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Statistical Mechanics Lattice models

Λ qσ(i)

Λ = finite square with periodic boundary conditions

σ(i) ∈ {1, . . . , k} spin variable associated with site i

Ω = {1, . . . , k}Λ configuration space

σ ∈ Ω configuration

Equilibrium

• H(σ) = Hamiltonian

• µ(σ) = Gibbs measure =
e−H(σ)/T

Z (T )

• Z (T ) = partition function
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Metropolis dynamics: main features

The dynamics is a discrete time dynamics σ0, σ1, . . . , σt , . . . such that

• transitions increasing the energy are inhibited at T small. Consider
two configurations σ and η differing at a single site

�

H(σ)

H(η)

p(σ, η) ∝ e−[H(η)−H(σ)]/T
R

H(σ)

H(η)

p(σ, η) ∼ 1

• single spin–flip dynamics

• detailed balance (reversibility):

p(σ, η)e−H(σ)/T = e−H(η)/Tp(η, σ)

• detailed balance ⇒ the Gibbs measure µ(σ) is stationary
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Metastable state definition [Manzo, Nardi, Olivieri, Scoppola JSP 2004]

Height of a path ω = ω1, . . . , ωn

Φω = max
i=1,...,n

H(ωi )

q
ω1

q
ω2

q
ω4 q

ω6 q
ω8

6

Φω − H(ω1)

?

qω3 qω5 qω7

Communication height Φ(A,A′) between A,A′ ⊂ Ω

Φ(A,A′) = min
ω:A→A′

Φω

Stability level of σ ∈ Ω

Vσ = Φ(σ, {states at energy smaller than σ})− H(σ)

6
?
Vσ

σ
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Metastable state definition

Let Ωs be the set of the absolute minima of the Hamiltonian.

Define the maximal stability level Γm = max
σ∈Ω\Ωs

Vσ > 0

The set of metastable states is Ωm = {η ∈ Ω \ Ωs : Vη = Γm}.

The set of critical droplets Pc is the set of configurations where the
optimal paths from Ωm to Ωs attain the maximal energy level.

6

?

Γm

Pc

Ωm

Ωs
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Metastable state properties (Olivieri, Scoppola, Ben Arous, Cerf, Catoni,

Trouvé, Manzo, Nardi, Bovier, Eckhoff, Gayrard, Klein, den Hollander, Beltrán, Landim,

Slowick, Bianchi, Gaudillière, Sohier, C., ...)

Let σ ∈ Ωm

• for any ε > 0 we have lim
T→0

Pσ(e(Γm−ε)/T < τΩs < e(Γm+ε)/T ) = 1

• lim
T→0

T logEσ(τΩs) = Γm

• lim
T→0

Pσ(τPc
< τΩs) = 1

Under suitable hypothesis on the structure of the set Ωm ∪ Ωs you can
compute the constant k > 0 such that

Eσ(τΩs) =
1

k
eΓm/T [1 + o(1)]

Note that k is somehow related to the cardinality of the set of critical
droplets (entropy effect).
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Comments (on the general results)

• Not sharp estimates on exit time have been proven first in the case
of Metropolis dynamics and recently generalized also to not
reversible dynamics.

• General results on sharp estimates on exit time are valid under
hypotheses that exclude cases when multiple metastable states are
present.

The case we are interested to:
Ωm

Ωm

Ωs

• In any case finding out the set of metastable states in a concrete
model is often a very difficult task.
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Blume–Capel model

Λ q r rσ(i) • Λ = finite square with periodic boundary conditions

• σ(i)∈{−1, 0,+1} spin variable associated with site i

• h ∈ R magnetic field and λ ∈ R chemical potential

• H(σ) =
∑
〈i j〉

[σ(i)− σ(j)]2 − λ
∑
i

[σ(i)]2 − h
∑
i

σ(i)

Ground states: H(u) = −(h + λ)|Λ|, H(0) = 0, and H(d) = (h − λ)|Λ|

-

6
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@
@@

�
��

u
u

d

0
0

d

u

λ>h>0

not interesting

d

0

u

h>|λ|
interesting

• the candidates d and 0 are metastable states? Can they coexist?

