Metastability in a condensing zero-range process in the thermodynamic limit

Michail Loulakis

National Technical University of Athens in collaboration with Inés Armendáriz and Stefan Grosskinsky

January 7, 2016

Kinetically Constrained Dynamics and Metastability, Warwick 2016

Zero-range process

Lattice: Λ of size L

State space:
$$X_L = \{0, 1, ..\}^{\Lambda}$$

$$\boldsymbol{\eta} = (\eta_x)_{x \in \Lambda}$$



Jump rates: $p(x,y) g(\eta_x)$

choose
$$g(k) = \left(\frac{k}{k-1}\right)^b \simeq 1 + \frac{b}{k}$$
 with $b > 0$

$$g(0) = 0, g(1) = 1$$

choose
$$p(x,y)=\frac{1}{2}\delta_{y,x+1}+\frac{1}{2}\delta_{y,x-1}$$

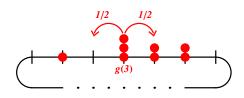
[Spitzer '70; Andjel '82; Evans '00]

Zero-range process

Lattice: Λ of size L

State space:
$$X_L = \{0, 1, ..\}^{\Lambda}$$

$$\boldsymbol{\eta} = (\eta_x)_{x \in \Lambda}$$



Jump rates: $p(x,y) g(\eta_x)$

choose
$$g(k) = \left(\frac{k}{k-1}\right)^b \simeq 1 + \frac{b}{k}$$
 with $b>0$

$$g(0) = 0, g(1) = 1$$

choose
$$p(x,y)=\frac{1}{2}\delta_{y,x+1}+\frac{1}{2}\delta_{y,x-1}$$

$$\textbf{Generator: } \mathcal{L}f(\boldsymbol{\eta}) = \sum_{x \in \Lambda_L} g(\eta_x) \big(\tfrac{1}{2} f(\boldsymbol{\eta}^{x,x+1}) + \tfrac{1}{2} f(\boldsymbol{\eta}^{x,x-1}) - f(\boldsymbol{\eta}) \big)$$

[Spitzer '70; Andjel '82; Evans '00]

Grand canonical invariant measures

ullet product measure u_{ϕ} on X_L with marginals

$$\nu_{\phi} \left[\eta_x = k \right] = \frac{1}{z(\phi)} \frac{\phi^k}{g!(k)} ,$$

 $\phi \leq \phi_c$ is radius of convergence of $z(\phi) = \sum_{k \geq 0} \phi^k/g!(k)$

 $\bullet \ \ \text{here} \quad g!(k) = \prod_{n=1}^k g(n) \propto k^b \quad \text{and} \quad \phi_c = 1$

Grand canonical invariant measures

ullet product measure u_{ϕ} on X_L with marginals

$$\nu_{\phi} \left[\eta_x = k \right] = \frac{1}{z(\phi)} \frac{\phi^k}{g!(k)} ,$$

 $\phi \leq \phi_c$ is radius of convergence of $z(\phi) = \sum_{k \geq 0} \phi^k/g!(k)$

- $\bullet \ \ \text{here} \quad g!(k) = \prod_{n=1}^k g(n) \propto k^b \quad \text{and} \quad \phi_c = 1$
- density

$$R(\phi) = \nu_\phi(\eta_x) = \frac{1}{z(\phi)} \sum_{k=0}^\infty k \frac{\phi^k}{g!(k)} = \frac{C}{z(\phi)} \sum_{k=0}^\infty k^{1-b} \phi^k \;, \quad \uparrow \; \text{in } \phi$$

• critical density $\rho_c := R(\phi_c) \in [0, \infty]$

here $b > 2 \implies \rho_c < \infty$ (Condensation)

Canonical measures and condensation

fixed number of particles $N \colon \ \mu_{L,N}[\ \cdot \] = \nu_{\phi}[\ \cdot \ | \sum_x \eta_x = N]$

