Large deviations, metastability, and effective interactions

Robert Jack (University of Bath)
Warwick workshop : metastability / KCMs, Jan 2016

Thanks to:
Peter Sollich (Kings College London)
Juan Garrahan (Nottingham) and David Chandler (Berkeley)
Fred van Wijland, Vivien Lecomte (Paris-Diderot)
Ian Thompson (Bath) and Yael Elmatad (Tapad)

General idea

Consider a stochastic system evolving in time

Focus on large deviations of time-averaged quantities.

General idea

Consider a stochastic system evolving in time

Focus on large deviations of time-averaged quantities.

What kinds of structure appear in the trajectories when we condition on (rare) deviations from the typical steady state behaviour?

General idea

Consider a stochastic system evolving in time

Focus on large deviations of time-averaged quantities.

What kinds of structure appear in the trajectories when we condition on (rare) deviations from the typical steady state behaviour?

Approach today: what can we say about the "effective interactions" that stabilise this rare structure? (cf "driven processes" a la Touchette-Chetrite)

General idea

Approach today: what can we say about the "effective interactions" that stabilise this rare structure? (cf "driven processes" a la Touchette-Chetrite)

Setup

Markov jump process with finite set of configurations $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ (Examples: symmetric simple exclusion process, $1 d$ Ising model)
"Activity" K : number of configuration changes in time interval [$0, t_{\text {obs }}$]

Setup

Markov jump process with finite set of configurations $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ (Examples: symmetric simple exclusion process, $1 d$ Ising model)
"Activity" K : number of configuration changes in time interval [$0, t_{\text {obs }}$]

Take large $t_{\text {obs }}$ and consider trajectories conditioned to non-typical K

Setup

Markov jump process with finite set of configurations $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ (Examples: symmetric simple exclusion process, $1 d$ Ising model)
"Activity" K : number of configuration changes in time interval [$0, t_{\text {obs }}$]

Take large $t_{\text {obs }}$ and consider trajectories conditioned to non-typical K

Hop rate $k=K / t_{\text {obs }}$ obeys a large deviation principle, $p(k) \sim \mathrm{e}^{-t \phi(k)}$

Setup

Markov jump process with finite set of configurations $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ (Examples: symmetric simple exclusion process, $1 d$ Ising model)
"Activity" K : number of configuration changes in time interval [$0, t_{\text {obs }}$]

Take large $t_{\text {obs }}$ and consider trajectories conditioned to non-typical K

Hop rate $k=K / t_{\text {obs }}$ obeys a large deviation principle, $p(k) \sim \mathrm{e}^{-t \phi(k)}$

Conditioned set of trajectories can be described* by "auxiliary" (driven) process with "effective interactions"
(* Terms and conditions apply)
[RML Evans 2003, Maes \& Netocny 2008, RLJ \& Sollich 2010, Touchette \& Chetrite 2015]

Master equations...

$p(\mathcal{C}, t)$: probability that the system is in \mathcal{C} at time t

Master equations...

$p(\mathcal{C}, t)$: probability that the system is in \mathcal{C} at time t
Master equation. . . transition rates W :

$$
\partial_{t} p(\mathcal{C}, t)=\sum_{\mathcal{C}^{\prime} \neq \mathcal{C}}\left[p\left(\mathcal{C}^{\prime}, t\right) W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-p(\mathcal{C}, t) W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)\right]
$$

Master equations...

