

Exit time in presence of multiple metastable states

Emilio N.M. Cirillo

Dipartimento Scienze di Base e Applicate per l'Ingegneria Sapienza Università di Roma

Joint work with

- F.R. Nardi, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
- C. Spitoni, Department of Mathematics, Utrecht, The Netherlands
- E. Olivieri, Dipartimento di Matematica, Roma Tor Vergata, Italy

Warwick - January 2016

Summary: first part

Metastable states in Statistical Mechanics models Statistical Mechanics lattice models Definition of metastable states Properties of metastable states

Metastable states in the Blume-Capel model

Probabilistic Cellular Automata

Statistical Mechanics Lattice models

- $\Lambda = \text{finite square with periodic boundary conditions}$ $\sigma(i) \in \{1, \dots, k\} \text{ spin variable associated with site } i$ $\Omega = \{1, \dots, k\}^{\Lambda} \text{ configuration space}$
- $\sigma \in \Omega$ configuration

Statistical Mechanics Lattice models

 $\Lambda = \text{finite square with periodic boundary conditions}$ $\sigma(i) \in \{1, \dots, k\} \text{ spin variable associated with site } i$ $\Omega = \{1, \dots, k\}^{\Lambda} \text{ configuration space}$ $\sigma \in \Omega \text{ configuration}$

Equilibrium

•
$$\mu(\sigma) = \text{Gibbs measure} = \frac{e^{-H(\sigma)/T}}{Z(T)}$$

• Z(T) = partition function

Metropolis dynamics: main features

The dynamics is a discrete time dynamics $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$ such that

• transitions increasing the energy are inhibited at T small. Consider two configurations σ and η differing at a single site

- single spin–flip dynamics
- detailed balance (reversibility):

$$p(\sigma,\eta)e^{-H(\sigma)/T} = e^{-H(\eta)/T}p(\eta,\sigma)$$

• detailed balance \Rightarrow the Gibbs measure $\mu(\sigma)$ is stationary

Metastable state definition [Manzo, Nardi, Olivieri, Scoppola JSP 2004]

Height of a path $\omega = \omega_1, \ldots, \omega_n$

$$\Phi_{\omega} = \max_{i=1,\ldots,n} H(\omega_i)$$

Metastable state definition [Manzo, Nardi, Olivieri, Scoppola JSP 2004]

Height of a path
$$\omega = \omega_1, \ldots, \omega_n$$

$$\Phi_{\omega} = \max_{i=1,\ldots,n} H(\omega_i)$$

Communication height $\Phi(A, A')$ between $A, A' \subset \Omega$

$$\Phi(A,A') = \min_{\omega:A\to A'} \Phi_{\omega}$$

Metastable state definition [Manzo, Nardi, Olivieri, Scoppola JSP 2004]

 ω_3

Height of a path
$$\omega = \omega_1, \dots, \omega_n$$

$$\Phi_{\omega} = \max_{i=1,\dots,n} H(\omega_i)$$

$$\int_{\omega_1}^{\omega_2} \Phi_{\omega} - H(\omega_1)$$

Communication height $\Phi(A, A')$ between $A, A' \subset \Omega$

$$\Phi(A,A') = \min_{\omega:A \to A'} \Phi_{\omega}$$

Stability level of $\sigma \in \Omega$

 $V_{\sigma} = \Phi(\sigma, \{\text{states at energy smaller than } \sigma\}) - H(\sigma)$

Metastable state definition

Let Ω^s be the set of the absolute minima of the Hamiltonian.

Define the maximal stability level $\Gamma_{\mathrm{m}} = \max_{\sigma \in \Omega \setminus \Omega^{\mathrm{s}}} V_{\sigma} > 0$

The set of **metastable** states is $\Omega^{m} = \{\eta \in \Omega \setminus \Omega^{s} : V_{\eta} = \Gamma_{m}\}.$

The set of critical droplets \mathcal{P}_c is the set of configurations where the optimal paths from Ω^m to Ω^s attain the maximal energy level.

Metastable state properties (Olivieri, Scoppola, Ben Arous, Cerf, Catoni,

Trouvé, Manzo, Nardi, Bovier, Eckhoff, Gayrard, Klein, den Hollander, Beltrán, Landim,

Slowick, Bianchi, Gaudillière, Sohier, C., ...)

