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(Glass transitions?)
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Take large t
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and consider trajectories conditioned to

non-typical K

“Activity” K: number of configuration changes in time

interval [0, t
obs

]

Hop rate k = K/t
obs

obeys a large deviation principle,
p(k) ⇠ e�t�(k)

[ RML Evans 2003, Maes & Netocny 2008, RLJ & Sollich 2010, Touchette & Chetrite 2015 ]

Markov jump process with finite set of configurations C1, C2, . . .
(Examples: symmetric simple exclusion process, 1d Ising model)

Conditioned set of trajectories can be described

⇤
by

“auxiliary” (driven) process with “effective interactions”

(

⇤
Terms and conditions apply)
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Master equations…

@tp(C, t) =
X

C0 6=C
[p(C0, t)W (C0 ! C)� p(C, t)W (C ! C0)]

Master equation. . . transition rates W :

p(C, t): probability that the system is in C at time t

Write
@tpC(t) = W0pC(t)

(pC is a discrete probability distribution over C)

(W0 is the (forward) generator)
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Large deviations…
p(C,K, t): probability that the system is in C at time t,
having accumulated K hops so far.

. . . but W1 is not a nice object, so. . .

Finally end up with

. . . and W(s) typically has a simple representation

@tpC(s, t) = W(s)pC(s, t)

[ Lebowitz-Spohn, Bodineau-Derrida, Lecomte-van Wijland, etc ]

@tpC,K(t) = W1pC,K(t)

Transform

p(C, s, t) =
P

K p(C,K, t)e�sK
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Define Waux = u�1W(s)u�  (s)

with

 (s): largest eigenvalue of W(s)

u: a diagonal operator (matrix) whose elements are the

elements of the dominant left eigenvector of W(s)

Then Waux

is the (transposed) generator for the auxiliary

process [for conditioning K/t
obs

⇡ � 0(s)]

@tpC(s, t) = W(s)pC(s, t)

W(s) is not a generator because

@t
P

C p(C, s, t) 6= 0 for s 6= 0
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Auxiliary process
[ following RLJ-Sollich 2010 ]

If the original process has detailed balance wrt

p
0

(C) = e�E(C)/T
then. . .

auxiliary process has detailed balance with energy

function Eaux(C) = E(C)� T lnu(C)

Effective interaction �V (C)/T = �2 lnu(C)

[ ?? can we do this on infinite lattices ?? see later ]

Generalisation to diffusions and to conditioning on other

observables is straightforward

The transition rates for the auxiliary process are

W aux(C ! C0) = u(C)�1e�s ·W (C ! C0)u(C0)

This is an explicit construction of the auxiliary process that 
mimics the conditioning
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Effective interactions
What can we say about the effective interactions?

Some interesting cases: 
 
1. Exclusion processes (SSEP and ASEP) 
 
2. East model  
 
3. 1d Ising model

4. Model sheared systems
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Joint conditioning on activity (bias s) and current (bias h)

Particles on periodic 1d lattice, at most one per site,

attempt to hop right (or left) with rate 1 + a0 (or 1� a0).

W(s, h) =
X
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Exclusion processes

be evaluated (see Eq. (58) of Ref. [6] and also the SM [22]),
yielding

SðqÞ ¼ σ0q2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD0q2Þ2 þ sq2σ0κ000

p : ð4Þ

This result applies only on the hydrodynamic scale: it
should be valid for arbitrary values of the ratio q2=s, but we
expect corrections atOðsÞ andOðq2Þ. Recall that s; κ000 ≤ 0,
by assumption.
The case κ000 ¼ 0 corresponds to completely noninteract-

ing particles, in which case the bias s has no effect on the
structure. However, for any κ000 < 0, Eq. (4) demonstrates a
singular response to the field s. For s ¼ 0 and q → 0, the
structure factor approaches a nonzero constant σ0=ð2D0Þ,
as expected in an equilibrium state with a finite compress-
ibility. However, for any s < 0, the large-scale behavior
changes qualitatively: SðqÞ¼ðq=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0=ðsκ000Þ

p
þOðq2=sÞ,

which is consistent with the numerical results of Fig. 1(b).
Note that hyperuniformity is a large length scale phenome-
non: the nontrivial behavior in SðqÞ appears only for
small q ≲ ffiffiffiffiffiffiffiffiffiffiffi

sσ0κ000
p

=D0.
We also calculate the mean activity kðsÞ¼hκis≈κ0þ

ðκ000=2Þhδρðr;tÞ2is. Writing hδρðr;tÞ2i¼ð2πÞ−d
R
ddqSðqÞ,

we see that the suppression of SðqÞ at small q acts to increase
kðsÞ (recall κ000 < 0). Taking s < 0 and d ¼ 1, we obtain
[21,22]

kðsÞ − kðs ¼ 0Þ ≈
ffiffiffiffiffiffiffiffiffiffiffi
sκ000σ0

q jκ000jσ0
4πD2

0

; ð5Þ

which is valid to leading order in jsj. Since kðsÞ ¼ −ψ 0
KðsÞ

where ψK is the dynamical free energy, we identify this
nonanalytic behavior in kðsÞ with a second-order dynamical
phase transition. This singular behavior has been noted before
[21], but its link with hyperuniformity has not. In d > 1, the
suppression of SðqÞ at small wave vectors leads to a singular
contribution kðsÞ − kðs ¼ 0Þ ∼ ð−sÞd=2, with logarithmic
corrections if d is even [22]. The predicted singular behavior
in kðsÞ requires a joint limit of largeL and large tobs: in Fig. 1,
these effects are smoothed out by finite-size (and finite-tobs)
effects. In particular, the singular behavior predicted by (5) is
not readily apparent: we expect the divergence of k0ðsÞ as
s → 0− to become visible only for significantly larger tobs
[35]. Biasing to lower-than-average activity (s > 0, rather
than s < 0 as so far) results in a macroscopically inhomo-
geneous (phase-separated) state [3,6,30,32] as illustrated in
Fig. 1. Finite-size scaling analysis also predicts that the bias s%

required to cause phase separation scales as L−2 [30],
consistent with the trend observed in Fig. 1.
Heuristic arguments for hyperuniformity.—The origin of

hyperuniformity in these systems is the diverging hydro-
dynamic time scale associated with large-scale density
fluctuations. To see this, consider linear response to the

field s. Within a biased ensemble of trajectories, the
probability of finding the system in configuration C is
pCðsÞ ¼ pCð0Þ½1 − 2s

R
drdthδκðr; tÞiC þOðs2Þ' where

hδκðr; tÞiC is a “propensity” [36], obtained by averaging
the activity over trajectories that start in C at t ¼ 0, and
comparing with typical equilibrium trajectories [22,37,38].
If C has an unusual density fluctuation at a small wave

vector q ≈ 1=R, expanding δκ to quadratic order in δρ givesR
drδκðr; tÞ ≈ ðκ000=2LdÞ½jρqðtÞj2 − hjρqðtÞj2i0'. Diffusive

scaling indicates that these correlations relax on a time
scale τR ¼ R2=D0 which diverges for large R: this leads to a
corresponding divergence in the linear responses pC