• suppose d is metastable, does 0 have a role in the path from d to u?
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Metropolis dynamics

Let σt the configuration at time t:

• chose at random with uniform probability 1/|Λ| a lattice site and call
it i ;

• chose with probability 1/2 one of the two values in

{−1, 0,+1} \ {σt(i)}

and call it s;

• flip the spin σt(i) to s with probability 1 if the energy decreases and
with probabilty

exp{−∆H/T}

if the energy increases (∆H > 0).
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Monte Carlo sequences: • = −1 • = 0 • = +1

Parameters: Λ = 100× 100, h = 0.1, λ = 0.2, T = 1.25

Parameters: Λ = 100× 100, h = 0.1, λ = 0.02, T = 0.909

In both cases d is the unique metastable state: the transition 0→ u is
much faster than the transition d→ 0.

Part 2 Metastable states in the Blume–Capel model Metastability in presence of a single metastable state page 12/34



Rigorous results

-

6
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λ

h h=λ

h=2λ

• Ωm = {d}

• Pc = u
0 d

with `c = 2−h+λ
h

• Γm = H(Pc)− H(d) ∼ 8
h (does not depend on λ)

• Energy landscape: d
0

u
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• Ωm = {d}

• Pc = 0
d

with `c = 2
h−λ

• Γm = H(Pc)− H(d) ∼ 4
h−λ

• Energy landscape: d
0
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Zero chemical potential Blume–Capel model

Hamiltonian H(σ) =
∑
〈ij〉[σ(i)− σ(j)]2 − h

∑
i σ(i)

Ground states:

-
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u
u

d

0
H(u) = −h|Λ|, H(0) = 0, H(d) = h|Λ|

Guess:
d

0

u

2λ>h>λ>0

d
0

u

h>2λ>0

d

0

u

h>λ=0

Critical droplet: `c = b2/hc+ 1

Γm = H( 0d d

d

d

)− H(d) = H( u0 0

0

0

)− H(0) ∼ 4
h
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Monte Carlo sequences: • = −1 • = 0 • = +1

Parameters: Λ = 100× 100, h = 0.1, λ = 0.02, T = 0.909

Parameters: Λ = 100× 100, h = 0.1, λ = 0, T = 0.909

Result to be proven: d and 0 are both metastable: the transitions 0→ u
and d→ 0 take approximatively the same time.
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Rigorous results

We prove the model dependent results:

1. Ωs = {u}

2. Γm = maxσ∈Ω\Ωs Vσ = H( 0d d

d

d

)− H(d) ≡ Γ

3. Ωm = {η ∈ Ω \ Ωs : Vη = Γm} = {d, 0}
4. Pc = 0 d (critical droplet between d and 0)

5. Qc = u 0 (critical droplet between 0 and u)

Then we get that for any σ ∈ Ωm

• for any ε > 0 we have lim
T→0

Pσ(e(Γ−ε)/T < τu < e(Γ+ε)/T ) = 1

• lim
T→0

T logEσ(τu) = Γ

• lim
T→0

Pd(τPc
< τu) = 1 and lim

T→0
P0(τQc

< τu) = 1

Part 2 Metastable states in the Blume–Capel model Metastability in presence of multiple metastable states page 17/34



Lemma (finding out the metastable states)

Assume A ⊂ Ω \ Ωs and a ∈ R are such that

Φ(η,Ωs)− H(η) = a for any η ∈ A

and

Φ(σ,Ωs)− H(σ) < a for any σ ∈ Ω \ (A ∪ Ωs) (recurrence)

Then
Γm = a and Ωm = A

where (recall) Γm = max
σ∈Ω\Ωs

Vσ.
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Proof of some of the model dependent ingredients

To prove the model dependent inputs

Γm = maxσ∈Ω\Ωs Vσ = H( 0d d

d

d

)− H(d) ≡ Γ

and

Ωm = {η ∈ Ω \ Ωs : Vη = Γm} = {d, 0}

we have to prove the following:

