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Zero-range process

172 172

Lattice: A of size L
State space: Xy = {0,1,..}*

N = (12)gen

Jump rates: p(z,y) g(1.)
choose g(k) = (%)b ~ 1+ 2 withb>0
9(0) =0, g(1)

choose  p(z,y) = 48,01 + 26,01

1

[Spitzer '70; Andjel '82; Evans '00]
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Grand canonical invariant measures

o product measure v4 on X, with marginals

1 ¢k
volne =K =35 0@ -

¢ < @ is radius of convergence of z(¢) = Y, 0" /g!(k)

k
o here gl(k) = H g(n) <k’ and ¢.=1

n=1
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Grand canonical invariant measures

o product measure v4 on X, with marginals

1 ¢k
volte =8 =26 g9

¢ < @ is radius of convergence of z(¢) = Y, 0" /g!(k)

k
o here gl(k) = H g(n) <k’ and ¢.=1

n=1

o density

R(¢) = vp(n:) = : ik ¢ = ¢ ikl_%k tino
ST 2 (9) = gk) 2(0) o 7

o critical density p.:= R(¢.) € [0, ]
hereb>2 = p.<oo (Condensation)
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Canonical measures and condensation

fixed number of particles N:  pr N[ -] =ve[ - |>., 1. = N]
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Canonical measures and condensation

fixed number of particles N:  pr N[ -] =ve[ - |>., 1. = N]

Equivalence of ensembles

In the thermodynamic limit L, N — oo,

1L, N — Vg Where {

N/L = p

R(@)=p, p<pc
(b:(bc aPZPc

fluid

3>

fluid condensed
My /L-0 M /L=p=pc
1 3 4 5

pe(b)

b

condensed
P>pe

(p=pol

[Jeon, March, Pittel '00; Grosskinsky, Schiitz, Spohn '03; Ferrari, Landim, Sisko '07; Armenddriz, L. '09]
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Dynamics of condensation

ZRP with g(k) ~1+b/k
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Nucleation
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Metastability: dynamics of the condensate

Potential theoretic approach: Bovier, Gayrard, Eckhoff, Klein '01, '02,...
Martingale approach: Beltran, Landim '10, 11, '15
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Metastability: dynamics of the condensate

Potential theoretic approach: Bovier, Gayrard, Eckhoff, Klein '01, '02,...
Martingale approach: Beltran, Landim '10, 11, '15

Trace process e metastable wells

g””:{nzZN—pCL—aL,nyfﬁLay?éx}’
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Trace process n°

e 1% is a Markov process on £ = U,caE® with generator £ and rates

(0, &) =r(m, &) + > r(n,OPc[Te = T]

CeA
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Trace process n°

e 1% is a Markov process on £ = U,cAE® with generator ££ and rates

(0, ) =r(m. &)+ > _ r(n,QP[Te = Te]
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Main result

Theorem.

The ZRP with b > 21,as L,N =000, N/L— p> p,
exhibits metastability w.r.t. the rescaled condensate location

[arXiv:1507.03797]

= — Zx]lgx Hft)) €T onthescale ), = L'V,

zeA
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The ZRP with ,as LN =00, N/L—p>p.,
exhibits metastability w.r.t. the rescaled condensate location

o= % Z zle=(n°(0,t)) €T on the

For all initial conditions ”(0) € £° we have (VX :t >0) = (Y; : ¢ > 0),
where (Y; : t > 0) is a Lévy-type process on T with Yy = 0 and generator

o f() - f(w)
£ f(u) = Ky, / o it

v,

where  d(v,u) = [v—u|(1 — [v—u|) is the distance in T . The amount of time

spent outside wells is negligible. .

]En[/o La(n(t61))dt] — 0.
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Proof
o (Yl :t>0)is tight on D([0,T],T)
o identify limit points (Yt it > 0) as solutions of the martingale problem

f(Y2) — £(Yo) —/Ot LTf(Y,)ds is a martingale .
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o (Yl :t>0)is tight on D([0,T],T)
o identify limit points (Y; : t > 0) as solutions of the martingale problem

fYy) — f(Yo) — /Ot LTf(Ys)ds is a martingale .

Introduce auxiliary process £* on A with averaged rates

1
Mz, y) = e Z pln]r€(n, &),  and write
M[ } neer, £cky

/ (LT -0LL5(f 0 YEYF (01,)) ) ds

- /ot(ﬂf (V) =00 L2 (V) dso /Ot(“f (VE)=LE(f o YE) (0 (0r.5)) ) ds
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o (Yl :t>0)is tight on D([0,T],T)
o identify limit points (Y; : t > 0) as solutions of the martingale problem

fYy) — f(Yo) — /Ot LTf(Ys)ds is a martingale .