0ðsÞ,
due to the time integral of δκ. For s < 0, it is the hyper-
uniform states that receive the strongest enhancement
[22]; a similar effect appears for phase-separated states
if s > 0. Similar links between diverging relaxation times
and dynamical phase transitions are found in glassy
systems [37,39].
Biased ensembles based on the total current.—So far, we

have considered ensembles of trajectories biased according
to their activity K. In fact, hyperuniform states also appear
in ensembles of trajectories where the total current is
biased. Here, the total current J is the sum of all (directed)
particle displacements in a trajectory. (For exclusion
processes, this is the difference between the numbers of
right and left hops.) For generality, we consider jointly
biased ensembles where the activity is biased by a field s
and the current J is biased by a field h. The analogue of (1)
is hOis;h ¼ e−ψKJLdtobshOehJ−sKi0 [22]. Within fluctuating
hydrodynamics (assuming a ¼ 0 as above), the response to
the bias depends only on the quantity B ¼ sκ000 − 1

2 h
2σ000

[22]. For B ¼ 0, then SðqÞ has a finite (nonzero) limit as
q → 0; for B > 0, the system is hyperuniform, while for
B < 0, one has phase separation. The resulting dynamical
phase diagram is shown in Fig. 2: the fluctuating

PSHU

SSEP

(c)(b)

PS

PSHUHU
PS

HU

(a)

ASEP

FIG. 2 (color online). Proposed dynamic phase diagrams for
biased exclusion processes. HU, hyperuniform states; PS, phase
separation. (a) SSEP, jointly biased by both activity and current.
On the heavy black line, the system has normal fluctuations. In
the shaded regions, the indicated behavior can be shown
analytically. (b) ASEP with hopping asymmetry a0, biased by
the current. Normal fluctuations occur for zero bias ( ~h ¼ 0) and
on the line a0 ¼ − tanhð ~h=2Þ, which is related to ~h ¼ 0 by the
Gallavotti-Cohen symmetry. (c) ASEP, biased by the activity.
Normal fluctuations occur only for zero bias.

PRL 114, 060601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 FEBRUARY 2015

060601-3

Joint conditioning on activity (bias s) and current (bias h)

HU: hyperuniform state
PS: “phase-separated” (inhomogeneous) state

Particles on periodic 1d lattice, at most one per site,

attempt to hop right (or left) with rate 1 + a0 (or 1� a0).

[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]
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Hyperuniformity
In HU states, the variance of the number of points
in a region of volume Rd scales as

h�n(Rd)2i ⇠ Rd�1

In ‘normal’ equilibrium states

h�n(Rd)2i ⇠ Rd

where  is a compressibility.

HU states have strong suppression of large-scale
density fluctuations…

… jammed particle packings, biological systems, 
    novel photonic materials, galaxies…

[ Torquato and Stillinger, 2003- ]

or maybe h�n(Rd)2i ⇠ Rd�↵
, ↵ > 0



Hyperuniformity

III. DISTRIBUTIONS OF POINTS WITH SURFACE
GROWTH OF THE SQUARED VARIANCE

A simple cubic lattice is the simplest example of a dis-
crete set of points which shows this limiting behavior (!M

2

"1/R4) of the variance #19$. The result is not hard to under-
stand: The standard deviation !M is that measured by aver-
aging over spheres of radius R centered at a randomly chosen
point of the unit cell. It is proportional to the typical varia-
tion of points in the volume, which in the case of a lattice is
the square root of the average number of points in the last
spherical shell of thickness equal to the lattice unit. A better
%more statistically uniform& example of the same kind is the
so-called shuffled lattice #6$; this is a lattice whose sites are
independently randomly displaced by a distance x in all di-
rections from their initial position according to some distri-
bution p(x) which has a finite second moment. In this case
we find P(k)'k2 at small k and, consequently, again
!M
2 (R)"1/R4 at large R. The simple lattice, however, is not a
SSP, and even the shuffled lattice, though it can be defined as

a SSP, is not statistically isotropic because the underlying
lattice structure is not completely erased by the shuffling
#20$.
To construct a statistically isotropic and homogeneous

particle distribution with such a behavior of !2(R) is non-
trivial. A particular example is the so-called ‘‘pinwheel’’ til-
ing of the plane #21,22$. The generation algorithm for it is
defined by taking a right angled triangle with sides of respec-
tive lengths one and two %and hypotenuse !5) and, at the
first step, forming five similar square triangle of sides 1/!5
and 2/!5 respectively as shown in Fig. 2. At the second step
we expand these new triangles, to the size of the original
triangle, and repeat the procedure ad infinitum, so that they
cover the plane completely. Finally, placing a point randomly
inside each elementary triangle will give a superhomoge-
neous point distribution which is statistically isotropic %with
a continuous power spectrum&.

IV. A PHYSICAL EXAMPLE:
THE ONE-COMPONENT PLASMA

In the study of the one component plasma one considers
the equilibrium statistical mechanics %at inverse temperature
() of a system of charged point particles interacting through
a Coulomb potential, in a continuous uniform background
giving overall charge neutrality #11$. Taking the particles to
carry unit mass and charge the microscopic mass density of
the particles is given by

)%r! &!*
i

+%r!"r! i& %10&

where r! i is the position of the ith particle. The total micro-
scopic charge density is

)c%r! &!*
i

+%r!"r! i&"n %11&

where

n!,)%r! &-. %12&

The two-point correlation function is defined as

.̃%r!"r!!&!
,)%r! &)%r!!&-

,)-2
"1!

+%r!"r!!&

n #h%r!"r!!&. %13&

FIG. 1. A super-homogeneous distribution %bottom& and a Pois-
son distribution %top& with approximately the same number of
points. Both are projections of thin slices of three dimensional dis-
tributions. The super-homogeneous one is a ‘‘pre-initial’’ configu-
ration used in setting up the configuration representing the initial
conditions for the cosmological N-body simulations of #18$. As de-
scribed in Sec. VI the dynamics used to generate this ‘‘pre-initial’’
configuration gives rise to surface fluctuations as it is essentially the
one component plasma which we discuss below.

FIG. 2. Fragmentation step for the ‘‘pinwheel’’ tiling of the
plane.

GENERATION OF PRIMORDIAL COSMOLOGICAL . . . PHYSICAL REVIEW D 67, 043506 %2003&

043506-3

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]
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and 2/!5 respectively as shown in Fig. 2. At the second step
we expand these new triangles, to the size of the original
triangle, and repeat the procedure ad infinitum, so that they
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inside each elementary triangle will give a superhomoge-
neous point distribution which is statistically isotropic %with
a continuous power spectrum&.