• Φ(d,u)− H(d) = Γ

• Φ(0,u)− H(0) = Γ

• Φ(σ,u)− H(σ) < Γ for all σ ∈ Ω \ {d, 0,u} (recurrence)

Recurrence is not very difficult but terribly boring. In the sequel I sketch
the proof of the first of the three conditions listed above. The second one
is similar.
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Minmax: upper bound

Find a path connecting d to u attaining
its highest energy level at Pc

}
⇒ Φ(d,u) ≤ H(Pc)
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−h

q
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�
�
q q q q

`c

`c−1

�
�
�
�
q Pc

q q q
`c
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�
�
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�
q

2−h
−h

Then the path goes down to 0 and the from 0 to u in a similar fashion a
plus droplet is nucleated inside the sea of zeros.
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Minmax: lower bound

Prove that all the paths connecting d to u
attain an energy level greater than
or equal to H(Pc)

}
⇒ Φ(d,u) ≥ H(Pc)

Strategy (serial dynamics): if there exists Ω̄ ⊂ Ω
such that

• Pc ∈ Ω̄

• all the paths connecting d to u necessarily
pass through Ω̄

• min
σ∈Ω̄

H(σ) = H(Pc)

Ω

us
dsΩ̄

s
Pc

It than follows that all the paths connecting d to u attain an energy level
greater than or equal to H(Pc).

Remark: with this strategy you do not get the model dependent input 4,
namely, you do not prove that the maximum along the path is necessarily
attained at Pc. To prove that a deeper investigation is needed.
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Minmax: lower bound

In two state spin systems (e.g. Ising) life is easier: you have to count the
flipped spins. Here you have to count the minus spins that are not
flipped:

Ω̄ = set of configurations having |Λ| − [(`c − 1)`c + 1] minus spins

Then

• Pc= 0d d

d

d

∈ Ω̄⇐ by definition

• paths from d to u pass through Ω̄ ⇐ single spin–flip dynamics
(great simplification due to the continuity of the dynamics)

In order to complete the proof of the lower bound one has to show that

min
σ∈Ω̄

H(σ) = H(Pc)

The analogous of such a result, although not trivial, is less difficult in two
state spin systems. In our case the proof is much more delicate due to
the presence of three state.
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Sharp estimate

Consider the Ising model with h > 0 small (Bovier and Manzo 2002):

d

u

Pc = u
d

lim
T→0

Ed(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|

For the Blume–Caple model with λ = 0 we expect (same critical
droplets):

d

0

u

lim
T→0

Ed(τ{u,0})

eΓm/T
= lim

T→0

E0(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|

What can be said about Ed(τu)?
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Sharp estimate

Since it can be proven that

lim
T→0

Pd[τu < τ0] = 0

We expect that the time for the transition d→ u is the sum of the time
for the transitions d→ 0 and 0→ u.

Theorem (Landim, Lemire 8 days ago on arXiv)
For the zero chemical potential Blume–Capel model for h small we have
that

lim
T→0

E0(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|
and lim

T→0

Ed(τu)

eΓm/T
= 2× 3

4(2`c − 1)|Λ|
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Sharp estimate: numerical check

Prefactor = (averaged exit time from d to u)/ exp{Γm/T}

Parameters: Λ = 60× 60, h = 0.8, T = 0.4

Colors for λ: • 0, • 0.001, • 0.01, • 0.02, • 0.04, • 0.06,

Part 2 Metastable states in the Blume–Capel model Sharp estimates on the exit time page 25/34



Sharp estimate: numerical check

Prefactor = (averaged exit time from d to u)/ exp{Γm/T}

Parameters: Λ = 60× 60, h = 0.8, T = 0.27027

Colors for λ: • 0, • 0.01, • 0.02
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Probabilistic Cellular Automata