Let $\sigma \in \Omega^m$

- for any $\varepsilon > 0$ we have $\lim_{T \to 0} \mathbb{P}_{\sigma}(e^{(\Gamma_{\mathrm{m}} \varepsilon)/T} < \tau_{\Omega^{\mathrm{s}}} < e^{(\Gamma_{\mathrm{m}} + \varepsilon)/T}) = 1$
- $\lim_{T \to 0} T \log \mathbb{E}_{\sigma}(\tau_{\Omega^{s}}) = \Gamma_{m}$
- $\lim_{T o 0} \mathbb{P}_{\sigma}(au_{\mathcal{P}_{c}} < au_{\Omega^{s}}) = 1$

Under suitable hypothesis on the structure of the set $\Omega^m\cup\Omega^s$ you can compute the constant k>0 such that

$$\mathbb{E}_{\sigma}(au_{\Omega^{\mathrm{s}}}) = rac{1}{k} e^{\Gamma_{\mathrm{m}}/T} [1+o(1)]$$

Note that k is somehow related to the cardinality of the set of critical droplets (entropy effect).

Comments (on the general results)

- Not sharp estimates on exit time have been proven first in the case of Metropolis dynamics and recently generalized also to not reversible dynamics.
- General results on sharp estimates on exit time are valid under hypotheses that exclude cases when multiple metastable states are present.

The case we are interested to:

• In any case finding out the set of metastable states in a concrete model is often a very difficult task.

Summary: second part

Metastable states in Statistical Mechanics models

Metastable states in the Blume-Capel model

The Blume–Capel model Metastability in presence of a single metastable state Metastability in presence of multiple metastable states Sketch of the proof Sharp estimates on the exit time

Probabilistic Cellular Automata

Blume-Capel model

- $\Lambda=$ finite square with periodic boundary conditions
- $\sigma(i) \!\in\! \{-1,0,+1\}$ spin variable associated with site i
- $h \in \mathbb{R}$ magnetic field and $\lambda \in \mathbb{R}$ chemical potential

•
$$H(\sigma) = \sum_{\langle ij \rangle} [\sigma(i) - \sigma(j)]^2 - \lambda \sum_i [\sigma(i)]^2 - h \sum_i \sigma(i)$$

Blume-Capel model

- $\Lambda=$ finite square with periodic boundary conditions
- $\sigma(i) \!\in\! \{-1,0,+1\}$ spin variable associated with site i
- $h \in \mathbb{R}$ magnetic field and $\lambda \in \mathbb{R}$ chemical potential

•
$$H(\sigma) = \sum_{\langle ij \rangle} [\sigma(i) - \sigma(j)]^2 - \lambda \sum_i [\sigma(i)]^2 - h \sum_i \sigma(i)$$

Ground states: $H(\mathbf{u}) = -(h + \lambda)|\Lambda|$, $H(\mathbf{0}) = 0$, and $H(\mathbf{d}) = (h - \lambda)|\Lambda|$

Blume-Capel model

- $\Lambda=$ finite square with periodic boundary conditions
- $\sigma(i) \!\in\! \{-1,0,+1\}$ spin variable associated with site i
- $h \in \mathbb{R}$ magnetic field and $\lambda \in \mathbb{R}$ chemical potential

•
$$H(\sigma) = \sum_{\langle ij \rangle} [\sigma(i) - \sigma(j)]^2 - \lambda \sum_i [\sigma(i)]^2 - h \sum_i \sigma(i)$$

Ground states: $H(\mathbf{u}) = -(h + \lambda)|\Lambda|$, $H(\mathbf{0}) = 0$, and $H(\mathbf{d}) = (h - \lambda)|\Lambda|$

- the candidates d and 0 are metastable states? Can they coexist?
- suppose **d** is metastable, does **0** have a role in the path from **d** to **u**?

Metropolis dynamics

Let σ_t the configuration at time t:

- chose at random with uniform probability 1/|Λ| a lattice site and call it *i*;
- chose with probability 1/2 one of the two values in

$$\{-1,0,+1\}\setminus\{\sigma_t(i)\}$$

and call it s;

• flip the spin $\sigma_t(i)$ to s with probability 1 if the energy decreases and with probability

 $\exp\{-\Delta H/T\}$

if the energy increases ($\Delta H > 0$).

