$ 

#### A few properties of the East model

- Reversible w.r.t.  $\mu := Ber(\rho)^{\otimes \mathbb{Z}}$ .
- ▶ Mixing in  $L^2(\mu)$  [Aldous-Diaconis '00]:  $\forall \rho \in (0, 1), \exists \gamma > 0 \text{ s.t. } \forall f, g \in L^2(\mu)$

$$|\mathbb{E}_{\mu}\left[f(\eta_0)g(\eta_t)\right] - \mu(f)\mu(g)| \leq C(f,g)e^{-\gamma t}.$$

#### Some non-properties of the East model

Not attractive. No uniform or cone-mixing property.

# RW in (dynamic) random environment

 $(Z_t)_{t\geq 0}$  process on  $\mathbb{Z}^d$  such that

$$\mathbb{P}(Z_{t+dt} = x + y | Z_t = x) = r(y, \tau_x \xi_t) dt,$$

where  $(\xi_t)_{t\geq 0}$  is the random environment, with values in  $\{0,1\}^{\mathbb{Z}^d}$ .

Today:  $\xi$  is the East model.

# RW in (dynamic) random environment

 $(Z_t)_{t\geq 0}$  process on  $\mathbb{Z}^d$  such that

$$\mathbb{P}(Z_{t+dt} = x + y | Z_t = x) = r(y, \tau_x \xi_t) dt,$$

where  $(\xi_t)_{t\geq 0}$  is the random environment, with values in  $\{0,1\}^{\mathbb{Z}^d}$ .

Today:  $\xi$  is the East model.

#### Environment seen from the walker

$$\eta_t := \tau_{Z_t} \xi_t.$$

has generator

$$Lf(\eta) = L_E f(\eta) + \sum_{y} r(y, \eta) \left[ f(\tau_y \eta) - f(\eta) \right]$$

Jumps of  $(X_t)_{t\geq 0} \longleftrightarrow$  spatial shifts for  $(\eta_t)_{t\geq 0}$ .  $Z_t$  depends on  $(\xi_s)_{s\leq t}$ .

#### Random walks

X (unperturbed walker) and  $X^{(\epsilon)}$  (perturbed walker) with continuous rates  $r(y, \eta), r_{\epsilon}(y, \eta) \ge 0$  such that

$$r_{\epsilon}(y,\eta) = r(y,\eta) + \hat{r}_{\epsilon}(y,\eta).$$

•  $\eta_t := \tau_{X_t} \xi_t$  has invariant measure  $\mu$ . In particular:  $(\tau_{X_t} \xi_t)_{t \ge 0}$  has same invariant measure and mixing property as  $(\xi_t)_{t \ge 0}$ .

$$\blacktriangleright 2\epsilon = \|\hat{L}_{\epsilon}\| < \gamma.$$

$$\sum_{y} |y|^4 \sup_{\eta} (r(y,\eta) + |\hat{r}_{\epsilon}(y,\eta)|) < \infty.$$
  
 
$$r(y,\eta) > 0 \Longrightarrow r_{\epsilon}(y,\eta).$$

where

$$L_{\epsilon}f(\eta) = L_{E}f(\eta) + \sum_{y} r_{\epsilon}(y,\eta) [f(\tau_{y}\eta) - f(\eta)]$$
  

$$Lf(\eta) = L_{E}f(\eta) + \sum_{y} r(y,\eta) [f(\tau_{y}\eta) - f(\eta)]$$
  

$$\hat{L}_{\epsilon}f(\eta) = \sum_{y} \hat{r}_{\epsilon}(y,\eta) [f(\tau_{y}\eta) - f(\eta)]$$

#### Examples

Driven ghost probe [Jack-Kelsey-Garrahan-Chandler PRE 2008]

$$egin{aligned} r(\pm 1,\eta) &= (1-\eta(0))(1-\eta(\pm 1)) \ r_\epsilon(\pm 1,\eta) &= (1-\eta(0))(1-\eta(\pm 1)) ilde{r}_\epsilon(\pm 1), \end{aligned}$$
 where  $ilde{r}_\epsilon(1) &= 2/(1+e^{-\epsilon}) = e^{\epsilon} ilde{r}_\epsilon(-1).$ 

#### Examples

#### $\epsilon$ -RW

For  $\epsilon \in (0, 1/2)$ , jump rates given by



N.B.: In the pictures,  $p = 1/2 + \epsilon$ .



#### General results

#### Theorem

1. The process seen from the walker  $\eta_t^{(\epsilon)} = \tau_{X_t^{(\epsilon)}} \xi_t$ , started from  $\nu \ll \mu$ , converges to an ergodic invariant measure  $\mu_{\epsilon}$  such that  $\mu_{\epsilon} \sim \mu$  and for all  $f \in L^2(\mu)$ 

$$\mu_{\epsilon}(f) = \mu(f) + \sum_{n=0}^{\infty} \int_0^{\infty} \mu(\hat{L}_{\epsilon}S^{(n)}(s)f) ds,$$

where  $S^{(0)}(t) = e^{tL}$ ,  $S^{n+1}(t) = \int_0^t S^{(0)}(t-s)\hat{L}_{\epsilon}S^{(n)}(s) ds$ . 2. For all  $f, g \in L^{\infty}(\mu)$ 

$$|\mathbb{E}_{\mu_{\epsilon}}[f(\eta_{0})g(\eta_{t})] - \mu_{\epsilon}(f)\mu_{\epsilon}(g)| \leq C(f,g)e^{-\frac{\gamma-2\epsilon}{2}t}.$$

