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o The absorbing time has finite expectation.
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a;r = (e, —Lrer)m and b(u) = bz (#)'Uj
- J
J

(0.1,0)

(1,0,0) (0.0,1)
v2

Given H € C*(E), we say H € D iff, for any z, j such that z; = 0.
lim 22 VH(u)

U—>z ’U,j

1{uj>0} = 0.

For H € D we have LH : E — R is continuous.
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L corresponds to (b,a), where (b,a)
uses 7 instead of r
(7 is the trace of r on {1,2,4} C 9).
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e What about the harmonic measures? vy (u,-) = v(u,-)?

Condensing zero-range process

o A description of nucleation.

o Tunneling for the general (non-reversible) condensing zero-range process.
e What if S is not fixed?
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