Monte Carlo sequences: $\bullet = -1 \quad \bullet = 0 \quad \bullet = +1$

Parameters: $\Lambda = 100 imes 100$, h = 0.1, $\lambda = 0.2$, T = 1.25

Parameters: $\Lambda = 100 \times 100$, h = 0.1, $\lambda = 0.02$, T = 0.909

In both cases d is the unique metastable state: the transition $0\to u$ is much faster than the transition $d\to 0.$

Rigorous results

 $h=2\lambda$

• $\Omega^{\mathrm{m}} = \{\mathbf{d}\}$

•
$$\mathcal{P}_{c} = \boxed{\mathbf{u}}^{\mathbf{0}} \mathbf{d}$$
 with $\ell_{c} = \frac{2-h+\lambda}{h}$

• $\Gamma_{\rm m} = \mathcal{H}(\mathcal{P}_{\rm c}) - \mathcal{H}(\mathbf{d}) \sim \frac{8}{h}$ (does not depend on λ)

• Energy landscape:

Part 2 | Metastable states in the Blume-Capel model | Metastability in presence of a single metastable state

Rigorous results

• $\Omega^{\mathrm{m}} = \{\mathbf{d}\}$

•
$$\mathcal{P}_{c} = \left[\begin{array}{c} \mathbf{0} \end{array} \right]^{\mathbf{d}}$$
 with $\ell_{c} = \frac{2}{h-\lambda}$

•
$$\Gamma_{\rm m} = H(\mathcal{P}_{\rm c}) - H(\mathbf{d}) \sim \frac{4}{h-\lambda}$$

• Energy landscape:

Zero chemical potential Blume-Capel model

Hamiltonian
$$H(\sigma) = \sum_{\langle ij \rangle} [\sigma(i) - \sigma(j)]^2 - h \sum_i \sigma(i)$$

Ground states:

Critical droplet: $\ell_c = \lfloor 2/h \rfloor + 1$ $\Gamma_m = H(d \bigcirc_d^d d) - H(d) = H(0 \bigcirc_0^u 0) - H(0) \sim \frac{4}{h}$

Monte Carlo sequences: $\bullet = -1 \quad \bullet = 0 \quad \bullet = +1$

Parameters: $\Lambda = 100 \times 100$, h = 0.1, $\lambda = 0.02$, T = 0.909

Parameters: $\Lambda = 100 imes 100$, h = 0.1, $\lambda = 0$, T = 0.909

Result to be proven: d and 0 are both metastable: the transitions $0\to u$ and $d\to 0$ take approximatively the same time.

Rigorous results

We prove the model dependent results:

1.
$$\Omega^{s} = \{\mathbf{u}\}$$

2. $\Gamma_{m} = \max_{\sigma \in \Omega \setminus \Omega^{s}} V_{\sigma} = H(\mathbf{d} \bigcirc_{\mathbf{d}} \mathbf{d}) - H(\mathbf{d}) \equiv \Gamma$
3. $\Omega^{m} = \{\eta \in \Omega \setminus \Omega^{s} : V_{\eta} = \Gamma_{m}\} = \{\mathbf{d}, \mathbf{0}\}$
4. $\mathcal{P}_{c} = \bigcirc_{\mathbf{d}} \mathbf{d}$ (critical droplet between \mathbf{d} and $\mathbf{0}$)
5. $\mathcal{Q}_{c} = \bigcirc_{\mathbf{d}} \mathbf{0}$ (critical droplet between $\mathbf{0}$ and \mathbf{u})

Then we get that for any $\sigma\in\Omega^{\mathrm{m}}$

• for any $\varepsilon > 0$ we have $\lim_{T \to 0} \mathbb{P}_{\sigma}(e^{(\Gamma - \varepsilon)/T} < \tau_{\mathbf{u}} < e^{(\Gamma + \varepsilon)/T}) = 1$

•
$$\lim_{T \to 0} T \log \mathbb{E}_{\sigma}(\tau_{\mathbf{u}}) = \Gamma$$

•
$$\lim_{T \to 0} \mathbb{P}_{\mathbf{d}}(\tau_{\mathcal{P}_c} < \tau_{\mathbf{u}}) = 1$$
 and $\lim_{T \to 0} \mathbb{P}_{\mathbf{0}}(\tau_{\mathcal{Q}_c} < \tau_{\mathbf{u}}) = 1$

Lemma (finding out the metastable states)