Λ q0
I qi

• Λ = finite square with periodic boundary conditions

• σ(i) ∈ {1, . . . , k} state variable associated with site i

• Ω = {1, . . . , k}Λ state space, σ ∈ Ω state

• I ⊂ Λ finite

• fσ : {1, . . . , k} → [0, 1] is a probability distribution depending on the
state σ restricted to I

• Θi : Ω→ Ω shifts a configuration so that the site i is mapped to the
origin 0

• Probabilistic Cellular Automaton = Markov chain σ0, σ1, . . . , σt , . . .
on Ω with transition matrix

p(σ, η) =
∏
i∈Λ

fΘiσ(η(i)) ∀σ, η ∈ Ω

Remark: parallel and local character of the evolution; all sites updated at
time t looking at the state at time t − 1.
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Reversible Probabilistic Cellular Automata

Assume Ω = {−1,+1}Λ, I symmetrical with respect to the origin, and

fσ(s) =
1

2

{
1 + s tanh

[ 1

T

(∑
j∈I

σ(j) + h
)]}

for all s ∈ {−1,+1}

where T > 0 and h ∈ R are called temperature and magnetic field.

Reversibility [Grinstein et. al. PRL 1985, Kozlov, Vasiljev Ad. Prob. 1980]:

G (σ) = −h
∑
i∈Λ

σ(i)− T
∑
i∈Λ

log cosh
[ 1

T

( ∑
j∈i+I

σ(j) + h
)]

• detailed balance: p(σ, η)e−G(σ)/T = e−G(η)/Tp(η, σ)

• detailed balance ⇒ the measure exp{−G (σ)/T}/Z (T ) is stationary

Remark (compare to Metropolis): G depends on T ; parallel rule.
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Reversibility [Grinstein et. al. PRL 1985, Kozlov, Vasiljev Ad. Prob. 1980]:

G (σ) = −h
∑
i∈Λ

σ(i)− T
∑
i∈Λ

log cosh
[ 1

T

( ∑
j∈i+I

σ(j) + h
)]

• detailed balance: p(σ, η)e−G(σ)/T = e−G(η)/Tp(η, σ)

• detailed balance ⇒ the measure exp{−G (σ)/T}/Z (T ) is stationary

Remark (compare to Metropolis): G depends on T ; parallel rule.

Part 3 Probabilistic Cellular Automata Definition and examples page 29/34



Two examples

Nearest neighbor model: I = four nearest neighbors of the origin

q qqq 0

I

Cross model: I = four nearest neighbors of the origin plus the origin

q qqq q0
I
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The cross PCA

qq qqq 0

I

Consider the cross PCA model with positive and small mag-
netic field h > 0.

Result:
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and

Γ = H(q) + ∆(q,p)− H(d)
T→0∼ 16

h
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The nearest neighbor PCA

q qqq 0

I

Consider the nearest neighbor PCA model with a positive and
small magnetic field h > 0.

Result: flip–flopping metastable state

+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +

−−−−−
−−−−−
−−−−−
−−−−−
−−−−−

+ + +

+ + +

+ + +

+ +

+ +

− −

− −

− −

− − −

− − −

u d c

Ωs ={u}, Ωm ={d,c}

6

?

Γ

d

c

6

?

Γ

u

Critical droplet in the sea of minuses:
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Γ = H(q) + ∆(q,p)− H(d)
T→0∼ 8

h
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Tuning the self–interaction

PCA nearest neighbor model

q qqq 0

I κ = 0

PCA cross model

q qqq q0
κ = 1

Let I be the set of the four nearest neighbors of the origin. Let

fσ(s) =
1

2

{
1 + s tanh

[ 1

T

(
κσ(0) +

∑
j∈I

σ(j) + h
)]}

for σ ∈ Ω, s ∈ {−1,+1} e κ ∈ [0, 1].

The parameter κ tunes the self–interaction: for κ = 0, 1 we get the
nearest neighbor and the cross PCA models.
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Proof of the general Lemma

Assume for simplicity A = {η} (single metastable state case).