IV. A PHYSICAL EXAMPLE:
THE ONE-COMPONENT PLASMA

In the study of the one component plasma one considers
the equilibrium statistical mechanics %at inverse temperature
() of a system of charged point particles interacting through
a Coulomb potential, in a continuous uniform background
giving overall charge neutrality #11$. Taking the particles to
carry unit mass and charge the microscopic mass density of
the particles is given by
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where r! i is the position of the ith particle. The total micro-
scopic charge density is
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,)-2
"1!
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FIG. 1. A super-homogeneous distribution %bottom& and a Pois-
son distribution %top& with approximately the same number of
points. Both are projections of thin slices of three dimensional dis-
tributions. The super-homogeneous one is a ‘‘pre-initial’’ configu-
ration used in setting up the configuration representing the initial
conditions for the cosmological N-body simulations of #18$. As de-
scribed in Sec. VI the dynamics used to generate this ‘‘pre-initial’’
configuration gives rise to surface fluctuations as it is essentially the
one component plasma which we discuss below.

FIG. 2. Fragmentation step for the ‘‘pinwheel’’ tiling of the
plane.

GENERATION OF PRIMORDIAL COSMOLOGICAL . . . PHYSICAL REVIEW D 67, 043506 %2003&

043506-3

Ideal gas

[Gabrielli, Jancovici, Joyce, Lebowitz, Pietronero and Labini, 2002]
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A simple cubic lattice is the simplest example of a dis-
crete set of points which shows this limiting behavior (!M

2

"1/R4) of the variance #19$. The result is not hard to under-
stand: The standard deviation !M is that measured by aver-
aging over spheres of radius R centered at a randomly chosen
point of the unit cell. It is proportional to the typical varia-
tion of points in the volume, which in the case of a lattice is
the square root of the average number of points in the last
spherical shell of thickness equal to the lattice unit. A better
%more statistically uniform& example of the same kind is the
so-called shuffled lattice #6$; this is a lattice whose sites are
independently randomly displaced by a distance x in all di-
rections from their initial position according to some distri-
bution p(x) which has a finite second moment. In this case
we find P(k)'k2 at small k and, consequently, again
!M
2 (R)"1/R4 at large R. The simple lattice, however, is not a
SSP, and even the shuffled lattice, though it can be defined as

a SSP, is not statistically isotropic because the underlying
lattice structure is not completely erased by the shuffling
#20$.
To construct a statistically isotropic and homogeneous

particle distribution with such a behavior of !2(R) is non-
trivial. A particular example is the so-called ‘‘pinwheel’’ til-
ing of the plane #21,22$. The generation algorithm for it is
defined by taking a right angled triangle with sides of respec-
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Hyperuniformity and effective interactions

General picture for SEPs at weak bias can be obtained by 
macroscopic fluctuation theory

[ Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002- ]
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Hyperuniformity and effective interactions

For bias to high activity or high current in exclusion 
processes…
… hyperuniformity comes from very long ranged 
repulsions in the “auxiliary dynamics”…

For extreme bias, can get exact results (Bethe ansatz):
[ Schuetz, Simon, Popkov, Lazarescu, 2009- ]

Repulsive potential V (i� j) ⇠ � log sin

⇡(i�j)
2L

General picture for SEPs at weak bias can be obtained by 
macroscopic fluctuation theory

[ Bertini, de Sole, D Gabrielli, Jona-Lasinio, Landim, 2002- ]

That is, particles on a circle interact by (2d) Coulomb

repulsion
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FIG. 3: (Color online) Scaling of the transition with system
size. (a) The activity k(s) collapses onto a single curve as
a function of sN . (b) Similarly, the peak in the dynamic
susceptibility occurs at s

⇤ ⇠ N . Inset: The maximal suscep-
tibility �

⇤ increases with increasing system size, showing that
the magnitude of the activity fluctuations is increasing.
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Space
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FIG. 4: (Color online) Trajectories of a constant-density sys-
tem at N = 60, � = 0.88 and t

obs

= 20⌧
B

. Particles are shown
in blue, their di↵usive time-evolution leads to “world lines”
that run from left to right. (a) Equilibrium state, s = 0, in
which the particles form a (di↵usive) ideal gas. (b) E↵ect of
a bias to low activity, s = 1.25. The system phase separates
into a large dense cluster and an empty “void” space.

thoughout the whole trajectory: one observes a signifi-
cant region that is devoid of particles, with the remainder
of the system increasing its local density to incorporate
the empty region. At the beginning and end of the tra-
jectory, the empty region shrinks slightly: this behav-
ior is also expected, since biases on dynamical activity
have their strongest e↵ects in the bulk of the trajectory,
with slightly weaker influence near the initial and final
times [30].

To probe the structure of these systems it is convenient
to make a change of co-ordinates. The system is one-
dimensional and the particles are hard, so the ordering
of the particle co-ordinates is fixed: there is no “overtak-
ing”. We number particles so that their co-ordinates are
in an increasing sequence, and define new co-ordinates
X

j

= x
j

� jl
0

which are also ordered in the same way.
The X

j

are co-ordinates of point particles in a system of
size L0 = L � Nl

0

. At equilibrium, the positions X
j

are
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FIG. 5: (Color online) Structural measurements in the
constant-volume system with point particles at N

L

0 = 7.33/`
0

with N = 120, for equilibrium and inactive systems. (a) Mea-
surements of the one-body density ⇢(x) for homogeneous and
phase-separated states. (b) Distribution of separations for the
equilibrium and inactive phases.

uncorrelated – they represent positions of ideal gas par-
ticles. For example, if we define a Fourier-transformed
density �⇢

q

=
P

j

e�iqXj and calculate the structure fac-
tor

S(q) =
1

L0 h�⇢q

�⇢�q

i (13)

then we find S(q) = N/L0 = �

l

0

(1��)

, independent of q.

Now define d
i

as the separation between particle i and
its right neighbour,

d
i

= x
i+1

� x
i

. (14)

In order to investigate the one-body density profile as-
sociated with the phase-separated state illustrated in
Fig. 4b, it is necessary to fix an origin. We accom-
plish this by finding the largest ‘gap’ d

i

in any config-
uration. We choose a random point within that gap, and
we place the origin the maximal possible distance, L0/2,
from that point. Thus the origin almost certainly lies
within the dense phase. The density of point-particles
is then ⇢(X) =

P
j

�(X � X
j

), where X
j

is now mea-
sured with respect to this new origin. We average ⇢(X)
to obtain the one-body densities shown in Fig. 5(a). At
equilibrium, the density profile is uniform, as expected
(up to weak boundary e↵ects that arise because the ori-
gin was constrained to lie far from the largest gap).