Assume $A \subset \Omega \setminus \Omega^{\mathrm{s}}$ and $a \in \mathbb{R}$ are such that

$$\Phi(\eta, \Omega^{\mathrm{s}}) - H(\eta) = a$$
 for any $\eta \in A$

and

 $\Phi(\sigma, \Omega^{s}) - H(\sigma) < a$ for any $\sigma \in \Omega \setminus (A \cup \Omega^{s})$ (recurrence)

Then

$$\Gamma_{\mathrm{m}} = a \quad \mathrm{and} \quad \Omega^{\mathrm{m}} = A$$

where (recall) $\Gamma_{\mathrm{m}} = \max_{\sigma \in \Omega \setminus \Omega^{\mathrm{s}}} V_{\sigma}.$

Proof of some of the model dependent ingredients

To prove the model dependent inputs

$$\Gamma_{\mathrm{m}} = \max_{\sigma \in \Omega \setminus \Omega^{\mathrm{s}}} V_{\sigma} = H(\operatorname{d} \bigcirc_{\operatorname{\mathbf{d}}}^{\operatorname{\mathbf{d}}} \operatorname{d}) - H(\operatorname{\mathbf{d}}) \equiv \Gamma$$

and

$$\Omega^{\mathrm{m}} = \{\eta \in \Omega \setminus \Omega^{\mathrm{s}} : V_{\eta} = \mathsf{\Gamma}_{\mathrm{m}}\} = \{\mathsf{d}, \mathsf{0}\}$$

we have to prove the following:

- $\Phi(\mathbf{d}, \mathbf{u}) H(\mathbf{d}) = \Gamma$
- $\Phi(\mathbf{0}, \mathbf{u}) H(\mathbf{0}) = \Gamma$
- $\Phi(\sigma, \mathbf{u}) H(\sigma) < \Gamma$ for all $\sigma \in \Omega \setminus {\mathbf{d}, \mathbf{0}, \mathbf{u}}$ (recurrence)

Proof of some of the model dependent ingredients

To prove the model dependent inputs

$$\Gamma_{\mathrm{m}} = \max_{\sigma \in \Omega \setminus \Omega^{\mathrm{s}}} V_{\sigma} = H(\operatorname{d} \bigcirc_{\operatorname{\mathbf{d}}}^{\operatorname{\mathbf{d}}} \operatorname{d}) - H(\operatorname{\mathbf{d}}) \equiv \Gamma$$

and

$$\Omega^{\mathrm{m}} = \{\eta \in \Omega \setminus \Omega^{\mathrm{s}} : V_{\eta} = \mathsf{\Gamma}_{\mathrm{m}}\} = \{\mathbf{d}, \mathbf{0}\}$$

we have to prove the following:

- $\Phi(\mathbf{d}, \mathbf{u}) H(\mathbf{d}) = \Gamma$
- $\Phi(\mathbf{0}, \mathbf{u}) H(\mathbf{0}) = \Gamma$
- $\Phi(\sigma, \mathbf{u}) H(\sigma) < \Gamma$ for all $\sigma \in \Omega \setminus \{\mathbf{d}, \mathbf{0}, \mathbf{u}\}$ (recurrence)

Recurrence is not very difficult but terribly boring. In the sequel I sketch the proof of the first of the three conditions listed above. The second one is similar.

Minmax: upper bound

Find a path connecting **d** to **u** attaining its highest energy level at \mathcal{P}_{c} $\Big\} \Rightarrow \Phi(\mathbf{d}, \mathbf{u}) \leq H(\mathcal{P}_{c})$

Minmax: upper bound

Then the path goes down to $\mathbf{0}$ and the from $\mathbf{0}$ to \mathbf{u} in a similar fashion a plus droplet is nucleated inside the sea of zeros.

Minmax: lower bound

Prove that all the paths connecting **d** to **u** attain an energy level greater than or equal to $H(\mathcal{P}_c)$

$$\bigg\} \Rightarrow \Phi(\mathbf{d}, \mathbf{u}) \geq H(\mathcal{P}_{c})$$

Minmax: lower bound

Prove that all the paths connecting \mathbf{d} to \mathbf{u} attain an energy level greater than or equal to $H(\mathcal{P}_{c})$

$$\big\} \Rightarrow \Phi(\mathbf{d}, \mathbf{u}) \geq H(\mathcal{P}_{\mathrm{c}})$$

,

Strategy (serial dynamics): if there exists $\overline{\Omega} \subset \Omega$ such that

- $\mathcal{P}_c \in \overline{\Omega}$
- all the paths connecting d to u necessarily pass through Ω
- $\min_{\sigma\in\bar{\Omega}}H(\sigma)=H(\mathcal{P}_{c})$

It than follows that all the paths connecting \mathbf{d} to \mathbf{u} attain an energy level greater than or equal to $H(\mathcal{P}_{c})$.