Introduce auxiliary process £* on A with averaged rates

1
Mz, y) = e Z pln]r€(n, &),  and write
M[ } neer, £cky

/0 (T RO =00 (F 0 YE)Y(rF (015) ) ds
t t
= [ (T rrbr=oner svEy)dston [ (LM 0rE)=£5(7 oY) (019) ) ds
0 0
Q central Lemma: uniform bounds on exit rates
Q Prove equilibration within wells on a scale

© Prove convergence of averaged dynamics on the scale 0,
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largest possible arrival rate for ZRP
z € A, couple (n,(t) : t > 0) with a growing system of BD chains ¥ |

indexed by the m-regular tree R,,

o Each chain (, has birth rate 1 and death rate g((,).
Arrival events for 7, (t) are used only for one of the coupled chains

o At any time ¢, only m of the chains are coupled to 7,(t), and the rest are
evolving independently.
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largest possible arrival rate for ZRP
z € A, couple (n,(t) : t > 0) with a growing system of BD chains ¥ |
indexed by the m-regular tree R,

o Each chain ¢, has birth rate 1 and death rate g((,).
Arrival events for 7, (t) are used only for one of the coupled chains

o At any time ¢, only m of the chains are coupled to 7,(t), and the rest are
evolving independently.

o Number of chains grows linearly with time
o maxy (¥(t) > n,(t) for all times t > 0.

1
Uniform exit rate bound: sup Z ré(n,¢) <C T5los L
1 g
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1 — Coupling to a branching system of BD processes

Example for m = 2
arrows — : identical copies
coupled chains : red encircled

independent chains : in blue

o coupled at generation n = 1 (top)

o particle arrives at = (middle)

chains in 1st gen. turn independent

2 descendants on top coupled

@ second particle arrives, etc.

M. Loulakis (TU Athens)
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2 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

@ bound on relaxation time t,e, mixing time tx(€)

tel < CL* and  tmi(€) < trel log( ) < CL’log (1/€)

min
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2 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

@ bound on relaxation time t,e, mixing time tx(€)

te < CL* and  tmix(€) < te log( ) < CL”log (1/e)

min

o ergodic L? bound for functions with u%(h) =0, 2 € A

EM‘/O h(n) clu‘2 < 24t ty Z,u[gm] 1* (%), (1)

zeA

[J. Beltrén and C. Landim '15, Martingale approach to metastability]
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2 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

@ bound on relaxation time t,e, mixing time tx(€)

t < CLY and  tmie(e) < tre log( ) < CL”log (1/e)

min

o ergodic L? bound for functions with u%(h) =0, 2 € A

Eu‘ /Ot h(n) clu‘2 < 24t ty Z w[€7] pu* (h?), (1)

zeA

[J. Beltrén and C. Landim '15, Martingale approach to metastability]

o Apply (1) + 1. + boundson >_ . (2, y) from 2. to h =€ — A to get

s, [o, | () — €57 0 Y (00)))s| 0
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3 — Mean rates as capacities

1
M[gAl]TA(AlvAQ) = M[(C/‘Al] m Z ’I“A(J?,y) A17 A2 CA

zEA,
yEAg

1
= 5 (cap(E4, £\ EM) +cap (642,81 £%) — cap (41042, £\ e41042) )
[Bovier, den Hollander, Metastability - a potential theoretic approach]

Prove bounds

O, cap(E4,E\EM) < K(b,p) (1+€L) Y capy(,)
€A
ygA

0r, cap(SAl,g \ EAl) > K(b,p)(1—¢;) Z capy(z,y)
z€A
ygA

where cap, (z,y) capacities of symmetric rw on A.

_ 1
eyl (L—le—yl)
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3 — Regularization
o Total exit rate from a well o log L

@ Upper and lower bounds for rates 7*(z,y) do not match
see also [A. Bovier, R. Neukirch '14]
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3 — Regularization
o Total exit rate from a well o log L

@ Upper and lower bounds for rates 7*(z,y) do not match
see also [A. Bovier, R. Neukirch '14]

o Coarse graining in A & Lipschitz test functions to regularize

D) = 3 PV Ve V(1) - 1(3)) ot
m=1

with |Vi| = ¢ < aplog® L — 0o, L = L/L.

( — leads to choice of oy, = L/2+5/(20))

@ matching bounds from capacity representation for 7 (V;, V;,,)

s [ (€10 ) o
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Thank you!

Metastability in condensing Z
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