The distribution of separations, P (d), was also
recorded for systems at s = 0 and s > s⇤. This is shown
in Fig. 5(b). At equilibrium, one finds an exponential
distribution, typical of a 1d equilibrium fluid. However
the distribution of separations in the inactive phase is
bimodal. For small d, the distribution is approximately
exponential but with a smaller characteristic length scale
than the equilibrium fluid: this corresponds to particles
within the dense region of the system. For larger d, there
is a broad distribution of separations that comes from
pairs of particles located on opposite sides of the large

Hard particles in 1d evolving with Brownian motion (Langevin), 
conditioned on low activity

Low activity

Can think of attractive interactions, or Langevin noises with  
non-zero mean, for particles at the edge of the void
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In order to investigate the one-body density profile as-
sociated with the phase-separated state illustrated in
Fig. 4b, it is necessary to fix an origin. We accom-
plish this by finding the largest ‘gap’ d
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in any config-
uration. We choose a random point within that gap, and
we place the origin the maximal possible distance, L0/2,
from that point. Thus the origin almost certainly lies
within the dense phase. The density of point-particles
is then ⇢(X) =

P
j
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), where X
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is now mea-
sured with respect to this new origin. We average ⇢(X)
to obtain the one-body densities shown in Fig. 5(a). At
equilibrium, the density profile is uniform, as expected
(up to weak boundary e↵ects that arise because the ori-
gin was constrained to lie far from the largest gap).

The distribution of separations, P (d), was also
recorded for systems at s = 0 and s > s⇤. This is shown
in Fig. 5(b). At equilibrium, one finds an exponential
distribution, typical of a 1d equilibrium fluid. However
the distribution of separations in the inactive phase is
bimodal. For small d, the distribution is approximately
exponential but with a smaller characteristic length scale
than the equilibrium fluid: this corresponds to particles
within the dense region of the system. For larger d, there
is a broad distribution of separations that comes from
pairs of particles located on opposite sides of the large

Hard particles in 1d evolving with Brownian motion (Langevin), 
conditioned on low activity

Low activity

[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

Can think of attractive interactions, or Langevin noises with  
non-zero mean, for particles at the edge of the void



Linear response
General result: can obtain effective potential values from

“propensities” for activity

[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

u(C, s) / he�sKiC(0)=C

(average over long trajectories starting in C, need to take

care with normalisation)

Simple hydrodynamic argument shows that u-values for

phase-separated / hyperuniform configurations have

divergent du(C, s)/ds as system size L ! 1.

This comes from a diverging time scale: ⌧L ⇠ L2
is the

time required for these trajectories to relax to the steady

state. . .

Diverging interaction range linked to diverging length and

time scales. . .



Exclusion processes summary
[ RLJ, Thompson, Sollich, PRL 114, 060601 (2015) ]

be evaluated (see Eq. (58) of Ref. [6] and also the SM [22]),
yielding

SðqÞ ¼ σ0q2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD0q2Þ2 þ sq2σ0κ000

p : ð4Þ

This result applies only on the hydrodynamic scale: it
should be valid for arbitrary values of the ratio q2=s, but we
expect corrections atOðsÞ andOðq2Þ. Recall that s; κ000 ≤ 0,
by assumption.
The case κ000 ¼ 0 corresponds to completely noninteract-

ing particles, in which case the bias s has no effect on the
structure. However, for any κ000 < 0, Eq. (4) demonstrates a
singular response to the field s. For s ¼ 0 and q → 0, the
structure factor approaches a nonzero constant σ0=ð2D0Þ,
as expected in an equilibrium state with a finite compress-
ibility. However, for any s < 0, the large-scale behavior
changes qualitatively: SðqÞ¼ðq=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0=ðsκ000Þ

p
þOðq2=sÞ,

which is consistent with the numerical results of Fig. 1(b).
Note that hyperuniformity is a large length scale phenome-
non: the nontrivial behavior in SðqÞ appears only for
small q ≲ ffiffiffiffiffiffiffiffiffiffiffi

sσ0κ000
p

=D0.
We also calculate the mean activity kðsÞ¼hκis≈κ0þ

ðκ000=2Þhδρðr;tÞ2is. Writing hδρðr;tÞ2i¼ð2πÞ−d
R
ddqSðqÞ,

we see that the suppression of SðqÞ at small q acts to increase
kðsÞ (recall κ000 < 0). Taking s < 0 and d ¼ 1, we obtain
[21,22]

kðsÞ − kðs ¼ 0Þ ≈
ffiffiffiffiffiffiffiffiffiffiffi
sκ000σ0

q jκ000jσ0
4πD2

0

; ð5Þ

which is valid to leading order in jsj. Since kðsÞ ¼ −ψ 0
KðsÞ

where ψK is the dynamical free energy, we identify this
nonanalytic behavior in kðsÞ with a second-order dynamical
phase transition. This singular behavior has been noted before
[21], but its link with hyperuniformity has not. In d > 1, the
suppression of SðqÞ at small wave vectors leads to a singular
contribution kðsÞ − kðs ¼ 0Þ ∼ ð−sÞd=2, with logarithmic
corrections if d is even [22]. The predicted singular behavior
in kðsÞ requires a joint limit of largeL and large tobs: in Fig. 1,
these effects are smoothed out by finite-size (and finite-tobs)
effects. In particular, the singular behavior predicted by (5) is
not readily apparent: we expect the divergence of k0ðsÞ as
s → 0− to become visible only for significantly larger tobs
[35]. Biasing to lower-than-average activity (s > 0, rather
than s < 0 as so far) results in a macroscopically inhomo-
geneous (phase-separated) state [3,6,30,32] as illustrated in
Fig. 1. Finite-size scaling analysis also predicts that the bias s%

required to cause phase separation scales as L−2 [30],
consistent with the trend observed in Fig. 1.
Heuristic arguments for hyperuniformity.—The origin of

hyperuniformity in these systems is the diverging hydro-
dynamic time scale associated with large-scale density
fluctuations. To see this, consider linear response to the

field s. Within a biased ensemble of trajectories, the
probability of finding the system in configuration C is
pCðsÞ ¼ pCð0Þ½1 − 2s

R
drdthδκðr; tÞiC þOðs2Þ' where

hδκðr; tÞiC is a “propensity” [36], obtained by averaging
the activity over trajectories that start in C at t ¼ 0, and
comparing with typical equilibrium trajectories [22,37,38].
If C has an unusual density fluctuation at a small wave

vector q ≈ 1=R, expanding δκ to quadratic order in δρ givesR
drδκðr; tÞ ≈ ðκ000=2LdÞ½jρqðtÞj2 − hjρqðtÞj2i0'. Diffusive

scaling indicates that these correlations relax on a time
scale τR ¼ R2=D0 which diverges for large R: this leads to a
corresponding divergence in the linear responses pC