Remark: with this strategy you do not get the model dependent input 4, namely, you do not prove that the maximum along the path is necessarily attained at \mathcal{P}_{c} . To prove that a deeper investigation is needed.

Minmax: lower bound

d

In two state spin systems (e.g. Ising) life is easier: you have to count the flipped spins. Here you have to count the minus spins that are not flipped:

 $\bar{\Omega}=~{\rm set}$ of configurations having $~|\Lambda|-[(\ell_{\rm c}-1)\ell_{\rm c}+1]$ minus spins

Then

•
$$\mathcal{P}_c = d \bigcirc \exists d \in \bar{\Omega} \Leftarrow by$$
 definition

• paths from **d** to **u** pass through $\overline{\Omega} \leftarrow$ single spin-flip dynamics (great simplification due to the continuity of the dynamics)

In order to complete the proof of the lower bound one has to show that

$$\min_{\sigma\in\bar{\Omega}}H(\sigma)=H(\mathcal{P}_{\rm c})$$

The analogous of such a result, although not trivial, is less difficult in two state spin systems. In our case the proof is much more delicate due to the presence of three state.

Sharp estimate

Consider the Ising model with h > 0 small (Bovier and Manzo 2002):

$$\int_{\mathbf{d}} \mathcal{P}_{c} = \left[\mathbf{u} \right]^{\mathbf{d}} \qquad \lim_{T \to 0} \frac{\mathbb{E}_{\mathbf{d}}(\tau_{\mathbf{u}})}{e^{\Gamma_{m}/T}} = \frac{3}{4(2\ell_{c}-1)|\Lambda|}$$

For the Blume–Caple model with $\lambda = 0$ we expect (same critical droplets):

$$\int_{\mathbf{d}} \int_{\mathbf{0}} \lim_{\mathbf{u}} \lim_{\tau \to 0} \frac{\mathbb{E}_{\mathbf{d}}(\tau_{\{\mathbf{u},\mathbf{0}\}})}{e^{\Gamma_{\mathrm{m}}/T}} = \lim_{\tau \to 0} \frac{\mathbb{E}_{\mathbf{0}}(\tau_{\mathbf{u}})}{e^{\Gamma_{\mathrm{m}}/T}} = \frac{3}{4(2\ell_{\mathrm{c}}-1)|\Lambda|}$$

What can be said about $\mathbb{E}_{\mathbf{d}}(\tau_{\mathbf{u}})$?

Sharp estimate

Since it can be proven that

$$\lim_{T\to 0} \mathbb{P}_{\mathbf{d}}[\tau_{\mathbf{u}} < \tau_{\mathbf{0}}] = 0$$

We expect that the time for the transition $d\to u$ is the sum of the time for the transitions $d\to 0$ and $0\to u.$

Sharp estimate

Since it can be proven that

$$\lim_{T\to 0} \mathbb{P}_{\mathbf{d}}[\tau_{\mathbf{u}} < \tau_{\mathbf{0}}] = 0$$

We expect that the time for the transition $d\to u$ is the sum of the time for the transitions $d\to 0$ and $0\to u.$

Theorem (Landim, Lemire 8 days ago on arXiv)

For the zero chemical potential Blume–Capel model for h small we have that

$$\lim_{T \to 0} \frac{\mathbb{E}_{\mathbf{0}}(\tau_{\mathbf{u}})}{e^{\Gamma_{\mathrm{m}}/T}} = \frac{3}{4(2\ell_{\mathrm{c}}-1)|\Lambda|} \quad \text{and} \quad \lim_{T \to 0} \frac{\mathbb{E}_{\mathbf{d}}(\tau_{\mathbf{u}})}{e^{\Gamma_{\mathrm{m}}/T}} = 2 \times \frac{3}{4(2\ell_{\mathrm{c}}-1)|\Lambda|}$$