3. If  $r_{\epsilon}$  have finite range and bounded support,  $\exists \delta > 0$  s.t.

$$|\mu_{\epsilon}(\eta(\mathbf{x})) - \rho| \leq C e^{-\delta|\mathbf{x}|}.$$

# General results

# Theorem

1. The process seen from the walker  $\eta_t^{(\epsilon)} = \tau_{X_t^{(\epsilon)}} \xi_t$ , started from  $\nu \ll \mu$ , converges to an ergodic invariant measure  $\mu_{\epsilon}$  such that  $\mu_{\epsilon} \sim \mu$  and for all  $f \in L^2(\mu)$ 

$$\mu_{\epsilon}(f) = \mu(f) + \sum_{n=0}^{\infty} \int_0^{\infty} \mu(\hat{L}_{\epsilon}S^{(n)}(s)f) ds,$$

where  $S^{(0)}(t) = e^{tL}$ ,  $S^{n+1}(t) = \int_0^t S^{(0)}(t-s)\hat{L}_{\epsilon}S^{(n)}(s) ds$ . 2. For all  $f, g \in L^{\infty}(\mu)$ 

$$|\mathbb{E}_{\mu_{\epsilon}}\left[f(\eta_{0})g(\eta_{t})\right]-\mu_{\epsilon}(f)\mu_{\epsilon}(g)|\leq C(f,g)e^{-\frac{\gamma-2\epsilon}{2}t}.$$

3. If  $r_{\epsilon}$  have finite range and bounded support,  $\exists \delta > 0 \text{ s.t.}$ 

$$|\mu_{\epsilon}(\eta(\mathbf{x})) - \rho| \leq C e^{-\delta|\mathbf{x}|}$$

N.B.: Point 1 proved in [Komorowski-Olla '05] when  $d\nu/d\mu \in L^2(\mu)$ , via a series expansion of the densities rather than semigroups. Perturbation  $\hat{L}_{\epsilon}$  can be unbounded, should satisfy a sector condition.

# General results

Theorem

1. LLN.

$$rac{1}{t}X_t^{(\epsilon)} \stackrel{}{\underset{t 
ightarrow \infty}{\longrightarrow}} v(\epsilon)$$

2. Invariance principle.

$$\frac{X_{nt}^{(\epsilon)}-v(\epsilon)nt}{\sqrt{n}}\rightarrow\sqrt{2D_{\epsilon}}B_{t},$$

3. If the environment seen from the unperturbed walker  $(\eta_t)_{t\geq 0}$  is reversible w.r.t.  $\mu$ ,  $D_{\epsilon} > 0$  for  $\epsilon$  small enough.

#### More on the $\epsilon$ -RW

Theorem

1. If  $\epsilon > 0$  small enough,  $\mu_{\epsilon}(\eta(1)) < \rho < \mu_{\epsilon}(\eta(-1))$  (and the reverse if  $\epsilon > 0$ ).



Numerics by P. Thomann.

2.  $v(\epsilon) = 2\epsilon(2\rho - 1) + \epsilon^3 \kappa_{\rho} + O(\epsilon^5)$ . In particular, if  $\rho \neq 1/2$ ,  $|\epsilon| \neq 0$  small enough,  $\operatorname{sgn}(v(\epsilon)) = \operatorname{sgn}(\epsilon(2\rho - 1))$  (the sign of the speed is given by the dominating type of site in the environment).

What if 
$$\rho = 1/2$$
?



#### Speed as function of p in east and rho 0.5

Numerics by P. Thomann.

# More on the speed $v(\epsilon)$

#### Conjecture

If  $\rho = 1/2$ ,  $\epsilon \cdot v(\epsilon) < 0$ . (Weaker:  $\kappa_{1/2} < 0$ .)

A consequence of the orientation choice?

# More on the speed $v(\epsilon)$

# Conjecture

If  $\rho = 1/2$ ,  $\epsilon \cdot v(\epsilon) < 0$ . (Weaker:  $\kappa_{1/2} < 0$ .)

A consequence of the orientation choice?

Theorem If  $2\epsilon < \gamma$ ,

$$v(-\epsilon) = -v(\epsilon).$$

## More on the speed $v(\epsilon)$

Conjecture

If  $\rho = 1/2$ ,  $\epsilon \cdot v(\epsilon) < 0$ . (Weaker:  $\kappa_{1/2} < 0$ .)

A consequence of the orientation choice?

Theorem If  $2\epsilon < \gamma$ ,

$$v(-\epsilon) = -v(\epsilon).$$

In particular,

$$v_{\text{East}}(\epsilon) = v_{\text{West}}(\epsilon).$$

Rather, a signature of the space-time correlated bubbles. N.B.: The antisymmetry holds for any reversible environment with  $L^2$  exponential mixing.

# A degenerate version of the $\epsilon\text{-}\mathsf{RW}$

"Infinite rates".

 $(Y_t)_{t\geq 0}$  lives on edges of  $\mathbb{Z}$  of type  $\bullet - \bullet$ .

When the particle on the left is erased, jumps to the right-most such edge. When the hole on the right is filled, jumps to the left-most such edge (one step to the right).

 $\limsup Y_t/t < 0$ 

# A degenerate version of the $\epsilon\text{-}\mathsf{RW}$

"Infinite rates".

 $(Y_t)_{t\geq 0}$  lives on edges of  $\mathbb{Z}$  of type  $\bullet - \bullet$ .

When the particle on the left is erased, jumps to the right-most such edge. When the hole on the right is filled, jumps to the left-most such edge (one step to the right).

 $\limsup Y_t/t < 0$ 

# Three-point correlation function

Proposition

If for any  $y \ge 1$ , for any  $s, t \ge 0$ ,

$$\mathbb{E}_{\rho}^{\mathrm{East}}\big[\xi_0(0)(2\xi_t(y)-1)\xi_{t+s}(0)\big]>0,$$

then  $\kappa_{\rho} < 0$ .

Thank you for your attention.