0ðsÞ,
due to the time integral of δκ. For s < 0, it is the hyper-
uniform states that receive the strongest enhancement
[22]; a similar effect appears for phase-separated states
if s > 0. Similar links between diverging relaxation times
and dynamical phase transitions are found in glassy
systems [37,39].
Biased ensembles based on the total current.—So far, we

have considered ensembles of trajectories biased according
to their activity K. In fact, hyperuniform states also appear
in ensembles of trajectories where the total current is
biased. Here, the total current J is the sum of all (directed)
particle displacements in a trajectory. (For exclusion
processes, this is the difference between the numbers of
right and left hops.) For generality, we consider jointly
biased ensembles where the activity is biased by a field s
and the current J is biased by a field h. The analogue of (1)
is hOis;h ¼ e−ψKJLdtobshOehJ−sKi0 [22]. Within fluctuating
hydrodynamics (assuming a ¼ 0 as above), the response to
the bias depends only on the quantity B ¼ sκ000 − 1

2 h
2σ000

[22]. For B ¼ 0, then SðqÞ has a finite (nonzero) limit as
q → 0; for B > 0, the system is hyperuniform, while for
B < 0, one has phase separation. The resulting dynamical
phase diagram is shown in Fig. 2: the fluctuating
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FIG. 2 (color online). Proposed dynamic phase diagrams for
biased exclusion processes. HU, hyperuniform states; PS, phase
separation. (a) SSEP, jointly biased by both activity and current.
On the heavy black line, the system has normal fluctuations. In
the shaded regions, the indicated behavior can be shown
analytically. (b) ASEP with hopping asymmetry a0, biased by
the current. Normal fluctuations occur for zero bias ( ~h ¼ 0) and
on the line a0 ¼ − tanhð ~h=2Þ, which is related to ~h ¼ 0 by the
Gallavotti-Cohen symmetry. (c) ASEP, biased by the activity.
Normal fluctuations occur only for zero bias.

PRL 114, 060601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 FEBRUARY 2015

060601-3

Long-ranged effective interactions (repulsive or attractive)

are generic in conditioned exclusion processes

The physical origin of the weak-bias instabilities is the

diverging hydrodynamic time scale ⌧R ⇠ R2
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ni+1 = 0, prob 1� c

Hierarchical relaxation mechanism…
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Relaxation time diverges for small c as
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Simple model for glassy dynamics, stationary state has trivial 
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10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
4Laboratoire des Colloı̈des, Verres et Nanomatériaux (CNRS UMR 5587), Université de Montpellier II,
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We show that the dynamics of kinetically constrained models of glass formers takes place at a first-
order coexistence line between active and inactive dynamical phases. We prove this by computing the
large-deviation functions of suitable space-time observables, such as the number of configuration changes
in a trajectory. We present analytic results for dynamic facilitated models in a mean-field approximation,
and numerical results for the Fredrickson-Andersen model, the East model, and constrained lattice gases,
in various dimensions. This dynamical first-order transition is generic in kinetically constrained models,
and we expect it to be present in systems with fully jammed states.
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An increasingly accepted view is that the phenomenol-
ogy associated with the glass transition [1] requires a
purely dynamic analysis, and does not arise from an under-
lying static transition (see, however, [2]). Indeed, it has
been suggested that the glass transition manifests a first-
order phase transition in space and time between active and
inactive phases [3]. Here we apply Ruelle’s thermody-
namic formalism [4,5] to show that this suggestion is
indeed correct, for a specific class of stochastic models.
The existence of active and inactive regions of space-time,
separated by sharp interfaces, is dynamic heterogeneity, a
central feature of glass forming systems [6]. This phe-
nomenon, in which the dynamics becomes increasingly
spatially correlated at low temperatures, arises naturally
[7] in models based on the idea of dynamic facilitation,
such as spin-facilitated models [8,9], constrained lattice
gases [10,11], and other kinetically constrained models
(KCMs) [12]. Figure 1 illustrates the discontinuities in
space-time order parameters at the dynamical transition
in one such model, together with the singularity in a space-
time free energy, as a function of a control parameter to be
discussed shortly.

The thermodynamic formalism of Ruelle and co-
workers was developed in the context of deterministic
dynamical systems [4]. While traditional thermodynamics
is used to study fluctuations associated with configurations
of a system, Ruelle’s formalism yields information about
its trajectories (or histories). The formalism relies on the
construction of a dynamical partition function, analogous
to the canonical partition function of thermodynamics. The
energy of the system is replaced by the dynamical action
(the negative of the logarithm of the probability of a given
history), the entropy of the system by the Kolmogorov-
Sinai entropy [13], and the temperature by an intrinsic field
conjugate to the action. This formalism has been exploited

recently to describe the chaotic properties of continuous-
time Markov processes [5].

In this work, we define the dynamical partition sum [4,5]
for our stochastic systems by
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FIG. 1 (color online). First-order transition in terms of the field
s. (Top) The dynamical order parameter K"s# (the average
number of configuration changes in a trajectory) and its large-
deviation function  K"s# for the FA model, calculated in a mean-
field approximation, for d $ 3 and T $ 0:5; see Eqs. (6)–(9).
The large-deviation function is singular at s $ 0 and the order
parameter K has a first-order jump. The dynamics has two
phases, an active one for s < 0 and an inactive one for s > 0.
Physical dynamics take place at s $ 0, where the two dynamic
phases coexist. (Bottom) An alternative order parameter !K"s#
(the average number of excited sites in a trajectory; see Fig. 2) in
the d $ 1 FA model at T $ 0:91, calculated numerically in a
finite system (N $ 100 sites). The transition is absent when the
kinetic constraints are removed.
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An increasingly accepted view is that the phenomenol-
ogy associated with the glass transition [1] requires a
purely dynamic analysis, and does not arise from an under-
lying static transition (see, however, [2]). Indeed, it has
been suggested that the glass transition manifests a first-
order phase transition in space and time between active and
inactive phases [3]. Here we apply Ruelle’s thermody-
namic formalism [4,5] to show that this suggestion is
indeed correct, for a specific class of stochastic models.
The existence of active and inactive regions of space-time,
separated by sharp interfaces, is dynamic heterogeneity, a
central feature of glass forming systems [6]. This phe-
nomenon, in which the dynamics becomes increasingly
spatially correlated at low temperatures, arises naturally
[7] in models based on the idea of dynamic facilitation,
such as spin-facilitated models [8,9], constrained lattice
gases [10,11], and other kinetically constrained models
(KCMs) [12]. Figure 1 illustrates the discontinuities in
space-time order parameters at the dynamical transition
in one such model, together with the singularity in a space-
time free energy, as a function of a control parameter to be
discussed shortly.

The thermodynamic formalism of Ruelle and co-
workers was developed in the context of deterministic
dynamical systems [4]. While traditional thermodynamics
is used to study fluctuations associated with configurations
of a system, Ruelle’s formalism yields information about
its trajectories (or histories). The formalism relies on the
construction of a dynamical partition function, analogous
to the canonical partition function of thermodynamics. The
energy of the system is replaced by the dynamical action
(the negative of the logarithm of the probability of a given
history), the entropy of the system by the Kolmogorov-
Sinai entropy [13], and the temperature by an intrinsic field
conjugate to the action. This formalism has been exploited

recently to describe the chaotic properties of continuous-
time Markov processes [5].

