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Overview

Heterogeneities in KCM dynamics look in space-time plots like
phase coexistence

Probe by biasing activity of trajectories, equivalent to looking
at large deviations of activity

Dynamics in biased phases: auxiliary process with effective
potential

Non-trivial in KCMs (many-body), so study simpler models

Trap models: interplay of aging dynamics and bias
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Dynamical heterogeneity

Dynamics in real (e.g. colloidal) glasses are intermittent, and
heterogeneous

P Sollich & C Marteau Driven trap models



Dyn trans Biased traj Eff Bouchaud

Space-time plots
FA model, d = 1

Domains of different space-time phases?
(Jack, Garrahan, Chandler, Lecomte, van Wijland, Lecomte, Pitard, . . . )

P Sollich & C Marteau Driven trap models



Dyn trans Biased traj Eff Bouchaud

Distribution of total activity
Space-time boxes, length N , time t

At = total number of spin flips

Two peaks in lnP (At): phase coexistence

Analogous to magnetization in Ising model at h = 0
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Exploring phase coexistence

Equilibrium:

Bias configurations by factor ehM

Gibbs free energy

Space-time:

Bias trajectories by factor e−gA

Dynamical free energy
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Stochastic dynamics
Markov, unbiased

Start from stochastic model with configurations C
Transition rates W (C′ → C)
Master equation:

∂

∂t
p(C, t) = −r(C)p(C, t) +

∑
C′ 6=C

W (C′ → C)p(C′, t)

Escape rate from C: r(C) =
∑
C′ 6=CW (C → C′)

Matrix/vector form: let |P (t)〉 =
∑
C p(C, t)|C〉, then

∂

∂t
|P (t)〉 = W|P (t)〉

Master operator W has matrix elements
〈C|W|C′〉 = W (C′ → C)− δC,C′r(C)
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Time-integrated quantities

In simplest case, might want to bias trajectories according to
cumulative value of some observable

Bt =

∫ t

0
dt′B(t′)

where B(t′) = b(C(t′)) depends only on configuration C(t′)
Or bias depending on transitions that system makes:
if configuration sequence is C0, C1, . . . , CK , use

At =

K−1∑
k=0

α(Ck, Ck+1)

At = total number of moves if α(C, C′) = 1 for all C 6= C′
(activity)

Or α(C, C′) could measure contribution of C → C′ to total
current, accumulated shear strain, entropy current, . . .
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Biasing trajectory probabilities

Trajectory π; bias probability to give large/small values of Bt:

P [π, g] = Z(g, t)−1P [π, 0] exp [−gBt]

Bias parameter g; canonical version of hard constraint on Bt
Trajectory partition function (discretize, t = M∆t)

Z(g, t) =
∑
C0...CM

exp{∆t
M∑
i=1

[W (Ci−1→Ci)− gb(Ci−1)]}p0(C0)

→ 〈e|eW(g)t|0〉, W(g) = W− g
∑
C
b(C)|C〉〈C|

Projection state 〈e| =
∑
C〈C|

Unbiased initial (e.g. steady) state |0〉 =
∑
C p0(C)|C〉
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Dynamical free energy

Define by analogy with equilibrium free energy as

ψ(g) ≡ lim
t→∞

t−1 lnZ(g, t)

If configuration space is finite, can decompose
W(g) =

∑
i ωi|Vi〉〈Ui|

Then ψ(g) = maxi ωi (Lebowitz Spohn)

Maximum eigenvalue “generically” non-degenerate

Same for bias in At (activity, current etc), with

〈C|W(g)|C′〉 =

{
W (C′ → C)e−gα(C′,C), C 6= C′
−r(C), C = C′
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Bias as time-dependent master operator
(Transcribing from Chetrite & Touchette)

Can we write biased path probability

P [π, g] = Z(g, t)−1
M∏
i=1

〈Ci|eW(g)∆t|Ci−1〉 × p0(C0)

. . . as resulting from effective time-dependent master equation:

P [π, g] =

M∏
i=1

〈Ci|eW
aux
i−1(g)∆t|Ci−1〉 × paux

0 (C0)

Idea: set

〈Ci|eW
aux
i−1(g)∆t|Ci−1〉 =

ui(Ci)
ui−1(Ci−1)

〈Ci|eW(g)∆t|Ci−1〉

P Sollich & C Marteau Driven trap models



Dyn trans Biased traj Eff Bouchaud

Bias as time-dependent master operator (cont)

Require: uM (CM ) = 1, paux
0 (C0) = p0(C0)u0(C0)/Z(g, t) and

normalization∑
Ci

〈Ci|eW
aux
i−1(g)∆t|Ci−1〉 ≡

∑
Ci

ui(Ci)
ui−1(Ci−1)

〈Ci|eW(g)∆t|Ci−1〉 = 1

Hence the ui can be determined backwards in time:

ui−1(Ci−1) =
∑
Ci

ui(Ci)〈Ci|eW(g)∆t|Ci−1〉

In vector notation: 〈Ui−1| = 〈Ui|eW(g)∆t

Solution: 〈Ui| = 〈e|eW(g)(M−i)∆t

Thus paux
0 (C) = 〈e|eW(g)t|C〉p0(C)/〈e|eW(g)t|0〉, normalized
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Effective transition rates
Continuous time: τ = i∆t, ∆t→ 0

Expanding relation between Waux and W(g) to O(∆t) gives
effective rates

〈C|Waux
τ |C′〉 = 〈C|W(g)|C′〉 uτ (C)

uτ (C′)

or explicitly

W aux(C′ → C) = W (C′ → C)e−gα(C′,C) uτ (C)
uτ (C′)

