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Fix an irreducible Markov chain (S, r)

and let (mi)i∈S be an invariant measure for r.

{configurations} =
{
η = (ηi)i∈S :

∑
i∈S

ηi = N
}

η → ηjk occurs at rate
{
r(j, k) · gj(ηj)

}
gi : {0, 1, 2, . . . } → [0,∞), i ∈ S, according to (mi)

gi(n) = mi

{
1 +

b

n

}
,

(but gi(0) = 0) .

Finally: for each N , we have

ηN (t) , t ≥ 0

(condensing zero range process)
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I. Tunneling:

We observe {ηN (tNb+1), t ≥ 0}, let

XN (t) = Position of the tower for ηN (tNb+1)

Conjecture

Suppose b > 1. Then XN (t) converges in law to a Markov chain X(t) with transition
rates

q(j, k) := C(b) · r̃(j, k) , j, k ∈ S .

where r̃ is the trace of r on {j, k}.

(Tool: Martingale problem)

(B., Landim) For (r,m) reversible and b > 1.

(Landim) For r totally asymmetric and b > 3.

II. Nucleation: We observe {ηN (tN2), t ≥ 0}, (N2 � Nb+1) let

UN (t) :=
ηN (tN2)

N
, t ≥ 0 .

Does UN (t) converge?
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Nucleation

UN (t) is a Markov process on

E :=
{
u ∈ RS

+ :
∑
i∈S

ui = 1
}

Theorem (B., Jara, Landim)

For b > 1, UN converges to U . Moreover

t 7→ U(t) is continuous.

U(t) is Feller continuous and satisfies the strong Markov property.

U(t) satisfies an absorbing property.

The absorbing time has finite expectation.
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Generator L and D

For H : E→ R in C2, we define

(LH)(u) = b(u) · ∇H(u) +
1

2

∑
j,k∈S

aj,k∂j∂kH(u) ,

where
aj,k = 〈ej ,−Lrek〉m and b(u) = b

∑
j

(mj

uj

)
vj

Given H ∈ C2(E), we say H ∈ D iff,

for any z, j such that zj = 0

.

lim
u→z

vj · ∇H(u)

uj

1{uj>0}

= 0 .

For H ∈ D we have LH : E→ R is continuous.
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Definition of U

U is the unique solution of the (L,D)-martingale problem, i.e.

Given a starting point u ∈ E, U(·) is the unique (in law) process such that U(0) = u
and

H(U(t))−
∫ t

0

(LH)(U(t))dt , t ≥ 0 ,

is a martingale for all H ∈ D.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for (L,D)-martingale problem.

L̂ corresponds to (b̂, â), where (b̂, â)
uses r̂ instead of r
(r̂ is the trace of r on {1, 2, 4} ⊂ S).
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uses r̂ instead of r
(r̂ is the trace of r on {1, 2, 4} ⊂ S).

Johel Beltrán Nucleation phase 6 / 7



Definition of U

U is the unique solution of the (L,D)-martingale problem, i.e.

Given a starting point u ∈ E, U(·) is the unique (in law) process such that U(0) = u
and

H(U(t))−
∫ t

0

(LH)(U(t))dt , t ≥ 0 ,

is a martingale for all H ∈ D.

We proved

Theorem (B., Jara, Landim)

Existence and uniqueness for (L,D)-martingale problem.

L̂ corresponds to (b̂, â), where (b̂, â)
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The diffusion process on E:

For more general (b,a), conditions for the absorbing property.

What if b ≤ 1?

Other questions.

The convergence:

LN does not converge to L (we need a replacement lemma)

What about the harmonic measures? νN (u, ·)→ ν(u, ·)?
Condensing zero-range process

A description of nucleation.

Tunneling for the general (non-reversible) condensing zero-range process.

What if S is not fixed?
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