$p(\mathcal{C}, t)$: probability that the system is in \mathcal{C} at time t
Master equation. . . transition rates W :

$$
\partial_{t} p(\mathcal{C}, t)=\sum_{\mathcal{C}^{\prime} \neq \mathcal{C}}\left[p\left(\mathcal{C}^{\prime}, t\right) W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-p(\mathcal{C}, t) W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)\right]
$$

Write
$\partial_{t} p^{\mathcal{C}}(t)=\mathbb{W}_{0} p^{\mathcal{C}}(t)$
(\mathbb{W}_{0} is the (forward) generator)
($p^{\mathcal{C}}$ is a discrete probability distribution over \mathcal{C})

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.

$$
\partial_{t} P(\mathcal{C}, K, t)=\sum_{\mathcal{C}^{\prime}(\neq \mathcal{C})}\left[P\left(\mathcal{C}^{\prime}, K-1, t\right) W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-P(\mathcal{C}, K, t) W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)\right]
$$

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.

$$
\partial_{t} p^{\mathcal{C}, K}(t)=\mathbb{W}_{1} p^{\mathcal{C}, K}(t)
$$

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.
$\partial_{t} p^{\mathcal{C}, K}(t)=\mathbb{W}_{1} p^{\mathcal{C}, K}(t) \ldots$ but \mathbb{W}_{1} is not a nice object, so...

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.
$\partial_{t} p^{\mathcal{C}, K}(t)=\mathbb{W}_{1} p^{\mathcal{C}, K}(t) \ldots$ but \mathbb{W}_{1} is not a nice object, so...

Transform
$p(\mathcal{C}, s, t)=\sum_{K} p(\mathcal{C}, K, t) \mathrm{e}^{-s K}$

Large deviations...

[Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc]
$p(\mathcal{C}, K, t)$: probability that the system is in \mathcal{C} at time t, having accumulated K hops so far.
$\partial_{t} p^{\mathcal{C}, K}(t)=\mathbb{W}_{1} p^{\mathcal{C}, K}(t) \ldots$ but \mathbb{W}_{1} is not a nice object, so...

Transform
$p(\mathcal{C}, s, t)=\sum_{K} p(\mathcal{C}, K, t) \mathrm{e}^{-s K}$
Finally end up with

$$
\partial_{t} p^{\mathcal{C}}(s, t)=\mathbb{W}(s) p^{\mathcal{C}}(s, t)
$$

\ldots. and $\mathbb{W}(s)$ typically has a simple representation

Auxiliary process

[following RLJ-Sollich 2010]

$$
\partial_{t} p^{\mathcal{C}}(s, t)=\mathbb{W}(s) p^{\mathcal{C}}(s, t)
$$

Auxiliary process

[following RLJ-Sollich 2010]

$$
\partial_{t} p^{\mathcal{C}}(s, t)=\mathbb{W}(s) p^{\mathcal{C}}(s, t)
$$

$\mathbb{W}(s)$ is not a generator because
$\partial_{t} \sum_{\mathcal{C}} p(\mathcal{C}, s, t) \neq 0$ for $s \neq 0$

Auxiliary process

[following RLJ-Sollich 2010]

$$
\partial_{t} p^{\mathcal{C}}(s, t)=\mathbb{W}(s) p^{\mathcal{C}}(s, t)
$$

$\mathbb{W}(s)$ is not a generator because
$\partial_{t} \sum_{\mathcal{C}} p(\mathcal{C}, s, t) \neq 0$ for $s \neq 0$

Define $\mathbb{W}^{\text {aux }}=u^{-1} \mathbb{W}(s) u-\psi(s)$
with
$\psi(s)$: largest eigenvalue of $\mathbb{W}(s)$
u : a diagonal operator (matrix) whose elements are the elements of the dominant left eigenvector of $\mathbb{W}(s)$

Auxiliary process

$$
\partial_{t} p^{\mathcal{C}}(s, t)=\mathbb{W}(s) p^{\mathcal{C}}(s, t)
$$

$\mathbb{W}(s)$ is not a generator because
$\partial_{t} \sum_{\mathcal{C}} p(\mathcal{C}, s, t) \neq 0$ for $s \neq 0$

Define $\mathbb{W}^{\text {aux }}=u^{-1} \mathbb{W}(s) u-\psi(s)$
with
$\psi(s)$: largest eigenvalue of $\mathbb{W}(s)$
u : a diagonal operator (matrix) whose elements are the elements of the dominant left eigenvector of $\mathbb{W}(s)$