Sharp estimate: numerical check

$$\label{eq:prefactor} \begin{split} \text{Prefactor} &= (\text{averaged exit time from } \textbf{d} \text{ to } \textbf{u}) / \exp\{\Gamma_{\rm m} / T\} \\ \text{Parameters: } \Lambda &= 60 \times 60, \ h = 0.8, \ T = 0.4 \end{split}$$

Colors for λ : • 0, • 0.001, • 0.01, • 0.02, • 0.04, • 0.06,

Sharp estimate: numerical check

 $\label{eq:prefactor} \mbox{Prefactor} = (\mbox{averaged exit time from } d \mbox{ to } u) / \mbox{exp}\{\Gamma_{\rm m}/T\}$

Parameters: $\Lambda = 60 \times 60$, h = 0.8, T = 0.27027

Colors for λ : • 0, • 0.01, • 0.02

Part 2 | Metastable states in the Blume-Capel model | Sharp estimates on the exit time

Metastable states in Statistical Mechanics models

Metastable states in the Blume-Capel model

Probabilistic Cellular Automata

Definition and examples Results

Probabilistic Cellular Automata

- $\Lambda =$ finite square with periodic boundary conditions
- $\sigma(i) \in \{1, \dots, k\}$ state variable associated with site i

•
$$\Omega = \{1, \ldots, k\}^{\Lambda}$$
 state space, $\sigma \in \Omega$ state

• $I \subset \Lambda$ finite

Probabilistic Cellular Automata

- $\Lambda =$ finite square with periodic boundary conditions
- $\sigma(i) \in \{1, \dots, k\}$ state variable associated with site i

•
$$\Omega = \{1, \ldots, k\}^{\Lambda}$$
 state space, $\sigma \in \Omega$ state

- $I \subset \Lambda$ finite
- $f_{\sigma}: \{1, \ldots, k\} \to [0, 1]$ is a probability distribution depending on the state σ restricted to I
- $\Theta_i : \Omega \to \Omega$ shifts a configuration so that the site *i* is mapped to the origin 0
- Probabilistic Cellular Automaton = Markov chain $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$ on Ω with transition matrix

$$p(\sigma,\eta) = \prod_{i\in\Lambda} f_{\Theta_i\sigma}(\eta(i)) \quad orall \sigma,\eta\in\Omega$$

Remark: parallel and local character of the evolution; all sites updated at time t looking at the state at time t - 1.

Reversible Probabilistic Cellular Automata

Assume $\Omega = \{-1, +1\}^{\Lambda}$, I symmetrical with respect to the origin, and

$$f_{\sigma}(s) = \frac{1}{2} \Big\{ 1 + s \tanh \Big[\frac{1}{T} \Big(\sum_{j \in I} \sigma(j) + h \Big) \Big] \Big\} \quad \text{for all } s \in \{-1, +1\}$$

where T > 0 and $h \in \mathbb{R}$ are called *temperature* and *magnetic field*.

Reversible Probabilistic Cellular Automata

Assume $\Omega = \{-1, +1\}^{\Lambda}$, I symmetrical with respect to the origin, and

$$f_{\sigma}(s) = \frac{1}{2} \Big\{ 1 + s \tanh \Big[\frac{1}{T} \Big(\sum_{j \in I} \sigma(j) + h \Big) \Big] \Big\} \quad \text{for all } s \in \{-1, +1\}$$

where T > 0 and $h \in \mathbb{R}$ are called *temperature* and *magnetic field*.

Reversibility [Grinstein et. al. PRL 1985, Kozlov, Vasiljev Ad. Prob. 1980]:

$$G(\sigma) = -h \sum_{i \in \Lambda} \sigma(i) - T \sum_{i \in \Lambda} \log \cosh \left[\frac{1}{T} \Big(\sum_{j \in i+I} \sigma(j) + h \Big) \right]$$

• detailed balance: $p(\sigma, \eta)e^{-G(\sigma)/T} = e^{-G(\eta)/T}p(\eta, \sigma)$

• detailed balance \Rightarrow the measure $\exp\{-G(\sigma)/T\}/Z(T)$ is stationary

Remark (compare to Metropolis): G depends on T; parallel rule.

Two examples

Nearest neighbor model: I = four nearest neighbors of the origin

Cross model: I = four nearest neighbors of the origin plus the origin

The cross PCA

Consider the cross PCA model with positive and small magnetic field h > 0.

The cross PCA

Consider the cross PCA model with positive and small magnetic field h > 0.