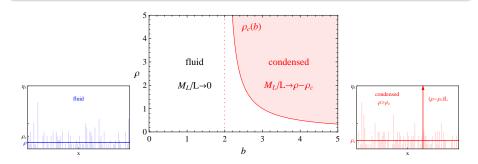
Canonical measures and condensation

fixed number of particles N: $\mu_{L,N}[\;\cdot\;] = \nu_{\phi}[\;\cdot\;|\sum_{x}\eta_{x} = N]$

Equivalence of ensembles

In the thermodynamic limit $\ L,N \to \infty$, $\ N/L \to \rho$

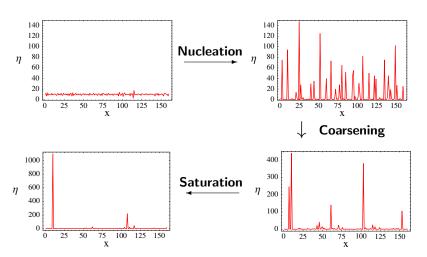
$$\mu_{L,N} \to \nu_{\phi}$$
 where
$$\begin{cases} R(\phi) = \rho \;,\; \rho \le \rho_c \\ \phi = \phi_c \;\;,\; \rho \ge \rho_c \end{cases} \;.$$



[Jeon, March, Pittel '00; Grosskinsky, Schütz, Spohn '03; Ferrari, Landim, Sisko '07; Armendáriz, L. '09]

Dynamics of condensation

ZRP with $g(k) \simeq 1 + b/k$



Metastability: dynamics of the condensate

Potential theoretic approach: Bovier, Gayrard, Eckhoff, Klein '01, '02,...

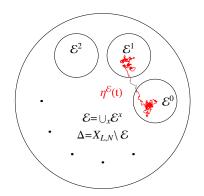
Martingale approach: Beltrán, Landim '10, '11, '15

Metastability: dynamics of the condensate

Potential theoretic approach: Bovier, Gayrard, Eckhoff, Klein '01, '02,... Martingale approach: Beltrán, Landim '10, '11, '15

Trace process • metastable wells

$$\mathcal{E}^x := \left\{ \eta_x \ge N - \rho_c L - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\} ;$$

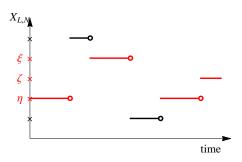


• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E} = \cup_{x \in \Lambda} \mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta, \xi) = r(\eta, \xi) + \sum_{\zeta \in \Delta} r(\eta, \zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

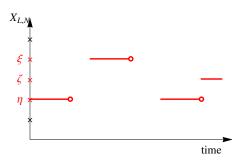
• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E}=\cup_{x\in\Lambda}\mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta, \xi) = r(\eta, \xi) + \sum_{\zeta \in \Delta} r(\eta, \zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$



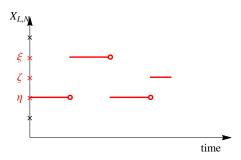
• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E}=\cup_{x\in\Lambda}\mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta, \xi) = r(\eta, \xi) + \sum_{\zeta \in \Delta} r(\eta, \zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$



• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E}=\cup_{x\in\Lambda}\mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta, \xi) = r(\eta, \xi) + \sum_{\zeta \in \Delta} r(\eta, \zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

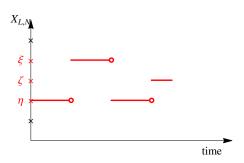


• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E}=\cup_{x\in\Lambda}\mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

• invariant measure

$$\mu[\cdot] = \mu_{L,N}[\ \cdot \mid \mathcal{E}]$$



Main result

Theorem. [arXiv:1507.03797]

The ZRP with b>21, as $L,N\to\infty$, $N/L\to\rho>\rho_c$, exhibits metastability w.r.t. the rescaled condensate location

$$Y_t^L := rac{1}{L} \sum_{x \in \Lambda} x \mathbb{1}_{\mathcal{E}^x} ig(\eta^{\mathcal{E}}(heta_L t) ig) \in \mathbb{T} \quad ext{on the scale } heta_L = L^{1+b} \;.$$

Main result

Theorem. [arXiv:1507.03797]