Then $\mathbb{W}^{\text {aux }}$ is the (transposed) generator for the auxiliary process [for conditioning $K / t_{\mathrm{obs}} \approx-\psi^{\prime}(s)$]

Auxiliary process

[following RLJ-Sollich 2010]
This is an explicit construction of the auxiliary process that mimics the conditioning

Auxiliary process

[following RLJ-Sollich 2010]
This is an explicit construction of the auxiliary process that mimics the conditioning

The transition rates for the auxiliary process are $W^{\text {aux }}\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)=u(\mathcal{C})^{-1} \mathrm{e}^{-s} \cdot W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right) u\left(\mathcal{C}^{\prime}\right)$

Auxiliary process

[following RLJ-Sollich 2010]
This is an explicit construction of the auxiliary process that mimics the conditioning

The transition rates for the auxiliary process are $W^{\text {aux }}\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)=u(\mathcal{C})^{-1} \mathrm{e}^{-s} \cdot W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right) u\left(\mathcal{C}^{\prime}\right)$

If the original process has detailed balance wrt $p_{0}(\mathcal{C})=\mathrm{e}^{-E(\mathcal{C}) / T}$ then.. auxiliary process has detailed balance with energy function $E^{\text {aux }}(\mathcal{C})=E(\mathcal{C})-T \ln u(\mathcal{C})$

Auxiliary process

[following RLJ-Sollich 2010]
This is an explicit construction of the auxiliary process that mimics the conditioning

The transition rates for the auxiliary process are $W^{\text {aux }}\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)=u(\mathcal{C})^{-1} \mathrm{e}^{-s} \cdot W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right) u\left(\mathcal{C}^{\prime}\right)$

If the original process has detailed balance wrt $p_{0}(\mathcal{C})=\mathrm{e}^{-E(\mathcal{C}) / T}$ then.. auxiliary process has detailed balance with energy function $E^{\text {aux }}(\mathcal{C})=E(\mathcal{C})-T \ln u(\mathcal{C})$

Effective interaction $\Delta V(\mathcal{C}) / T=-2 \ln u(\mathcal{C})$

Auxiliary process

This is an explicit construction of the auxiliary process that mimics the conditioning

The transition rates for the auxiliary process are $W^{\text {aux }}\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)=u(\mathcal{C})^{-1} \mathrm{e}^{-s} \cdot W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right) u\left(\mathcal{C}^{\prime}\right)$

If the original process has detailed balance wrt $p_{0}(\mathcal{C})=\mathrm{e}^{-E(\mathcal{C}) / T}$ then..
auxiliary process has detailed balance with energy function $E^{\text {aux }}(\mathcal{C})=E(\mathcal{C})-T \ln u(\mathcal{C})$

Effective interaction $\Delta V(\mathcal{C}) / T=-2 \ln u(\mathcal{C})$
Generalisation to diffusions and to conditioning on other observables is straightforward

Auxiliary process

[following RLJ-Sollich 2010]
This is an explicit construction of the auxiliary process that mimics the conditioning

The transition rates for the auxiliary process are $W^{\text {aux }}\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)=u(\mathcal{C})^{-1} \mathrm{e}^{-s} \cdot W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right) u\left(\mathcal{C}^{\prime}\right)$

If the original process has detailed balance wrt $p_{0}(\mathcal{C})=\mathrm{e}^{-E(\mathcal{C}) / T}$ then..
auxiliary process has detailed balance with energy function $E^{\text {aux }}(\mathcal{C})=E(\mathcal{C})-T \ln u(\mathcal{C})$

Effective interaction $\Delta V(\mathcal{C}) / T=-2 \ln u(\mathcal{C})$
Generalisation to diffusions and to conditioning on other observables is straightforward
[?? can we do this on infinite lattices ?? see later]

Effective interactions

What can we say about the effective interactions?