In this work, we define the dynamical partition sum [4,5]
for our stochastic systems by
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FIG. 1 (color online). First-order transition in terms of the field
s. (Top) The dynamical order parameter K"s# (the average
number of configuration changes in a trajectory) and its large-
deviation function  K"s# for the FA model, calculated in a mean-
field approximation, for d $ 3 and T $ 0:5; see Eqs. (6)–(9).
The large-deviation function is singular at s $ 0 and the order
parameter K has a first-order jump. The dynamics has two
phases, an active one for s < 0 and an inactive one for s > 0.
Physical dynamics take place at s $ 0, where the two dynamic
phases coexist. (Bottom) An alternative order parameter !K"s#
(the average number of excited sites in a trajectory; see Fig. 2) in
the d $ 1 FA model at T $ 0:91, calculated numerically in a
finite system (N $ 100 sites). The transition is absent when the
kinetic constraints are removed.
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FIG. 2. Sample trajectories from the three state points identified in Fig. 1, taken from near the centers of the distributions P(k) (k ≈ 0.1). Thus, for
ϵ ≤ ϵc these trajectories are rare, coming from the trough in the histogram that lies between the two stable basins. Active sites are colored (ni = 1) and
inactive sites are white (ni = 0). (a) Trajectory with ϵ < ϵc. showing space-time phase separation. (b) Trajectory at ϵ ≈ ϵc where the phases are still identifiable
but the clusters no longer have a sharp interface. (c) Trajectory at ϵ > ϵc showing a single homogeneous phase.

As discussed in Sec. III, our main results are summarized in
Fig. 1 where we show sample numerical results for k(s) (panel
b), and the phase diagram (panel a) that we have obtained by
finite-size scaling of the behavior of k(s). In particular, there
is a first-order space-time phase transition represented by a
solid line, which ends in a critical point as (sc, ϵc). That is,
the phase transition that is known to be present as ϵ = 011 still
exists in the presence of soft constraints, as long as ϵ < ϵc.
However, when the constraints are too soft (ϵ > ϵc), the phase
transition disappears and the system shows a smooth response
to the field s and no phase transition. The exact value of ϵc

is not known for the soft East model, but we have brack-
eted its location by identifying two state points, one where
the phase transition occurs and another where the response to
s is smooth (non-singular). The inset to Fig. 1(a) shows prob-
ability distributions P(k), where k = K/Ntobs is the (intensive)
activity per space-time volume. The histograms correspond
to simulations performed at the conditions highlighted by the
symbols along the symmetry line. These were chosen to lie in
the two phase region far from criticality, near criticality, and
in the one phase region which does not support a phase tran-
sition. In the first order region ϵ < ϵc, there are two distinct
peaks corresponding to the inactive and active phases. Near
the critical point ϵ ≈ ϵc the two peaks are broadened and very
flat. In the one phase region ϵ > ϵc there is one distinct peak.

Figure 1(b) shows the jump in ⟨k(s)⟩ as the field s is var-
ied. It is useful to compare these results with those expected
for an equilibrium phase transition in a ferromagnetic system
(see also Refs. 9 and 10). The behavior of k(s) is analogous
to the change in the magnetization, M, of a ferromagnet as
the field strength, h, is changed. Thus, ϵ < ϵc corresponds to
T < Tc in a ferromagnet and shows a jump in the order param-
eter (from a high k active phase to a low k inactive phase). On
the other hand, ϵ ≈ ϵc corresponds to T ≈ Tc in a ferromagnet:
it shows a steep crossover between the phases (for the system
sizes considered here).

In Fig. 2, we show three trajectories which have k ≈ 0.1,
approximately corresponding with the center of the distribu-
tions. These trajectories are harvested under the same condi-
tions as the marked points in Fig. 1(a). In Fig. 2(a) a trajectory
for ϵ < ϵc is shown: it may be seen from the inset to Fig. 1(b)

that this is a rare trajectory, coming from near the minimum
of P(k). There is a clear segregation between the two phases
as the space-time “surface tension”20 is large. In Fig. 2(b) a
near-critical trajectory with ϵ ≈ ϵc is shown. Here, there is
still distinct phase segregation but the boundaries between the
phases have become amorphous, corresponding to the dimin-
ished “surface tension” near criticality. In Fig. 2(c) we show
a trajectory with ϵ > ϵc. Here, there is no phase separation
since the system in a one-phase region of the phase diagram.

As usual for phase transitions in space-time,33 the first
order jumps in k(s) become singular only as N, tobs → ∞.
For finite systems undergoing a first-order phase transition,
the susceptibility χ = −d⟨k(s)⟩/ds evaluated at s* is propor-
tional to the system size, Ntobs.36 This scaling is shown in
Fig. 3. In Fig. 3(a) we show the finite size scaling for the first
order transition for ϵ < ϵc. As the system size increases, the
transition sharpens. In Fig. 3(b) we show the scaling near the
critical point. Here, the crossover sharpens as Ntobs increases,
but the evidence for a jump in ⟨k(s)⟩ is less strong (for the
largest systems, the dependence of k(s) on s in Fig. 3(a) is
smoother than that in Fig. 3(b), particularly for s < s*). Other
evidence for a weaker discontinuity when ϵ ≈ ϵc is also clear
from the histograms shown in Fig. 1, where the minimum in
P(k) is much shallower for the system with ϵ ≈ ϵc, compared
with the small-ϵ data. In the inset to Fig. 3(b) we plot χ*, the
value of the susceptibility evaluated at the transition point s*
as function of system size Ntobs. For ϵ < ϵc and ϵ ≈ ϵc the
scaling grows linearly. For ϵ > ϵ* there is no increase with
system size.

VI. THEORETICAL ANALYSIS

A. The master equation and its symmetries

The soft East model may be studied analytically follow-
ing the methods used for the soft FA model in Ref. 20. We
now use these methods to derive the relations (4) and (6) that
we used to facilitate our numerical studies. To do so, we start
with the master equation

∂tP (C, t) = −r(C)P (C, t) +
∑

C′( ̸=C)

W (C ′ → C)P (C ′, t),

(9)
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An increasingly accepted view is that the phenomenol-
ogy associated with the glass transition [1] requires a
purely dynamic analysis, and does not arise from an under-
lying static transition (see, however, [2]). Indeed, it has
been suggested that the glass transition manifests a first-
order phase transition in space and time between active and
inactive phases [3]. Here we apply Ruelle’s thermody-
namic formalism [4,5] to show that this suggestion is
indeed correct, for a specific class of stochastic models.
The existence of active and inactive regions of space-time,
separated by sharp interfaces, is dynamic heterogeneity, a
central feature of glass forming systems [6]. This phe-
nomenon, in which the dynamics becomes increasingly
spatially correlated at low temperatures, arises naturally
[7] in models based on the idea of dynamic facilitation,
such as spin-facilitated models [8,9], constrained lattice
gases [10,11], and other kinetically constrained models
(KCMs) [12]. Figure 1 illustrates the discontinuities in
space-time order parameters at the dynamical transition
in one such model, together with the singularity in a space-
time free energy, as a function of a control parameter to be
discussed shortly.

