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Setup

Markov jump process with finite set of configurations C,,Cs, ...
(Examples: symmetric simple exclusion process, 1d Ising model)

“Activity” K: number of configuration changes in time
Interval [O, tobs]

Take large t,,s and consider trajectories conditioned to
non-typical K

Hop rate k£ = K /t,,s 0beys a large deviation principle,

Conditioned set of trajectories can be described* by
“auxiliary” (driven) process with “effective interactions”

(* Terms and conditions apply)

[ RML Evans 2003, Maes & Netocny 2008, RLJ & Sollich 2010, Touchette & Chetrite 2015 ]
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Master equations...

p(C,t): probability that the systemisin C at time ¢

Master equation. . . transition rates W

oip(C,t) = > [p(C', )W (C" = C) — p(C, )W (C — C")]
C’'#C

Write
Oep® (1) = Wopt (t)
(W is the (forward) generator)

(p® is a discrete probability distribution over C)
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Large deviations...

[ Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc ]

p(C, K, t): probability that the system is in C at time ¢,
having accumulated K hops so far.

OpC K (1) = Wip© K (¢) ... but Wy is not a nice object, so...

Transform
p(C,s,t) = > . p(C, K, t)e_SK

Finally end up with
Oip©(s,t) = W(s)p©(s,t)
...and W(s) typically has a simple representation
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Auxiliary process

[ following RLJ-Sollich 2010 ]

Oep* (s,t) = W(s)p® (s, t)

W(s) is not a generator because
O: Y op(C,s,t) #0fors #0

Define W2 = 4~ 1W(s)u — 1)(s)
with
Y(s): largest eigenvalue of W(s)

u: a diagonal operator (matrix) whose elements are the
elements of the dominant left eigenvector of W(s)

Then W2"* is the (transposed) generator for the auxiliary
process [for conditioning K /tops =~ —9'(s)]
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Auxiliary process

[ following RLJ-Sollich 2010 ]

This is an explicit construction of the auxiliary process that
mimics the conditioning

The transition rates for the auxiliary process are
Wawx(C — C") =u(C) te™s - W(C — C"u(C)

If the original process has detailed balance wrt
po(C) = e~ F)/T then. ..

auxiliary process has detailed balance with energy
function E2"*(C) = E(C) — T'Inu(C)

Effective interaction AV (C)/T = —21Inu(C)

Generalisation to diffusions and to conditioning on other

observables is straightforward
[ ?°? can we do this on infinite lattices ?? see later |
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Effective Interactions

What can we say about the effective interactions?
Some interesting cases:
1. Exclusion processes (SSEP and ASEP)
2. East model
3. 1d Ising model

4. Model sheared systems
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Wi(s, h) = Ze_8+h(1+a0)0;0,;5r1+e_3_h(1—a0)c7;raz-_+1

— 27%(1 — nz)



Exclusion processes

Particles on periodic 1d lattice, at most one per site,
attempt to hop right (or left) with rate 1 + ag (or 1 — ag).

Joint conditioning on activity (bias s) and current (bias h)
[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

SSEP '

HU: hyperuniform state
PS: “phase-separated” (inhomogeneous) state

ASEP
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Hyperuniformity

[ Torquato and Stillinger, 2003- ]

In HU states, the variance of the number of points
in a region of volume RY scales as
<5n(Rd)2> ~ RA-1
or maybe (6n(R%)?) ~ R¥™ %, o > 0

In ‘normal’ equilibrium states
(dn(RY)?) ~ kR
where k Is a compressibility.

HU states have strong suppression of large-scale
density fluctuations...

... Jammed particle packings, biological systems,
novel photonic materials, galaxies...
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Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by
macroscopic fluctuation theory
[ Bertini, de Sole, D Gabirielli, Jona-Lasinio, Landim, 2002- ]

For bias to high activity or high current in exclusion
processes...

... hyperuniformity comes from very long ranged
repulsions in the “auxiliary dynamics”...

For extreme bias, can get exact results (Bethe ansatz):
[ Schuetz, Simon, Popkov, Lazarescu, 2009- ]

. . . . m(i—j)
Repulsive potential V (i — j) ~ —logsin =57

That is, particles on a circle interact by (2d) Coulomb
repulsion
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[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

Hard particles in 1d evolving with Brownian motion (Langevin),
conditioned on low activity
(a) Ideal gas | (b) Low activity

e —

e !

Can think of attractive interactions, or Langevin noises with
non-zero mean, tor particles at the edge of the void



Linear response

[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]
General result: can obtain effective potential values from
“propensities” for activity
u(c7 S) X <e_SK>C(O):C
(average over long trajectories starting in C, need to take
care with normalisation)

Simple hydrodynamic argument shows that u-values for
phase-separated / hyperuniform configurations have
divergent du(C, s)/ds as system size L. — oc.

This comes from a diverging time scale: 71, ~ L? is the
time required for these trajectories to relax to the steady

state. ..

