Nucleation phase of condensing zero range process

Johel Beltrán, PUCP - IMCA

Joint work with
C. Landim and M. Jara (IMPA)

- Fix an irreducible Markov chain (S, r)

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.
- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.
- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.
- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{aligned}
& \{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
& \quad \eta \rightarrow \eta^{j k}
\end{aligned}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{aligned}
& \{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
& \quad \eta \rightarrow \eta^{j k}
\end{aligned}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- $g_{i}:\{0,1,2, \ldots\} \rightarrow[0, \infty), i \in S$, according to $\left(m_{i}\right)$
- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- $g_{i}:\{0,1,2, \ldots\} \rightarrow[0, \infty), i \in S$, according to $\left(m_{i}\right)$

$$
g_{i}(n)=m_{i}\left\{1+\frac{b}{n}\right\}
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- $g_{i}:\{0,1,2, \ldots\} \rightarrow[0, \infty), i \in S$, according to $\left(m_{i}\right)$

$$
g_{i}(n)=m_{i}\left\{1+\frac{b}{n}\right\}, \quad\left(\text { but } g_{i}(0)=0\right)
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- $g_{i}:\{0,1,2, \ldots\} \rightarrow[0, \infty), i \in S$, according to $\left(m_{i}\right)$

$$
g_{i}(n)=m_{i}\left\{1+\frac{b}{n}\right\}, \quad\left(\text { but } g_{i}(0)=0\right)
$$

Finally: for each N, we have

$$
\eta^{N}(t), t \geq 0
$$

- Fix an irreducible Markov chain (S, r)

and let $\left(m_{i}\right)_{i \in S}$ be an invariant measure for r.

$$
\begin{gathered}
\{\text { configurations }\}=\left\{\eta=\left(\eta_{i}\right)_{i \in S}: \sum_{i \in S} \eta_{i}=N\right\} \\
\eta \rightarrow \eta^{j k} \text { occurs at rate }\left\{r(j, k) \cdot g_{j}\left(\eta_{j}\right)\right\}
\end{gathered}
$$

- $g_{i}:\{0,1,2, \ldots\} \rightarrow[0, \infty), i \in S$, according to $\left(m_{i}\right)$

$$
g_{i}(n)=m_{i}\left\{1+\frac{b}{n}\right\}, \quad\left(\text { but } g_{i}(0)=0\right)
$$

Finally: for each N, we have

$$
\eta^{N}(t), t \geq 0 \quad \text { (condensing zero range process) }
$$

I. Tunneling:

I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$,
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$.
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=
$$

I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S .
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
- (Landim) For r totally asymmetric and $b>3$.
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
- (Landim) For r totally asymmetric and $b>3$.
II. Nucleation:
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
- (Landim) For r totally asymmetric and $b>3$.
II. Nucleation: We observe $\left\{\eta^{N}\left(t N^{2}\right), t \geq 0\right\},\left(N^{2} \ll N^{b+1}\right)$
I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
- (Landim) For r totally asymmetric and $b>3$.
II. Nucleation: We observe $\left\{\eta^{N}\left(t N^{2}\right), t \geq 0\right\},\left(N^{2} \ll N^{b+1}\right)$ let

$$
U^{N}(t):=\frac{\eta^{N}\left(t N^{2}\right)}{N}, \quad t \geq 0
$$

I. Tunneling: We observe $\left\{\eta^{N}\left(t N^{b+1}\right), t \geq 0\right\}$, let

$$
X^{N}(t)=\text { Position of the tower for } \eta^{N}\left(t N^{b+1}\right)
$$

Conjecture

Suppose $b>1$. Then $X^{N}(t)$ converges in law to a Markov chain $X(t)$ with transition rates

$$
q(j, k):=C(b) \cdot \tilde{r}(j, k), \quad j, k \in S
$$

where \tilde{r} is the trace of r on $\{j, k\}$.
(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and $b>1$.
- (Landim) For r totally asymmetric and $b>3$.
II. Nucleation: We observe $\left\{\eta^{N}\left(t N^{2}\right), t \geq 0\right\},\left(N^{2} \ll N^{b+1}\right)$ let

$$
U^{N}(t):=\frac{\eta^{N}\left(t N^{2}\right)}{N}, \quad t \geq 0
$$

Does $U^{N}(t)$ converge?