Effect of uτ (C) can be interpreted as Metropolis-like factor

e−β[Eeff
τ (C)−Eeff

τ (C′)]/2, with effective potential

Eeff
τ (C) = (−2/β) lnuτ (C)
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Effective exit rates

Effective exit rates follow from normalization as

−〈C|Waux
τ |C〉 = −〈C|W(g)|C〉+

〈Uτ |W(g)|C〉
〈Uτ |C〉

Explicitly

raux(C) = r(C) +
〈Uτ |W(g)|C〉
〈Uτ |C〉

Shift in general dependent on C (and τ)
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Time dependence

Effective master operator and potential in general
time-dependent

Also state probabilities

pτ (C) =
〈e|eW(g)(t−τ)|C〉〈C|eW(g)τ |0〉

Z(g, t)
=
uτ (C)vτ (C)
Z(g, t)

where |Vτ 〉 = eW(g)τ |0〉
Product of forward (from past) and backward (from future)
factors
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Time-translation invariance
Restored for long t− τ

If W(g) has a non-degenerate maximal eigenvalue,
W(g) = ψ(g)|V 〉〈U |+ . . . then

eW(g)(t−τ) = eψ(g)(t−τ)
[
|V 〉〈U |+O(e−Γ(t−τ))

]
in terms of gap Γ to next eigenvalue

Neglecting exponentially small corrections for Γ(t− τ)� 1,

〈Ut−τ | ≈ 〈e|V 〉eψ(g)(t−τ)〈U |

hence ut−τ (C) ∝ u(C), time-independent effective potential
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Time translation invariance: state probabilities
Need long t− τ and τ

Partition function becomes

Z(g, t) = 〈e|eW(g)t|0〉 ≈ eψ(g)t〈e|V 〉〈U |0〉

and similarly |Vτ 〉 ≈ |V 〉eψ(g)τ 〈U |0〉
State probabilities follow as:

pτ (C) ≈ 〈e|V 〉e
ψ(g)(t−τ)〈U |C〉〈C|eψ(g)τ |V 〉〈U |0〉

eψ(g)t〈e|V 〉〈U |0〉
= 〈U |C〉〈C|V 〉

So if Γτ � 1 and Γ(t− τ)� 1, state probabilities are (e.g.

Giardina Kurchan Peliti 2006, Jack PS 2010, Popkov Schütz Simon 2010)

pTTI(C) = u(C)v(C)

Independent of time away from temporal boundaries
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Time translation invariance: exit rates

As 〈Uτ | ∝ 〈U | for large t− τ , shift of exit rates

〈Uτ |W(g)|C〉
〈Uτ |C〉

≈ 〈U |W(g)|C〉
〈U |C〉

= ψ(g)

So in TTI regime, all exit rates

raux(C) = r(C) + ψ(g)

are shifted by same amount (RML Evans)

Implies bound ψ(g) ≥ −minC r(C)
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Trap models

Picture of glassy dynamics: if(!) dominated by energy then
at low T have activated jumps. . .

. . . between local energy minima in configuration space

Take each minimum as a configuration Ci or “trap”

Trap depth Ei > 0

Simplest assumption on kinetics gives Bouchaud trap model

W (Ci → Cj) =
1

N
exp(−βEi)

where N = number of configurations

Golf course landscape: always activate to “top” (E = 0)

Mean field connectivity
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Glass transition and aging

Model specified by energies {Ei}
For N →∞, distribution of energies ρ(E)

Typically taken as ρ(E) = exp(−E)

Gibbs-Boltzmann equilibrium distribution
∝ exp(βE) exp(−E) normalizable only for β < 1

Glass transition at T = 1/β = 1

For T < 1 system must age, typical E ∼ T ln(t)
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Focus

How do aging and activity bias interact?

Method: find Laplace transforms of uτ (E), vτ (E)

Then look at large t− τ or τ (z → 0)
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Dynamical free energy
T = 2.5
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Dynamical phase transition
1st order for T > 1, 2nd order for T < 1

Note: −ψ′(g) = average activity
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Above average activity
g = −2(dark), −0.2, −0.02 (light), steady state energy distributions
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Left: T = 2.5; right: T = 0.7

For T < 1, typical energy increases as g → 0;
remnant of transition to aging dynamics

Effective potential Eeff = (2/β) ln(1 + ψeβE)
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Effective transition rates
g = −2,−0.2,−0.02
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W aux(E1 → E2) (for E1 = 2, T = 0.7)

Jumps to shallow traps are favoured
Overall rate increases with |g|
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Below average activity
g > 0, large t, p0(E) = ρ(E), T = 0.1, 0.5, 1.0 left to right
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pτ (E) ∝ ρ(E) exp(−te−βE) (away from boundaries)

Independent of g and τ
Eeff = 2T (t− τ)e−βE is time-dependent
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Effective transition rates
t− τ = 103(light), 104, 105, 106(dark)
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W aux(E1 → E2) (at E1 = 7, T = 0.4)

At early times jumps only into deep traps
Effective threshold level rises towards end of trajectory
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Phase diagram

Direct signature of glass transition only at g = 0
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Summary & Outlook

Summary

Activity bias in Bouchaud trap model has non-trivial effects

Wipes out most signatures of glass transition

Low-activity phase: time-dependent effective potential
forces time-independent pτ (E)

Outlook

Outlook: other trap models, e.g. Barrat-Mézard, transition
rates 1/[1 + eβ(E′−E)]

At T = 0 this shows (entropic) aging for any g

Indications of dynamic transition at g 6= 0 for T < 1/2

Trap models on graphs with finite connectivity – study using
cavity method
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