Let σ 6= η and σ 6∈ Ωs, then H(σ) > H(Ωs) implies

Vσ ≤ Φ(σ,Ωs)− H(σ) < a

Since H(η) > H(Ωs) we have

Vη ≤ Φ(η,Ωs)− H(η) = a

By absurdity assume Vη < a:

• there exists σ 6= η such that H(σ) < H(η) and Φ(η, σ)− H(η) < a
• there exists a path ω1 : η → σ such that Φω1 − H(η) < a
• if σ ∈ Ωs we get a contraddiction
• if σ 6∈ Ωs, there exists a path ω2 : σ → Ωs such that

Φω2 − H(σ) < a,
• since Φω1ω2 − H(η) < a we get a contraddiction

Conclusions:

Vη = a,Vσ < a for σ 6= η and σ 6∈ Ωs ⇒ Γm = a
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Lemma

Assume 0 < h < 1, b2/hc not integer, and |Λ| ≥ 49/h4.

Pick σ ∈ Ω̄ and let Nσ be the collection of sites i in Λ such that
σ(i) 6= −1.

Then

1. Nσ is not a nearest neighbor connected subset of Λ winding around
the torous (recall we assumed periodic boundary conditions)

2. if σ ∈ {set of minima of Ω̄} then σ(i) = 0 for all i ∈ Nσ

3. Pc ∈ {set of minima of Ω̄}
4. min

σ∈Ω̄
H(σ) = H(Pc)

Remark: 4 follows from 3 trivially. We have to prove 1 – 3.
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Item 1

Pick σ ∈ Ω̄ and let Nσ be the collection of sites i in Λ such that
σ(i) 6= −1. Then Nσ does not wind around the torous.

Proof. Since h < 1

|Nσ| = `c(`c − 1) + 1 ≤
(2

h
+ 1
)2

h
+ 1 ≤ 7

h2

The statement follows since we assumed that |Λ| is finite but large
enough with respect to 1/h. More precisely we assumed |Λ| ≥ 49/h4.
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Item 2

Pick σ ∈ Ω̄ and let Nσ be the collection of sites i in Λ such that
σ(i) 6= −1. If σ ∈ {set of minima of Ω̄} then σ(i) = 0 for all i ∈ Nσ.

Proof. Pick σ ∈ Ω̄ and recall H(σ) =
∑
〈ij〉

[σ(i)− σ(j)]2 − h
∑
i

σ(i).

−
−
−
−
−
−
−

−
−
−
−
−
−
−

−−−−−−−

−−−−−−−

−
+
+
0
−

0
−
+
+
−

0
−
−
−
−

0
−
+
+
−

−
−
0
0
− Let σ′ ∈ Ω̄ obtained by flipping +→ 0 in σ. Then

H(σ′)− H(σ) = rh−3`−m ≤ rh − (`+ m)

The + unit squares form a polyomino whose perimeter
is equal to `+ m and whose area is r .

By general polyomino properties we have that (`+ m)2 ≥ 16r . Hence

H(σ′)− H(σ) ≤ rh −
√
rThen

• H(σ′)− H(σ) ≤ 0⇐=
√
r < 4/h

•
√
r < 4/h⇐= r ≤ `c(`c − 1) + 1 < 7/h2
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Item 3

Pick σ ∈ Ω̄ and let Nσ be the collection of sites i in Λ such that
σ(i) 6= −1. Then Pc ∈ set of minima of Ω̄.

Proof. Pick σ ∈ {set of minima of Ω̄}.
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0
−
0
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−
−
0
0
− Recall H(σ) =

∑
〈ij〉

[σ(i)− σ(j)]2 − h
∑
i

σ(i), then

H(σ)− H(u) = perimeter of the polyomino
−h[`c(`c − 1) + 1]

Hence the configurations in the set of minima of Ω̄ are such that the
zeros form a polyomino of area `c(`c − 1) + 1 and having minimal
perimeter.

From general results on polyominoes we have that the configuration Pc is
an example of such (minimal perimeter) configurations.

Remark: the configuration Pc is not the unique perimeter minimizer =⇒
we do not have the escape mechanism statement for free!!!!
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