Effective interactions

What can we say about the effective interactions?
Some interesting cases:

1. Exclusion processes (SSEP and ASEP)
2. East model
3. 1d Ising model
4. Model sheared systems

Exclusion processes

Particles on periodic $1 d$ lattice, at most one per site, attempt to hop right (or left) with rate $1+a_{0}$ (or $1-a_{0}$).

Joint conditioning on activity (bias s) and current (bias h)

Exclusion processes

Particles on periodic $1 d$ lattice, at most one per site, attempt to hop right (or left) with rate $1+a_{0}$ (or $1-a_{0}$).

Joint conditioning on activity (bias s) and current (bias h)

$$
\begin{aligned}
\mathbb{W}(s, h) & =\sum_{i} \mathrm{e}^{-s+h}\left(1+a_{0}\right) \sigma_{i}^{-} \sigma_{i+1}^{+}+\mathrm{e}^{-s-h}\left(1-a_{0}\right) \sigma_{i}^{+} \sigma_{i+1}^{-} \\
& -2 n_{i}\left(1-n_{i}\right) \\
n_{i} & =\sigma_{i}^{+} \sigma_{i}^{-}
\end{aligned}
$$

Exclusion processes

Particles on periodic $1 d$ lattice, at most one per site, attempt to hop right (or left) with rate $1+a_{0}$ (or $1-a_{0}$). Joint conditioning on activity (bias s) and current (bias h)
[RLJ, Thompson, Sollich, PRL 114, 060601 (2015)]

SSEP

(c)

ASEP

HU : hyperuniform state
PS: "phase-separated" (inhomogeneous) state

Hyperuniformity

[Torquato and Stillinger, 2003-]
In HU states, the variance of the number of points in a region of volume R^{d} scales as

$$
\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim R^{d-1}
$$

In 'normal' equilibrium states
$\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim \kappa R^{d}$
where κ is a compressibility.

Hyperuniformity

[Torquato and Stillinger, 2003-]
In HU states, the variance of the number of points in a region of volume R^{d} scales as

$$
\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim R^{d-1}
$$

or maybe $\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim R^{d-\alpha}, \alpha>0$
In 'normal' equilibrium states
$\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim \kappa R^{d}$
where κ is a compressibility.

Hyperuniformity

[Torquato and Stillinger, 2003-]
In HU states, the variance of the number of points in a region of volume R^{d} scales as

$$
\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim R^{d-1}
$$

or maybe $\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim R^{d-\alpha}, \alpha>0$
In 'normal' equilibrium states

$$
\left\langle\delta n\left(R^{d}\right)^{2}\right\rangle \sim \kappa R^{d}
$$

where κ is a compressibility.
HU states have strong suppression of large-scale density fluctuations...
... jammed particle packings, biological systems, novel photonic materials, galaxies...

Hyperuniformity

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]

Hyperuniformity

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]

Ideal gas

Hyperuniformity

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]

Ideal gas

Hyperuniformity

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]

Ideal gas

Hyperuniform

Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by macroscopic fluctuation theory
[Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002-]

Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by macroscopic fluctuation theory
[Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002-]
For bias to high activity or high current in exclusion processes...

Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by macroscopic fluctuation theory
[Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002-]
For bias to high activity or high current in exclusion processes...
... hyperuniformity comes from very long ranged repulsions in the "auxiliary dynamics"...

Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by macroscopic fluctuation theory
[Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002-]
For bias to high activity or high current in exclusion processes...
... hyperuniformity comes from very long ranged repulsions in the "auxiliary dynamics"...