The thermodynamic formalism of Ruelle and co-
workers was developed in the context of deterministic
dynamical systems [4]. While traditional thermodynamics
is used to study fluctuations associated with configurations
of a system, Ruelle’s formalism yields information about
its trajectories (or histories). The formalism relies on the
construction of a dynamical partition function, analogous
to the canonical partition function of thermodynamics. The
energy of the system is replaced by the dynamical action
(the negative of the logarithm of the probability of a given
history), the entropy of the system by the Kolmogorov-
Sinai entropy [13], and the temperature by an intrinsic field
conjugate to the action. This formalism has been exploited

recently to describe the chaotic properties of continuous-
time Markov processes [5].

In this work, we define the dynamical partition sum [4,5]
for our stochastic systems by

 ZK"s; t# $
X

histories

Prob"history#e!sK̂"history#; (1)

 

-0.2 -0.1 0 0.1 0.2
s

0

0.2

0.4

0.6

K
(s

) /
 N

t

-0.2 -0.1 0 0.1 0.2
s

-0.02

0

0.02

0.04

0.06

0.08

ψ
K
(s

) /
 N

-1 0 1 2
s

0

0.1

0.2

0.3

0.4

ρ K
(s

)

active       inactive active       inactive

model with
kinetic constraints

kinetic constraints
removed

FIG. 1 (color online). First-order transition in terms of the field
s. (Top) The dynamical order parameter K"s# (the average
number of configuration changes in a trajectory) and its large-
deviation function  K"s# for the FA model, calculated in a mean-
field approximation, for d $ 3 and T $ 0:5; see Eqs. (6)–(9).
The large-deviation function is singular at s $ 0 and the order
parameter K has a first-order jump. The dynamics has two
phases, an active one for s < 0 and an inactive one for s > 0.
Physical dynamics take place at s $ 0, where the two dynamic
phases coexist. (Bottom) An alternative order parameter !K"s#
(the average number of excited sites in a trajectory; see Fig. 2) in
the d $ 1 FA model at T $ 0:91, calculated numerically in a
finite system (N $ 100 sites). The transition is absent when the
kinetic constraints are removed.
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FIG. 2. Sample trajectories from the three state points identified in Fig. 1, taken from near the centers of the distributions P(k) (k ≈ 0.1). Thus, for
ϵ ≤ ϵc these trajectories are rare, coming from the trough in the histogram that lies between the two stable basins. Active sites are colored (ni = 1) and
inactive sites are white (ni = 0). (a) Trajectory with ϵ < ϵc. showing space-time phase separation. (b) Trajectory at ϵ ≈ ϵc where the phases are still identifiable
but the clusters no longer have a sharp interface. (c) Trajectory at ϵ > ϵc showing a single homogeneous phase.

As discussed in Sec. III, our main results are summarized in
Fig. 1 where we show sample numerical results for k(s) (panel
b), and the phase diagram (panel a) that we have obtained by
finite-size scaling of the behavior of k(s). In particular, there
is a first-order space-time phase transition represented by a
solid line, which ends in a critical point as (sc, ϵc). That is,
the phase transition that is known to be present as ϵ = 011 still
exists in the presence of soft constraints, as long as ϵ < ϵc.
However, when the constraints are too soft (ϵ > ϵc), the phase
transition disappears and the system shows a smooth response
to the field s and no phase transition. The exact value of ϵc

is not known for the soft East model, but we have brack-
eted its location by identifying two state points, one where
the phase transition occurs and another where the response to
s is smooth (non-singular). The inset to Fig. 1(a) shows prob-
ability distributions P(k), where k = K/Ntobs is the (intensive)
activity per space-time volume. The histograms correspond
to simulations performed at the conditions highlighted by the
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VI. THEORETICAL ANALYSIS

A. The master equation and its symmetries

The soft East model may be studied analytically follow-
ing the methods used for the soft FA model in Ref. 20. We
now use these methods to derive the relations (4) and (6) that
we used to facilitate our numerical studies. To do so, we start
with the master equation

∂tP (C, t) = −r(C)P (C, t) +
∑

C′( ̸=C)

W (C ′ → C)P (C ′, t),

(9)
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Figure 4. Sketch illustrating the configurations C and C ′ discussed in section 4.2. Black
bars indicate up-spins (ni = 1). At low temperatures, the hierarchy of energy scales in the
East model means that C will almost certainly relax to C ′ on a time scale τ3 given by (2);
this process is much faster than any other local relaxation mechanism. The propensity
RC differs from RC′ primarily due to the facilitated site that is marked with a ×.

in the region of interest of C ′ be (. . . , ℓ, m, . . .) and those in C be (. . . , ℓ, d, m − d, . . .). The
two configurations coincide exactly in regions indicated by (. . .).

We further assume that αm − d,αℓ > αd , where the barrier height αℓ was defined in
(1). Then, the hierarchical relaxation in the East model means that as c → 0, the local time
evolution of C and C ′ is deterministic, in the sense that C relaxes to C ′, on a time scale τd , given
by (2). (For small c, the probability that C relaxes to some other local structure is vanishingly
small, due to the separation of time scales in the problem.) After the time lag τd , the two
configurations behave the same, so all contributions to RC −RC′ come from times smaller than
τd . The dominant contribution to RC − RC′ comes from the spin marked × in figure 4. This
spin is facilitated throughout the time τd so its contribution to RC is approximately 2cτd . (This
may be shown using an analysis similar to that leading to (28) above, or the quasi-equilibrium
argument explained at the end of section 3.2.) Thus, the enhancement of C with respect to C ′

is determined by

$VC′ − $VC = 2ν(RC − RC′ ) + O(ν2) ≈ 4νcτd + O(ν2), (29)

where the approximate equality holds for small c and 2 ! d " 1/c. (For d = 1, a similar
argument shows that the propensity difference is of order unity: here the dominant contribution
comes from the spin at distance d = 1 itself, which has a flip rate of 1 − c ≈ 1, rather than its
right neighbour.) The key point here is that the difference in effective potential in (29) depends
very strongly on the position of the extra up-spin in C ′. If d = 1 and the extra up-spin is
adjacent to an existing one, the difference in effective potential between C and C ′ is ν · O(1),
which is small on the natural scale of ν. But if (for example) d = 1 + 2b then the enhancement
diverges as ν · O(c−b): configurations where the extra up-spin is far from any existing spin are
very strongly enhanced if b > 1.

This strong dependence of $VC on the relative positions of the up-spins in C is the
mechanism for the repulsive correlations in C(x) shown in figure 2. Configurations where the
spins are spaced out have large propensities for activity R, since the up-spins increase activity,
and widely-spaced up-spins persist for longer time within the system. Hence, the effect of the
bias ν is to favour configurations C with long-lived active regions, since these give the largest
contributions to RC .