The nearest neighbor PCA

Consider the nearest neighbor PCA model with a positive and small magnetic field h > 0.

The nearest neighbor PCA

Consider the nearest neighbor PCA model with a positive and small magnetic field h > 0.

Critical droplet in the sea of minuses:

$$\begin{array}{c|c} +-+-- \\ -+-+- \\ +-+-- \\ -+-+- \\ \mathbf{q} \end{array} \qquad \begin{array}{c} -+-+ \\ \mathbf{p} \end{array} \qquad \begin{array}{c} -+-+- \\ +-+--+ \\ +-+-- \\ \mathbf{q} \end{array} \qquad \begin{array}{c} -+-+- \\ +-+-- \\ +-+-- \\ \mathbf{q} \end{array} \qquad \begin{array}{c} \ell_{\mathbf{c}} \\ \ell_{\mathbf{c}} \\ -+-+- \\ \mathbf{q} \end{array} \qquad \begin{array}{c} \ell_{\mathbf{c}} \\ \ell_{\mathbf{c}} \\ -+-+- \\ \mathbf{q} \end{array}$$

and

$$\Gamma = H(\mathbf{q}) + \Delta(\mathbf{q}, \mathbf{p}) - H(\mathbf{d}) \overset{T \to 0}{\sim} \frac{8}{h}$$

Tuning the self-interaction

PCA nearest neighbor model

PCA cross model

Let I be the set of the four nearest neighbors of the origin. Let

$$f_{\sigma}(s) = \frac{1}{2} \Big\{ 1 + s \tanh \Big[\frac{1}{T} \Big(\kappa \sigma(0) + \sum_{j \in I} \sigma(j) + h \Big) \Big] \Big\}$$

for $\sigma \in \Omega$, $s \in \{-1, +1\}$ e $\kappa \in [0, 1]$.

The parameter κ tunes the self-interaction: for $\kappa = 0, 1$ we get the nearest neighbor and the cross PCA models.

Close bibliography

- [C., Olivieri JSP 1996] "Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition."
- [C., Nardi JSP 2003] "Metastability for the Ising model with a parallel dynamics."
- [C., Nardi JSP 2013] "Relaxation height in energy landscapes: an application to multiple metastable states."
- [C., Nardi, Spitoni AIMI III 2010] "Competitive nucleation in metastable systems."

[Landim, Lemire 2016] "Metastability of the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field."

[Manzo, Nardi, Olivieri, Scoppola JSP 2004] "On the essential features of metastability: tunnelling time and critical configurations."

Bibliography

- [Bigelis, C., Lebowitz, Speer PRE 1999] "Critical droplets in metastable probabilistic cellular automata."
- [Bovier et. al. CMP 2002] "Metastability and low lying spectra in reversible Markov chains."
- [Cassandro et. al. JSP 1984] "Metastable behavior of stochastic dynamics: A pathwise approach."
- [C., Lebowitz JSP 1998] "Metastability in the two-dimensional Ising model with free boundary conditions."
- [C., Nardi, Spitoni PRE 2008] "Competitive nucleation in reversible Probabilistic Cellular Automata."
- [C., Nardi, Spitoni JSP 2008] "Metastability for reversible probabilistic cellular automata with self-interaction."
- [Dai Pra, Louis, Roelly ESAIM Probab. Statist. 2002] "Stationary measures and phase transition for a class of probabilistic cellular automata."
- [Derrida 1990] "Dynamical phase transition in spin model and automata," Fundamental problem in Statistical Mechanics VII, H. van Beijeren, Editor, Elsevier Science Publisher B.V..

Bibliography

[Grinstein et. al. PRL 1985] "Statistical Mechanics of Probabilistic Cellular Automata."

[Isakov CMP 1984] "Nonanalytic features of the first order phase transition in the Ising model."

[Kozlov, Vasiljev Ad. Prob. 1980] "Reversible Markov chain with local interactions," in "Multicomponent random system."

[Neves, Schonmann CMP 1991] "Critical Droplets and Metastability for a Glauber Dynamics at Very Low Temperatures."

[Olivieri, Scoppola JSP 1995] "Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case,"

[Trouvé Annales IHP section B 1996] "Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms."