For extreme bias, can get exact results (Bethe ansatz):
[Schuetz, Simon, Popkov, Lazarescu, 2009-]
Repulsive potential $V(i-j) \sim-\log \sin \frac{\pi(i-j)}{2 L}$
That is, particles on a circle interact by (2d) Coulomb repulsion

"Phase separation"

Hard particles in 1d evolving with Brownian motion (Langevin), conditioned on low activity

Can think of attractive interactions, or Langevin noises with non-zero mean, for particles at the edge of the void

"Phase separation"

[RLJ, Thompson, Sollich, PRL 114, 060601 (2015)]
Hard particles in 1d evolving with Brownian motion (Langevin), conditioned on low activity

Can think of attractive interactions, or Langevin noises with non-zero mean, for particles at the edge of the void

Linear response

[RLJ, Thompson, Sollich, PRL 114, 060601 (2015)]
General result: can obtain effective potential values from "propensities" for activity
$u(\mathcal{C}, s) \propto\left\langle\mathrm{e}^{-s K}\right\rangle_{\mathcal{C}(0)=\mathcal{C}}$
(average over long trajectories starting in \mathcal{C}, need to take care with normalisation)
Simple hydrodynamic argument shows that u-values for phase-separated / hyperuniform configurations have divergent $d u(\mathcal{C}, s) / d s$ as system size $L \rightarrow \infty$.

This comes from a diverging time scale: $\tau_{L} \sim L^{2}$ is the time required for these trajectories to relax to the steady state...

Diverging interaction range linked to diverging length and time scales...

Exclusion processes summary
 [RLJ, Thompson, Sollich, PRL 114, 060601 (2015)]

Long-ranged effective interactions (repulsive or attractive) are generic in conditioned exclusion processes

SSEP

ASEP

The physical origin of the weak-bias instabilities is the diverging hydrodynamic time scale $\tau_{R} \sim R^{2}$.

East model

Site i has occupancy $n_{i} \in\{0,1\}$

East model

Site i has occupancy $n_{i} \in\{0,1\}$
For each site with $n_{i}=1$, with rate 1 , refresh site $i+1$ as

$$
\begin{array}{ll}
n_{i+1}=1, & \text { prob } c \\
n_{i+1}=0, & \text { prob } 1-c
\end{array}
$$

East model

Site i has occupancy $n_{i} \in\{0,1\}$
For each site with $n_{i}=1$, with rate 1 , refresh site $i+1$ as

$$
\begin{array}{ll}
n_{i+1}=1, & \text { prob } c \\
n_{i+1}=0, & \text { prob } 1-c
\end{array}
$$

Simple model for glassy dynamics, stationary state has trivial product structure

East model

Site i has occupancy $n_{i} \in\{0,1\}$
For each site with $n_{i}=1$, with rate 1 , refresh site $i+1$ as

$$
\begin{array}{ll}
n_{i+1}=1, & \text { prob } c \\
n_{i+1}=0, & \text { prob } 1-c
\end{array}
$$

Simple model for glassy dynamics, stationary state has trivial product structure

Relaxation time diverges for small c as

$$
\log \tau \sim a(\log c)^{2}
$$

Hierarchical relaxation mechanism...
[Sollich \& Evans 1999, Aldous \& Diaconis 2002, Toninelli, Martinelli \& others 2007-]

East model : phase transition

$$
K(s) / t=-\psi^{\prime}(s)
$$

As system size $N \rightarrow \infty$, there is a jump in the first derivative of the "free energy" $\psi(s) / N$.

First order dynamical phase transition, accompanied by phase separation in space-time

East model : phase transition

As system size $N \rightarrow \infty$, there derivative of the "free energy"

First order dynamical phase transition, accompanied by phase separation in space-time

East model : phase transition

What happens here?
As system size $N \rightarrow \infty$, there derivative of the "free energy"

First order dynamical phase transition, accompanied by phase separation in space-time

Variational principle

$\psi(s)$ is the largest eigenvalue of $\mathbb{W}(s)$

Variational principle

$\psi(s)$ is the largest eigenvalue of $\mathbb{W}(s)$
If the auxiliary process is time-reversal symmetric, $\mathbb{W}(s)$ can be symmetrised by a similarity transformation

$$
\mathbb{W}^{\text {sym }}(s)=\pi^{-1 / 2} \mathbb{W}(s) \pi^{1 / 2}
$$

is symmetric, where π is a diagonal matrix whose elements are the stationary probabilities.