The ZRP with b>21, as $L,N\to\infty$, $N/L\to\rho>\rho_c$, exhibits metastability w.r.t. the rescaled condensate location

$$\underline{Y_t^L} := \frac{1}{L} \sum_{x \in \Lambda} x \mathbb{1}_{\mathcal{E}^x} \big(\eta^{\mathcal{E}}(\theta_L t) \big) \in \mathbb{T} \quad \text{on the scale $\theta_L = L^{1+b}$} \ .$$

For all initial conditions $\eta^L(0) \in \mathcal{E}^0$ we have $\left(Y_t^L : t \geq 0\right) \Rightarrow (Y_t : t \geq 0)$, where $(Y_t : t \geq 0)$ is a Lévy-type process on \mathbb{T} with $Y_0 = 0$ and generator

$$\mathcal{L}^{\mathbb{T}} f(u) = K_{b,\rho} \int_{\mathbb{T} \setminus \{0\}} \frac{f(v) - f(u)}{d(v,u)} dv ,$$

where $d(v,u)=|v-u|\big(1-|v-u|\big)$ is the distance in $\mathbb T$. The amount of time spent outside wells is negligible. $\mathbb E_\eta\Big[\int^T\mathbb 1_\Delta\big(\eta(t\theta_L)\big)dt\Big]\to 0.$

Proof

- $\left(Y_t^L:t\geq 0\right)$ is **tight** on $D\left([0,T],\mathbb{T}\right)$
- ullet identify limit points $(Y_t:t\geq 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds$$
 is a martingale .

Proof

- $\bullet \ \left(Y_t^L: t \geq 0\right) \text{ is tight on } D\left([0,T],\mathbb{T}\right)$
- ullet identify limit points $(Y_t:t\geq 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds$$
 is a martingale .

Introduce auxiliary process \mathcal{L}^{Λ} on Λ with averaged rates

$$r^{\Lambda}(x,y) = \frac{1}{\mu[\mathcal{E}^x]} \sum_{\eta \in \mathcal{E}^x,\, \xi \in \mathcal{E}^y} \mu[\eta] \, r^{\mathcal{E}}(\eta,\xi) \,\,, \quad \text{and write}$$

$$\begin{split} \int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\mathcal{E}} (f \circ Y^L) (\eta^{\mathcal{E}} (\theta_L s)) \Big) ds \\ &= \int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\Lambda} f(Y_s^L) \Big) ds + \theta_L \int_0^t \Big(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ Y^L) (\eta^{\mathcal{E}} (\theta_L s)) \Big) ds \end{split}$$

Proof

- $\bullet \ \left(Y_t^L: t \geq 0\right) \text{ is tight on } D\left([0,T],\mathbb{T}\right)$
- ullet identify limit points $(Y_t:t\geq 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds$$
 is a martingale .

Introduce auxiliary process \mathcal{L}^{Λ} on Λ with averaged rates

$$r^{\Lambda}(x,y) = \frac{1}{\mu[\mathcal{E}^x]} \sum_{\eta \in \mathcal{E}^x, \, \xi \in \mathcal{E}^y} \mu[\eta] \, r^{\mathcal{E}}(\eta,\xi) \;, \quad \text{and write}$$

$$\begin{split} \int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\mathcal{E}} (f \circ Y^L) (\eta^{\mathcal{E}} (\theta_L s)) \Big) ds \\ &= \int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\Lambda} f(Y_s^L) \Big) ds + \theta_L \int_0^t \Big(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ Y^L) (\eta^{\mathcal{E}} (\theta_L s)) \Big) ds \end{split}$$

- o central Lemma: uniform bounds on exit rates
- ② Prove equilibration within wells on a scale $t_{
 m mix} \ll heta_L = L^{1+b}$
- lacktriangle Prove convergence of averaged dynamics on the scale $heta_L$

1 – Coupling to a branching system of BD processes

```
m=\lceil 2^b \rceil largest possible arrival rate for ZRP x \in \Lambda, couple \left(\eta_x(t): t \geq 0\right) with a growing system of BD chains \zeta_x^{\mathbf{k}}, indexed by the m-regular tree \mathcal{R}_m
```

- Each chain ζ_x has birth rate 1 and death rate $g(\zeta_x)$. Arrival events for $\eta_x(t)$ are used only for one of the coupled chains
- At any time t, only m of the chains are coupled to $\eta_x(t)$, and the rest are evolving independently.

