Nucleation phase of condensing zero range process

Johel Beltrán, PUCP - IMCA

Joint work with C. Landim and M. Jara (IMPA)

æ

イロト イヨト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト ・ヨ

and let $(m_i)_{i \in S}$ be an invariant measure for r.

and let $(m_i)_{i \in S}$ be an invariant measure for r.

and let $(m_i)_{i \in S}$ be an invariant measure for r.

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

(日) (四) (注) (注) (注) (注) (注)

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

 η

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

 $\eta
ightarrow \eta^{jk}$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

 $\eta
ightarrow \eta^{jk}$

(日) (四) (注) (注) (注) (注) (注)

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\{r(j,k) \cdot g_j(\eta_j)\}$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\{r(j,k) \cdot g_j(\eta_j)\}$

• $g_i : \{0, 1, 2, ...\} \to [0, \infty), i \in S$, according to (m_i)

《曰》 《卽》 《臣》 《臣》

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\{r(j,k) \cdot g_j(\eta_j)\}$

• $g_i : \{0, 1, 2, \dots\} \to [0, \infty), i \in S$, according to (m_i) $g_i(n) = m_i \left\{1 + \frac{b}{n}\right\},$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\{r(j,k) \cdot g_j(\eta_j)\}$

• $g_i : \{0, 1, 2, \dots\} \to [0, \infty), i \in S$, according to (m_i) $g_i(n) = m_i \left\{ 1 + \frac{b}{n} \right\}, \quad (\text{but } g_i(0) = 0).$

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\left\{ r(j,k) \cdot g_j(\eta_j) \right\}$

•
$$g_i : \{0, 1, 2, ...\} \to [0, \infty), i \in S$$
, according to (m_i)
 $g_i(n) = m_i \left\{ 1 + \frac{b}{n} \right\}, \qquad (\text{but } g_i(0) = 0).$

Finally: for each N, we have

$$\eta^N(t)\,,\ t\ge 0$$

Johel Beltrán

电

and let $(m_i)_{i \in S}$ be an invariant measure for r.

$$\{\text{configurations}\} = \left\{\eta = (\eta_i)_{i \in S} : \sum_{i \in S} \eta_i = N\right\}$$

$$\eta \to \eta^{jk}$$
 occurs at rate $\left\{ r(j,k) \cdot g_j(\eta_j) \right\}$

•
$$g_i : \{0, 1, 2, \dots\} \to [0, \infty), \ i \in S$$
, according to (m_i)
 $g_i(n) = m_i \left\{ 1 + \frac{b}{n} \right\}, \qquad (\text{but } g_i(0) = 0).$

Finally: for each N, we have

 $\eta^{N}(t), t \ge 0$ (condensing zero range process)

æ

《曰》 《圖》 《臣》 《臣》

I. Tunneling:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1.

(日) (四) (王) (王) (王)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) :=$$

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k), \qquad j,k \in S$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(日) (四) (王) (王) (王)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

(日) (四) (王) (王) (王)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

• (B., Landim) For (r, m) reversible and b > 1.

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and b > 1.
- (Landim) For r totally asymmetric and b > 3.

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and b > 1.
- (Landim) For r totally asymmetric and b > 3.

II. <u>Nucleation</u>:

(日) (四) (王) (王) (王) (王)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and b > 1.
- (Landim) For r totally asymmetric and b > 3.

II. <u>Nucleation</u>: We observe $\{\eta^N(tN^2), t \ge 0\}, (N^2 \ll N^{b+1})$

(日) (四) (王) (王) (王) (王)

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and b > 1.
- (Landim) For r totally asymmetric and b > 3.

II. <u>Nucleation</u>: We observe $\{\eta^N(tN^2), t \ge 0\}, (N^2 \ll N^{b+1})$ let

$$U^{N}(t) := \frac{\eta^{N}(tN^{2})}{N}, \quad t \ge 0.$$

$$X^{N}(t) =$$
Position of the tower for $\eta^{N}(tN^{b+1})$

Conjecture

Suppose b > 1. Then $X^{N}(t)$ converges in law to a Markov chain X(t) with transition rates

$$q(j,k) := C(\mathbf{b}) \cdot \tilde{r}(j,k) , \qquad j,k \in S .$$

where \tilde{r} is the trace of r on $\{j, k\}$.

(Tool: Martingale problem)

- (B., Landim) For (r, m) reversible and b > 1.
- (Landim) For r totally asymmetric and b > 3.

II. <u>Nucleation</u>: We observe $\{\eta^N(tN^2), t \ge 0\}$, $(N^2 \ll N^{b+1})$ let

$$U^{N}(t) := \frac{\eta^{N}(tN^{2})}{N}, \quad t \ge 0.$$

Does $U^N(t)$ converge?

(ロ) (四) (E) (E) (E) (E)

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

(ロ) (四) (注) (注) (注) (注)

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

For b > 1, U^N converges to U.

Johel Beltrán

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

For b > 1, U^N converges to U. Moreover

• $t \mapsto U(t)$ is continuous.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

For b > 1, U^N converges to U. Moreover

• $t \mapsto U(t)$ is continuous.

• U(t) is Feller continuous and satisfies the strong Markov property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an *absorbing property*.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an absorbing property.

 $U^{N}(t)$ is a Markov process on

$$\mathbb{E} := \left\{ u \in \mathbb{R}^S_+ : \sum_{i \in S} u_i = 1 \right\}$$

Theorem (B., Jara, Landim)

- $t \mapsto U(t)$ is continuous.
- U(t) is Feller continuous and satisfies the strong Markov property.
- U(t) satisfies an *absorbing property*.
- The absorbing time has finite expectation.