Variational principle

$\psi(s)$ is the largest eigenvalue of $\mathbb{W}(s)$
If the auxiliary process is time-reversal symmetric, $\mathbb{W}(s)$ can be symmetrised by a similarity transformation

$$
\mathbb{W}^{\text {sym }}(s)=\pi^{-1 / 2} \mathbb{W}(s) \pi^{1 / 2}
$$

is symmetric, where π is a diagonal matrix whose elements are the stationary probabilities.

Hence

$$
\psi(s)=\max _{v} \frac{\langle v| \mathbb{W}^{\text {sym }}(s)|v\rangle}{\langle v \mid v\rangle}
$$

Variational principle

$\psi(s)$ is the largest eigenvalue of $\mathbb{W}(s)$
If the auxiliary process is time-reversal symmetric, $\mathbb{W}(s)$ can be symmetrised by a similarity transformation

$$
\mathbb{W}^{\text {sym }}(s)=\pi^{-1 / 2} \mathbb{W}(s) \pi^{1 / 2}
$$

is symmetric, where π is a diagonal matrix whose elements are the stationary probabilities.

Hence

$$
\psi(s)=\max _{v} \frac{\langle v| \mathbb{W}^{\text {sym }}(s)|v\rangle}{\langle v \mid v\rangle}
$$

Hence $u(\mathcal{C})=\langle\mathcal{C}| \pi^{-1 / 2}\left|v^{*}\right\rangle$ where $\left|v^{*}\right\rangle$ is the maximiser

Variational principle

$\psi(s)$ is the largest eigenvalue of $\mathbb{W}(s)$
If the auxiliary process is time-reversal symmetric, $\mathbb{W}(s)$ can be symmetrised by a similarity transformation

$$
\mathbb{W}^{\text {sym }}(s)=\pi^{-1 / 2} \mathbb{W}(s) \pi^{1 / 2}
$$

is symmetric, where π is a diagonal matrix whose elements are the stationary probabilities.

Hence

$$
\psi(s)=\max _{v} \frac{\langle v| \mathbb{W}^{\text {sym }}(s)|v\rangle}{\langle v \mid v\rangle}
$$

Hence $u(\mathcal{C})=\langle\mathcal{C}| \pi^{-1 / 2}\left|v^{*}\right\rangle$ where $\left|v^{*}\right\rangle$ is the maximiser (Variational problem with 2^{N} d.o.f.)

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
East model, biased to high activity

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
East model, biased to high activity
Variational results using ansatze for effective interactions 1. local multi-spin interactions up to 6 -body
2. interactions dependent on domain-size distribution

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
East model, biased to high activity
Variational results using ansatze for effective interactions 1. local multi-spin interactions up to 6-body
2. interactions dependent on domain-size distribution

Also,
numerical results (exact diagonalisation and transition path sampling)
... and perturbative results for small bias

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
Main results:

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
Main results:

Interactions are long-ranged, (no finite ranged interaction can capture even the first-order response to the bias) can attribute this long range to large time scales for relaxation on large length scale (cf SEP)

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
Main results:

Interactions are long-ranged, (no finite ranged interaction can capture even the first-order response to the bias) can attribute this long range to large time scales for relaxation on large length scale (cf SEP)

Variational ansatze may be good for ψ but not capture structural features

Conditioned East model

[RLJ and Sollich, J Phys A, 2014]
Main results:

Interactions are long-ranged, (no finite ranged interaction can capture even the first-order response to the bias) can attribute this long range to large time scales for relaxation on large length scale (cf SEP)

Variational ansatze may be good for ψ but not capture structural features
hierarchy of responses to bias for small c, mirrors metastable state structure, aging behaviour of model...