1 – Coupling to a branching system of BD processes

 $m=\lceil 2^b \rceil$ largest possible arrival rate for ZRP $x \in \Lambda$, couple $\left(\eta_x(t): t \geq 0\right)$ with a growing system of BD chains $\zeta_x^{\mathbf{k}}$, indexed by the m-regular tree \mathcal{R}_m

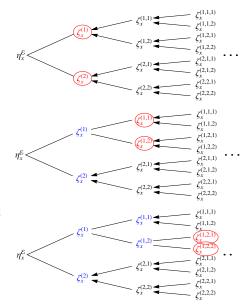
- Each chain ζ_x has birth rate 1 and death rate $g(\zeta_x)$. Arrival events for $\eta_x(t)$ are used only for one of the coupled chains
- At any time t, only m of the chains are coupled to $\eta_x(t)$, and the rest are evolving independently.
- Number of chains grows linearly with time
- $\max_{\mathbf{k}} \zeta_x^{\mathbf{k}}(t) \ge \eta_x(t)$ for all times $t \ge 0$.

$$\text{Uniform exit rate bound:} \qquad \sup_{\eta \in \mathcal{E}^x} \sum_{\xi \notin \mathcal{E}^x} r^{\mathcal{E}}(\eta, \xi) \leq C \, \frac{1}{L^5 (\log L)^2}$$

1 – Coupling to a branching system of BD processes

Example for m=2 arrows \rightarrow : identical copies coupled chains: red encircled independent chains: in blue

- coupled at generation n=1 (top)
- particle arrives at x (middle)
 chains in 1st gen. turn independent
 2 descendants on top coupled
- second particle arrives, etc.



2 - Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\cdot | \mathcal{E}^x]$

 \bullet bound on relaxation time $t_{\rm rel},$ mixing time $t_{\rm mix}(\epsilon)$

$$t_{\mathsf{rel}} \leq CL^4 \quad \mathsf{and} \quad t_{\mathsf{mix}}(\epsilon) \leq t_{\mathsf{rel}} \log \left(\frac{1}{\epsilon \mu_{\mathsf{min}}}\right) \leq CL^5 \log \left(1/\epsilon\right)$$

2 - Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\cdot | \mathcal{E}^x]$

 \bullet bound on relaxation time $t_{\rm rel},$ mixing time $t_{\rm mix}(\epsilon)$

$$t_{\mathrm{rel}} \leq CL^4 \quad \text{and} \quad t_{\mathrm{mix}}(\epsilon) \leq t_{\mathrm{rel}} \log \left(\frac{1}{\epsilon \mu_{\mathrm{min}}}\right) \leq CL^5 \log \left(1/\epsilon\right)$$

 \bullet ergodic L^2 bound for functions with $\mu^x(h)=0$, $x\in\Lambda$

$$\mathbb{E}_{\mu} \Big| \int_{0}^{t} h(\eta_{u}^{\mathcal{E}}) du \Big|^{2} \le 24t \, t_{\mathsf{rel}} \sum_{x \in \Lambda} \mu \big[\mathcal{E}^{x} \big] \, \mu^{x} \big(h^{2} \big), \tag{1}$$

[J. Beltrán and C. Landim '15, Martingale approach to metastability]

2 - Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\,\cdot\,|\mathcal{E}^x]$