Johel Beltrán

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ♡

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 ,

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

 $(\mathcal{L}H)(u) =$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m \quad \text{and} \quad \mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k
angle_m \quad ext{ and } \quad \mathbf{b}(u) = oldsymbol{b} \sum_j \Big(rac{m_j}{u_j} \Big) oldsymbol{v}_j$$

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k
angle_m \quad ext{ and } \quad \mathbf{b}(u) = oldsymbol{b} \sum_j \Big(rac{m_j}{u_j} \Big) oldsymbol{v}_j$$

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k
angle_m \quad ext{ and } \quad \mathbf{b}(u) = oldsymbol{b} \sum_j \Big(rac{m_j}{u_j} \Big) oldsymbol{v}_j$$

<ロ> (四) (四) (三) (三) (三)

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k
angle_m \quad ext{ and } \quad \mathbf{b}(u) = oldsymbol{b} \sum_j \Big(rac{m_j}{u_j} \Big) oldsymbol{v}_j$$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff,

 $\lim_{u \to z}$

•

For $H : \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathfrak{D}$ iff,

 $\lim_{u \to z}$

•

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k
angle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(rac{m_j}{u_j}
ight) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

 $\lim_{u \to z}$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

$$\lim_{u \to z} \frac{\boldsymbol{v}_j \cdot \nabla H(u)}{u_j}$$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

$$\lim_{u \to z} \frac{\boldsymbol{v}_j \cdot \nabla H(u)}{u_j}$$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

$$\lim_{u \to z} \frac{v_j \cdot \nabla H(u)}{u_j} = 0.$$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

$$\lim_{u \to z} \frac{v_j \cdot \nabla H(u)}{u_j} \mathbf{1}_{\{u_j > 0\}} = 0.$$

For $H: \mathbb{E} \to \mathbb{R}$ in C^2 , we define

$$(\mathcal{L}H)(u) = \mathbf{b}(u) \cdot \nabla H(u) + \frac{1}{2} \sum_{j,k \in S} \mathbf{a}_{j,k} \partial_j \partial_k H(u) ,$$

where

$$\mathbf{a}_{j,k} = \langle \mathbf{e}_j, -\mathfrak{L}_r \mathbf{e}_k \rangle_m$$
 and $\mathbf{b}(u) = b \sum_j \left(\frac{m_j}{u_j}\right) v_j$

Given $H \in C^2(\mathbb{E})$, we say $H \in \mathcal{D}$ iff, for any z, j such that $z_j = 0$.

$$\lim_{u \to z} \frac{v_j \cdot \nabla H(u)}{u_j} \mathbf{1}_{\{u_j > 0\}} = 0.$$

For $H \in \mathcal{D}$ we have $\mathcal{L}H : \mathbb{E} \to \mathbb{R}$ is continuous.

・ロト ・四ト ・ヨト ・ヨト

Johel Beltrán

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem,

Definition of ${\cal U}$

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},\,U(\cdot)$ is the unique (in law) process such that U(0)=u

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathfrak{D}$.

イロト イヨト イヨト イヨト

Definition of U

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

・ロト ・四ト ・ヨト ・ヨト

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$,

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

・ロト ・日下 ・ヨト ・ヨト

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

・ロト ・日下 ・ヨト ・ヨト

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

U is the unique solution of the $(\mathcal{L}, \mathcal{D})$ -martingale problem, i.e.

Given a starting point $u\in\mathbb{E},$ $U(\cdot)$ is the unique (in law) process such that U(0)=u and

$$H(U(t)) - \int_0^t (\mathcal{L}H)(U(t))dt , \qquad t \ge 0 ,$$

is a martingale for all $H \in \mathcal{D}$.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for $(\mathcal{L}, \mathcal{D})$ -martingale problem.

 $\hat{\mathcal{L}}$ corresponds to $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$, where $(\hat{\mathbf{b}}, \hat{\mathbf{a}})$ uses \hat{r} instead of r $(\hat{r}$ is <u>the trace</u> of r on $\{1, 2, 4\} \subset S$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For more general (**b**, **a**),

• For more general (**b**, **a**), conditions for the absorbing property.

(日) (四) (코) (코) (코) (코)

 \bullet For more general $(\mathbf{b},\mathbf{a}),$ conditions for the absorbing property.

(日) (四) (코) (코) (코) (코)

 \bullet For more general $(\mathbf{b},\mathbf{a}),$ conditions for the absorbing property.

(日) (四) (코) (코) (코) (코)

 \bullet For more general $(\mathbf{b},\mathbf{a}),$ conditions for the absorbing property.

• What if $b \leq 1$?

<ロ> (四) (四) (三) (三) (三) (三)

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

<ロ> (四) (四) (三) (三) (三)

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

æ

• For more general (\mathbf{b}, \mathbf{a}) , conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

• \mathcal{L}_N

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

• \mathcal{L}_N does not converge to \mathcal{L}

æ

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

• \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)

æ

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

æ

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

æ

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

æ

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures?

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_N(u, \cdot) \rightarrow \nu(u, \cdot)$?

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_N(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

æ

・ロト ・日下 ・ヨト ・ヨト

• For more general (b, a), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_N(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

• A description of nucleation.

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_N(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

- A description of nucleation.
- Tunneling for the general (non-reversible) condensing zero-range process.

• For more general (**b**, **a**), conditions for the absorbing property.

- What if $b \leq 1$?
- Other questions.

The convergence:

- \mathcal{L}_N does not converge to \mathcal{L} (we need a replacement lemma)
- What about the harmonic measures? $\nu_N(u, \cdot) \rightarrow \nu(u, \cdot)$?

Condensing zero-range process

- A description of nucleation.
- Tunneling for the general (non-reversible) condensing zero-range process.
- What if S is not fixed?

《曰》 《圖》 《理》 《理》