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.

Nucleation

$U^{N}(t)$ is a Markov process on

$$
\mathbb{E}:=\left\{u \in \mathbb{R}_{+}^{S}: \sum_{i \in S} u_{i}=1\right\}
$$

Theorem (B., Jara, Landim)

For $b>1, U^{N}$ converges to U. Moreover

- $t \mapsto U(t)$ is continuous.
- $U(t)$ is Feller continuous and satisfies the strong Markov property.
- $U(t)$ satisfies an absorbing property.
- The absorbing time has finite expectation.

Generator \mathcal{L} and \mathcal{D}

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2},

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define
$(\mathcal{L} H)(u)=$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff,

$$
\lim _{u \rightarrow z}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff,

$$
\lim _{u \rightarrow z}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z} \frac{\boldsymbol{v}_{j} \cdot \nabla H(u)}{u_{j}}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z} \frac{\boldsymbol{v}_{j} \cdot \nabla H(u)}{u_{j}}
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z} \frac{\boldsymbol{v}_{j} \cdot \nabla H(u)}{u_{j}} \quad=0
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z} \frac{\boldsymbol{v}_{j} \cdot \nabla H(u)}{u_{j}} \mathbf{1}_{\left\{u_{j}>0\right\}}=0
$$

Generator \mathcal{L} and \mathcal{D}

For $H: \mathbb{E} \rightarrow \mathbb{R}$ in C^{2}, we define

$$
(\mathcal{L} H)(u)=\mathbf{b}(u) \cdot \nabla H(u)+\frac{1}{2} \sum_{j, k \in S} \mathbf{a}_{j, k} \partial_{j} \partial_{k} H(u)
$$

where

$$
\mathbf{a}_{j, k}=\left\langle\mathbf{e}_{j},-\mathfrak{L}_{r} \mathbf{e}_{k}\right\rangle_{m} \quad \text { and } \quad \mathbf{b}(u)=b \sum_{j}\left(\frac{m_{j}}{u_{j}}\right) \boldsymbol{v}_{j}
$$

Given $H \in C^{2}(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_{j}=0$.

$$
\lim _{u \rightarrow z} \frac{\boldsymbol{v}_{j} \cdot \nabla H(u)}{u_{j}} \mathbf{1}_{\left\{u_{j}>0\right\}}=0
$$

For $H \in \mathcal{D}$ we have $\mathcal{L} H: \mathbb{E} \rightarrow \mathbb{R}$ is continuous.

Definition of U

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem,

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$$
\hat{\mathcal{L}} \text { corresponds to }(\hat{\mathbf{b}}, \hat{\mathbf{a}}),
$$

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$-martingale problem, i.e.
Given a starting point $u \in \mathbb{E}, U(\cdot)$ is the unique (in law) process such that $U(0)=u$ and

$$
H(U(t))-\int_{0}^{t}(\mathcal{L} H)(U(t)) d t, \quad t \geq 0
$$

is a martingale for all $H \in \mathcal{D}$.
We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$-martingale problem.

$\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r
$(\hat{r}$ is the trace of r on $\{1,2,4\} \subset S$).

The diffusion process on \mathbb{E} :

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}),

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N}

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L}

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

$$
\nu(u, \cdot) \quad(\text { for } U)
$$

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

The diffusion process on \mathbb{E} :

- For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_{N}(u, \cdot) \rightarrow \nu(u, \cdot)$?

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_{N}(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_{N}(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

- A description of nucleation.

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_{N}(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

- A description of nucleation.
- Tunneling for the general (non-reversible) condensing zero-range process.

The diffusion process on \mathbb{E} :

- For more general (\mathbf{b}, \mathbf{a}), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_{N} does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_{N}(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

- A description of nucleation.
- Tunneling for the general (non-reversible) condensing zero-range process.
- What if S is not fixed?