 \bullet bound on relaxation time $t_{\rm rel},$ mixing time $t_{\rm mix}(\epsilon)$

$$t_{\mathrm{rel}} \leq CL^4 \quad \text{and} \quad t_{\mathrm{mix}}(\epsilon) \leq t_{\mathrm{rel}} \log \left(\frac{1}{\epsilon \mu_{\mathrm{min}}}\right) \leq CL^5 \log \left(1/\epsilon\right)$$

ullet ergodic L^2 bound for functions with $\mu^x(h)=0$, $x\in\Lambda$

$$\mathbb{E}_{\mu} \Big| \int_{0}^{t} h(\eta_{u}^{\mathcal{E}}) du \Big|^{2} \leq 24t \, t_{\mathsf{rel}} \sum_{x \in \Lambda} \mu \Big[\mathcal{E}^{x} \Big] \, \mu^{x} \Big(h^{2} \Big), \tag{1}$$

[J. Beltrán and C. Landim '15, Martingale approach to metastability]

• Apply (1) + 1. + bounds on $\sum_{y \neq x} r^{\Lambda}(x,y)$ from 2. to $h = r^{\mathcal{E}} - r^{\Lambda}$ to get

$$\sup_{\eta \in \mathcal{E}} \mathbb{E}_{\eta} \bigg| \theta_L \int_0^t \bigg(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ Y^L) (\eta^{\mathcal{E}} (\theta_L s)) \bigg) ds \bigg| \to 0$$

3 – Mean rates as capacities

$$\begin{split} &\mu[\mathcal{E}^{A_1}]r^{\Lambda}(A_1,A_2) = \mu[\mathcal{E}^{A_1}] \, \frac{1}{|A_1|} \sum_{x \in A_1 \atop y \in A_2} r^{\Lambda}(x,y) \qquad A_1, \, A_2 \subset \Lambda \\ &= \frac{1}{2} \Big(\mathrm{cap}\big(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}\big) + \mathrm{cap}\big(\mathcal{E}^{A_2}, \mathcal{E} \setminus \mathcal{E}^{A_2}\big) - \mathrm{cap}\big(\mathcal{E}^{A_1 \cup A_2}, \mathcal{E} \setminus \mathcal{E}^{A_1 \cup A_2}\big) \Big) \end{split}$$

[Bovier, den Hollander, Metastability - a potential theoretic approach]

Prove bounds

$$\theta_L \operatorname{cap}(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}) \le K(b, \rho) (1 + \bar{\epsilon}_L) \sum_{\substack{x \in A \\ y \notin A}} \operatorname{cap}_{\Lambda}(x, y)$$

$$\theta_L \operatorname{cap}(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}) \ge K(b, \rho) (1 - \underline{\epsilon}_L) \sum_{\substack{x \in A \\ y \notin A}} \operatorname{cap}_{\Lambda}(x, y)$$

where $\operatorname{cap}_{\Lambda}(x,y) = \frac{1}{|x-y|\,(L-|x-y|)}$ capacities of symmetric rw on Λ .

3 - Regularization

- ullet Total exit rate from a well $\propto \log L$
- ullet Upper and lower bounds for rates $r^{\Lambda}(x,y)$ do not match

see also [A. Bovier, R. Neukirch '14]

3 - Regularization

- \bullet Total exit rate from a well $\propto \log L$
- ullet Upper and lower bounds for rates $r^\Lambda(x,y)$ do not match see also [A. Bovier, R. Neukirch '14]
- ullet Coarse graining in Λ & Lipschitz test functions to regularize

$$\theta_L \mathcal{L}^{\Lambda} f(x) = \sum_{m=1}^{\bar{L}} r^{\Lambda}(V_0, V_m) \left(f\left(\frac{x + \ell m}{L}\right) - f\left(\frac{x}{L}\right) \right) + o(1)$$

with
$$|V_i| = \ell \propto \alpha_L \log^3 L \to \infty$$
, $\bar{L} = L/\ell$.
(\to leads to choice of $\alpha_L = L^{1/2+5/(2b)}$)

 \bullet matching bounds from capacity representation for $r^{\Lambda}(V_0,V_m)$

$$\sup_{\eta \in \mathcal{E}} \mathbb{E}_{\eta} \Big| \int_{0}^{t} \Big(\mathcal{L}^{\mathbb{T}} f(Y_{s}^{L}) - \theta_{L} \mathcal{L}^{\Lambda} f(Y_{s}^{L}) \Big) ds \Big| \to 0$$

Thank you!