4.3. Response of p(d ) to the bias ν

To further elucidate this effect, we show how ν affects the domain structure in the system,
by calculating the response of p(d) at leading order in ν. Recall that p(d) can be written as
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We further assume that αm − d,αℓ > αd , where the barrier height αℓ was defined in
(1). Then, the hierarchical relaxation in the East model means that as c → 0, the local time
evolution of C and C ′ is deterministic, in the sense that C relaxes to C ′, on a time scale τd , given
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may be shown using an analysis similar to that leading to (28) above, or the quasi-equilibrium
argument explained at the end of section 3.2.) Thus, the enhancement of C with respect to C ′

is determined by

$VC′ − $VC = 2ν(RC − RC′ ) + O(ν2) ≈ 4νcτd + O(ν2), (29)

where the approximate equality holds for small c and 2 ! d " 1/c. (For d = 1, a similar
argument shows that the propensity difference is of order unity: here the dominant contribution
comes from the spin at distance d = 1 itself, which has a flip rate of 1 − c ≈ 1, rather than its
right neighbour.) The key point here is that the difference in effective potential in (29) depends
very strongly on the position of the extra up-spin in C ′. If d = 1 and the extra up-spin is
adjacent to an existing one, the difference in effective potential between C and C ′ is ν · O(1),
which is small on the natural scale of ν. But if (for example) d = 1 + 2b then the enhancement
diverges as ν · O(c−b): configurations where the extra up-spin is far from any existing spin are
very strongly enhanced if b > 1.

This strong dependence of $VC on the relative positions of the up-spins in C is the
mechanism for the repulsive correlations in C(x) shown in figure 2. Configurations where the
spins are spaced out have large propensities for activity R, since the up-spins increase activity,
and widely-spaced up-spins persist for longer time within the system. Hence, the effect of the
bias ν is to favour configurations C with long-lived active regions, since these give the largest
contributions to RC .

4.3. Response of p(d ) to the bias ν

To further elucidate this effect, we show how ν affects the domain structure in the system,
by calculating the response of p(d) at leading order in ν. Recall that p(d) can be written as
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bars indicate up-spins (ni = 1). At low temperatures, the hierarchy of energy scales in the
East model means that C will almost certainly relax to C ′ on a time scale τ3 given by (2);
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RC differs from RC′ primarily due to the facilitated site that is marked with a ×.
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Figure 5. Sketch showing how the density of up-spins ρ = ⟨ni⟩ν depends on ν, for
very small c. Both axes are logarithmic. The solid line shows the limiting behaviour as
c → 0, taken at fixed (ln ν)/(ln c), while the dashed line shows the expected behaviour
for a system with small positive c. The effect of the bias ν becomes significant when
ν ≈ τ−1

0 , the inverse bulk relaxation time. As ν is increased further towards unity, the
system eventually responds in a sequence of steps. We expect a weak dependence on ν
whenever cb ≪ ν ≪ cb−1 for integer b, leading to plateaus in ρ. Within each plateau
(b ! 1), our conjecture is that the spacing between up-spins converges to 1 + 2b as
c → 0, so ρ → 1

1+2b . For large b, the plateaux are then bounded by ρ = 2−b−1 and
ρ = 2b, corresponding to power-law behaviour ρ ∼ 2−(ln ν)/(ln c) ∼ νT ln 2 (dashed lines).
From the quasi-equilibrium argument, one expects also r(ν) ≈ 2c⟨ni⟩ν = 2cρ(ν): when
comparing this prediction with figure 1, we emphasize that those numerical results are
still rather far from the small-c limit.

WK (s) and WR(ν) may be symmetrized, as described in section 2.2. Hence (see section A.1
in the appendix and [10, 18]), one may obtain the effective potential $VC by minimizing the
variational ‘free energy’ (per site):

F($Ṽ ) = −N−1

∑
C,C′ e−$ṼC′ /2[WR(ν)]C′,Ce−$ṼC/2 p0

C∑
C e−$ṼC p0

C
, (35)

where $Ṽ is a variational estimate of the effective potential, [WR(ν)]C′,C is a matrix element
of the operator WR(ν), and p0

C = e−β
∑

i ni/(1 + e−β )N is the equilibrium probability of
configuration C. On minimizing F($Ṽ ) over all the $ṼC , the minimal value of F is equal to
the dynamical free energy ψR(ν), and $ṼC is equal to the effective potential $VC . Hence, if
a suitable exact parameterization of $ṼC may be found, one can obtain the effective potential
by minimizing F($Ṽ ). More typically, one makes an approximate parameterization of the
effective potential, and minimizes F with respect to the variational parameters. For a given
parameterization of $ṼC (‘trial potential’), we denote the minimal value of F by Fvar and the
corresponding estimate of $ṼC by $V var

C .
We note in passing that an alternative to this variational approach would be to use a

density-matrix renormalization group method (see e.g. [38]), which is related to a variational
search over matrix product states [39]. However, the advantage of (35) is that it has a clear
interpretation as a variational search in a given space of effective potentials $V .

6.1. Trial potential functions

We first describe three trial potentials that we have investigated.
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Summary so far
In East model and exclusion processes,
several things go together

Long time scales (and metastability) 

Long length scales 

Long-ranged effective interactions 
(not just long-ranged correlations) 

Also, sometimes, dynamical phase transitions

There are good reasons to expect this to be general:
(eg perturbative arguments, small spectral gaps…) 
… also, plenty of other examples
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Trajectories in (1 + 1)d space-time are configurations of a

2d Ising model.

1d Ising model
Consider 1d Glauber-Ising chain (periodic) conditioned on

time-integrated energy

Can solve this model exactly by free fermions

Effective interactions clearly long-ranged, also

non-Gibbsian.

[ see eg RLJ and Sollich, 2010 ]

[ Maes, Redig, von Enter, 1999 ]

For appropriate bias, get ferromagnetic states, even if

unconditioned chain has T ! 1 (!)

“The traditional solution is to define an infinite-volume

Gibbs measure [as] a measure which is a limit. . . of

finite-volume Gibbs measures with some chosen

boundary conditions”

von Enter, Fernandez, Sokal, J Stat Phys 1993

(how general is this?)
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Final summary
Conditioning stochastic systems to non-typical values of 
time-integrated observables leads to rich phenomenology

Hyperuniformity, phase separation in space and/or time, 
dynamical phase transitions, hierarchical responses…

These phenomena can be characterised by effective 
interactions, but these are often different from familiar 
equilibrium interactions

Long-ranged, non-Gibbsian, absence of dissipation

Slow degrees of freedom respond most strongly to bias (or 
conditioning), this can be one origin of long-ranged 
interactions

[ more info: RLJ & Sollich, EPJE 2015, Touchette and Chetrite arXiv 1506.05291 ]