Diverging interaction range linked to diverging length and
time scales. ..



Exclusion processes summary

[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

Long-ranged effective interactions (repulsive or attractive)
are generic in conditioned exclusion processes

ASEP

The physical origin of the weak-bias instabilities is the
diverging hydrodynamic time scale 7 ~ R?.



East model

Site ¢ has occupancy n; € {0,1}



East model

Site ¢ has occupancy n; € {0,1}
For each site with n; = 1, with rate 1, refresh site : + 1 as

ni+1 = 1, prOb C
n;+1 = 0, prob1 —c



East model

Site ¢ has occupancy n; € {0,1}
For each site with n; = 1, with rate 1, refresh site : + 1 as

ni+1 = 1, prOb C
n;+1 = 0, prob1 —c

Simple model for glassy dynamics, stationary state has trivial
product structure [ Jackle & Kronig 1991, Garrahan & Chandler, 2003- ]



East model

Site ¢ has occupancy n; € {0,1}
For each site with n; = 1, with rate 1, refresh site : + 1 as

ni+1 = 1, prOb C
niy1 = 0, prob 1 —c

Simple model for glassy dynamics, stationary state has trivial
product structure [ Jackle & Kronig 1991, Garrahan & Chandler, 2003- ]
Relaxation time diverges for small c as

log 7 ~ a(log c)?

Hierarchical relaxation mechanism...
[ Sollich & Evans 1999, Aldous & Diaconis 2002, Toninelli, Martinelli & others 2007- ]



East model : phase transition
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K(s)/t = —1'(s)

As system size N — oo, there is a jump in the first
derivative of the “free energy” v (s)/N.

First order dynamical phase transition, accompanied by
phase separation in space-time
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K(s) / Nt

400 800 1200
time

What happens here?

As system size N — oo, there |}
derivative of the “free energy”

[ EImatad and RLJ, 2013 ] §

First order dynamical phase transition, accompanied by
phase separation in space-time
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Variational principle

Y (s) is the largest eigenvalue of W(s)

If the auxiliary process is time-reversal symmetric, W(s)
can be symmetrised by a similarity transformation

WY (s) = 7= 1/2W(s)7r!/?

IS symmetric, where 7 Is a diagonal matrix whose
elements are the stationary probabilities.

Hence L IWSY™ ()|
0(5) = max, 'Wwi )Io)

Hence u(C) = (C|7—2|v*) where |v*) is the maximiser

(Variational problem with 2% d.o.f.)
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Conditioned East model

[ RLJ and Sollich, J Phys A, 2014 ]
East model, biased to high activity

Variational results using ansatze for effective interactions
1. local multi-spin interactions up to 6-body
2. Interactions dependent on domain-size distribution

Also, d=3

numerical results C

(exact diagonalisation D I | I>,< o L

and transition path sampling) I
Cet=3 ,q m =8 >

... and perturbative results for J I I

small bias N I B B B B
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Conditioned East model

[ RLJ and Sollich, J Phys A, 2014 ]
Main results:

Interactions are long-ranged, (no finite ranged interaction
can capture even the first-order response to the bias)
can attribute this long range to large time scales

for relaxation on large length scale (cf SEP)

Variational ansatze may be good
for Y but not capture structural C —>

features J I I
5 B e
T

hierarchy of responses to

bias for small ¢, mirrors Clet=5 | =8 g
metastable state structure, J I I
aging behaviour of model... B e e e e
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Summary so far

In East model and exclusion processes,
several things go together

Long time scales (and metastability)
Long length scales

Long-ranged effective interactions
(not just long-ranged correlations)

Also, sometimes, dynamical phase transitions

There are good reasons to expect this to be general:
(eg perturbative arguments, small spectral gaps...)
... also, plenty of other examples
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1d Ising model

Consider 1d Glauber-Ising chain (periodic) conditioned on
mef e
| “The traditional solution is to define an infinite-volume
Canl  Gibbs measure [as] a measure which is a limit. . . of

| finite-volume Gibbs measures with some chosen
raje} boundary conditions”

2d 5 von Enter, Fernandez, Sokal, J Stat Phys 1993

For appropriate pias, get rerromagnetic states, even i
unconditioned chain has T' — oo (!)

Effective interactions clearly long-ranged, also
non-Gibbsian. [ Maes, Redig, von Enter, 1999 ]

(how general is this?)
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Final summary

Conditioning stochastic systems to non-typical values of
time-integrated observables leads to rich phenomenology

Hyperuniformity, phase separation in space and/or time,
dynamical phase transitions, hierarchical responses...

These phenomena can be characterised by effective
interactions, but these are often different from familiar
equilibrium interactions

Long-ranged, non-Gibbsian, absence of dissipation

Slow degrees of freedom respond most strongly to bias (or
conditioning), this can be one origin of long-ranged
interactions

[ more info: RLJ & Sollich, EPJE 2015, Touchette and Chetrite arXiv 1506.05291 ]