Avanzi

Proof of the general Lemma

Assume for simplicity $A = \{\eta\}$ (single metastable state case). Let $\sigma \neq \eta$ and $\sigma \notin \Omega^{s}$, then $H(\sigma) > H(\Omega^{s})$ implies $V_{\sigma} < \Phi(\sigma, \Omega^{s}) - H(\sigma) < a$

Since $H(\eta) > H(\Omega^{s})$ we have

$$V_\eta \leq \Phi(\eta, \Omega^{
m s}) - H(\eta) = a$$

By absurdity assume $V_{\eta} < a$:

- there exists $\sigma \neq \eta$ such that $H(\sigma) < H(\eta)$ and $\Phi(\eta, \sigma) H(\eta) < a$
- there exists a path $\omega^1:\eta
 ightarrow\sigma$ such that $\Phi_{\omega^1}-H(\eta)<a$
- if $\sigma \in \Omega^{\mathrm{s}}$ we get a contraddiction
- if $\sigma \notin \Omega^{s}$, there exists a path $\omega^{2} : \sigma \to \Omega^{s}$ such that $\Phi_{\omega^{2}} H(\sigma) < a$,
- since $\Phi_{\omega^1\omega^2} H(\eta) < a$ we get a contraddiction

Conclusions:

$$V_{\eta} = a, V_{\sigma} < a \text{ for } \sigma \neq \eta \text{ and } \sigma \notin \Omega^{s} \Rightarrow \Gamma_{m} = a$$

Lemma

Assume 0 < h < 1, $\lfloor 2/h \rfloor$ not integer, and $|\Lambda| \ge 49/h^4$.

Pick $\sigma \in \overline{\Omega}$ and let N_{σ} be the collection of sites *i* in Λ such that $\sigma(i) \neq -1$.

Then

- 1. N_{σ} is not a nearest neighbor connected subset of Λ winding around the torous (recall we assumed periodic boundary conditions)
- 2. if $\sigma \in \{ \text{set of minima of } \overline{\Omega} \}$ then $\sigma(i) = 0$ for all $i \in N_{\sigma}$
- 3. $\mathcal{P}_{c} \in \{ \text{set of minima of } \overline{\Omega} \}$
- 4. $\min_{\sigma\in\bar{\Omega}}H(\sigma)=H(\mathcal{P}_{c})$

Remark: 4 follows from 3 trivially. We have to prove 1 - 3.

Item 1

Pick $\sigma \in \overline{\Omega}$ and let N_{σ} be the collection of sites *i* in Λ such that $\sigma(i) \neq -1$. Then N_{σ} does not wind around the torous.

Proof. Since h < 1

$$|N_{\sigma}| = \ell_{\rm c}(\ell_{\rm c}-1) + 1 \le \left(rac{2}{h} + 1
ight)rac{2}{h} + 1 \le rac{7}{h^2}$$

The statement follows since we assumed that $|\Lambda|$ is finite but large enough with respect to 1/h. More precisely we assumed $|\Lambda| \ge 49/h^4$.

Item 2

Pick $\sigma \in \overline{\Omega}$ and let N_{σ} be the collection of sites i in Λ such that $\sigma(i) \neq -1$. If $\sigma \in \{\text{set of minima of } \overline{\Omega}\}$ then $\sigma(i) = 0$ for all $i \in N_{\sigma}$.

By general polyomino properties we have that $(\ell+m)^2\geq 16r.$ Hence

Then $H(\sigma') - H(\sigma) \le rh - \sqrt{r}$ $H(\sigma') - H(\sigma) \le 0 \iff \sqrt{r} < 4/h$ $\sqrt{r} < 4/h \iff r \le \ell_c(\ell_c - 1) + 1 < 7/h^2$

Item 3

Pick $\sigma \in \overline{\Omega}$ and let N_{σ} be the collection of sites *i* in Λ such that $\sigma(i) \neq -1$. Then $\mathcal{P}_{c} \in \text{ set of minima of } \overline{\Omega}$.

Proof. Pick $\sigma \in \{ \text{set of minima of } \overline{\Omega} \}$.

Hence the configurations in the set of minima of $\bar{\Omega}$ are such that the zeros form a polyomino of area $\ell_c(\ell_c-1)+1$ and having minimal perimeter.

From general results on polyominoes we have that the configuration $\mathcal{P}_{\rm c}$ is an example of such (minimal perimeter) configurations.

Remark: the configuration \mathcal{P}_c is not the unique perimeter minimizer \Longrightarrow we do not have the escape mechanism statement for free!!!!