Conditioned East model

Summary so far

In East model and exclusion processes, several things go together

Summary so far

In East model and exclusion processes, several things go together

Long time scales (and metastability)

Summary so far

In East model and exclusion processes, several things go together

Long time scales (and metastability)
Long length scales

Summary so far

In East model and exclusion processes, several things go together

Long time scales (and metastability)
Long length scales

Long-ranged effective interactions (not just long-ranged correlations)

Summary so far

In East model and exclusion processes, several things go together

Long time scales (and metastability)
Long length scales

Long-ranged effective interactions
(not just long-ranged correlations)
Also, sometimes, dynamical phase transitions

Summary so far

In East model and exclusion processes, several things go together

Long time scales (and metastability)
Long length scales
Long-ranged effective interactions
(not just long-ranged correlations)
Also, sometimes, dynamical phase transitions
There are good reasons to expect this to be general: (eg perturbative arguments, small spectral gaps...)
... also, plenty of other examples

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time-integrated energy

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time-integrated energy

Can solve this model exactly by free fermions
[see eg RLJ and Sollich, 2010]

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time-integrated energy

Can solve this model exactly by free fermions

Trajectories in $(1+1) d$ space-time are configurations of a $2 d$ Ising model.

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time-integrated energy

Can solve this model exactly by free fermions

Trajectories in $(1+1) d$ space-time are configurations of a $2 d$ Ising model.

For appropriate bias, get ferromagnetic states, even if unconditioned chain has $T \rightarrow \infty$ (!)

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time-integrated energy

Can solve this model exactly by free fermions [see eg RLJ and Sollich, 2010]

Trajectories in $(1+1) d$ space-time are configurations of a $2 d$ Ising model.

For appropriate bias, get ferromagnetic states, even if unconditioned chain has $T \rightarrow \infty$ (!)

Effective interactions clearly long-ranged, also non-Gibbsian.

1d Ising model

Consider 1d Glauber-Ising chain (periodic) conditioned on time

Can
"The traditional solution is to define an infinite-volume Gibbs measure [as] a measure which is a limit. . . of finite-volume Gibbs measures with some chosen Traje boundary conditions"
$2 d$ Is
von Enter, Fernandez, Sokal, J Stat Phys 1993
For appropriate blas, get ferromagnetic states, even it unconditioned chain has $T \rightarrow \infty$ (!)

Effective interactions clearly long-ranged, also non-Gibbsian.

1d Ising model

Consider $1 d$ Glauber-Ising chain (periodic) conditioned on time

Can
"The traditional solution is to define an infinite-volume Gibbs measure [as] a measure which is a limit. . . of finite-volume Gibbs measures with some chosen Traje boundary conditions"
$2 d$ Is
von Enter, Fernandez, Sokal, J Stat Phys 1993
For appropriate dias, get terromagnetic states, even it unconditioned chain has $T \rightarrow \infty$ (!)

Effective interactions clearly long-ranged, also non-Gibbsian.
[Maes, Redig, von Enter, 1999]
(how general is this?)

Final summary

Conditioning stochastic systems to non-typical values of time-integrated observables leads to rich phenomenology

Hyperuniformity, phase separation in space and/or time, dynamical phase transitions, hierarchical responses...

Final summary

Conditioning stochastic systems to non-typical values of time-integrated observables leads to rich phenomenology

Hyperuniformity, phase separation in space and/or time, dynamical phase transitions, hierarchical responses...

These phenomena can be characterised by effective interactions, but these are often different from familiar equilibrium interactions

Long-ranged, non-Gibbsian, absence of dissipation

Final summary

Conditioning stochastic systems to non-typical values of time-integrated observables leads to rich phenomenology

Hyperuniformity, phase separation in space and/or time, dynamical phase transitions, hierarchical responses...

These phenomena can be characterised by effective interactions, but these are often different from familiar equilibrium interactions

Long-ranged, non-Gibbsian, absence of dissipation
Slow degrees of freedom respond most strongly to bias (or conditioning), this can be one origin of long-ranged interactions
[more info: RLJ \& Sollich, EPJE 2015, Touchette and Chetrite arXiv 1506.05291]

