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@ Heterogeneities in KCM dynamics look in space-time plots like
phase coexistence

@ Probe by biasing activity of trajectories, equivalent to looking
at large deviations of activity

@ Dynamics in biased phases: auxiliary process with effective
potential

@ Non-trivial in KCMs (many-body), so study simpler models

@ Trap models: interplay of aging dynamics and bias
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Dyn trans
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@ Dynamical phase transitions and large deviations

P Sollich & C Marteau Driven trap models



Dyn trans

Dynamics in real (e.g. colloidal) glasses are intermittent, and
heterogeneous
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Dyn trans

Space-time plots
FA model, d =1

space

time

Domains of different space-time phases?
(Jack, Garrahan, Chandler, Lecomte, van Wijland, Lecomte, Pitard, ...)
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Dyn trans

Distribution of total activity

Space-time boxes, length N, time ¢

o A; = total number of spin flips
@ Two peaks in In P(A;): phase coexistence

@ Analogous to magnetization in Ising model at h = 0
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Dyn trans
Exploring phase coexistence

Equilibrium:
@ Bias configurations by factor e
@ Gibbs free energy

Space-time:
e Bias trajectories by factor e =94

@ Dynamical free energy
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© Biased trajectory ensembles
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Biased traj

Stochastic dynamics

Markov, unbiased

@ Start from stochastic model with configurations C
@ Transition rates W (C' — C)

o Master equation:

gtp(C,t) =—r(C)p(C,t) + Z W (C" — C)p(C',t)
Cr£C

o Escape rate from C: 7(C) = > ¢/, W(C — ')
e Matrix/vector form: let |P(t)) = > - p(C,t)|C), then

0
5/ L (t) = WIP(?))

@ Master operator W has matrix elements
(CIW|C") =W (C" = C) — d¢cr(C)
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Biased traj
Time-integrated quantities

@ In simplest case, might want to bias trajectories according to
cumulative value of some observable

t
B, = / dt'B(t)
0

where B(t') = b(C(t')) depends only on configuration C(t')
@ Or bias depending on transitions that system makes:
if configuration sequence is Cy,Cy,...,Ck, use
K—1
Ar =" a(Cr,Cry1)
k=0
e A; = total number of moves if «(C,C’) =1 for all C # C’
(activity)
e Or «(C,C'") could measure contribution of C — C’ to total
current, accumulated shear strain, entropy current, ...
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Biased traj
Biasing trajectory probabilities

e Trajectory 7; bias probability to give large/small values of B;:
Plr,g) = Z(g,t)”" P[r, 0] exp [~gB]

@ Bias parameter g; canonical version of hard constraint on B;

o Trajectory partition function (discretize, t = M At)

Z(g:t) = eXp{AtZ Ci—1—Ci) — gb(Ci—1)]}po(Co)

Co..Cp

= (ele™@0),  W(g) =W -g> bC)C)(C
C

@ Projection state (e[ =) - (C]
@ Unbiased initial (e.g. steady) state [0) = >, po(C)|C)
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Biased traj
Dynamical free energy

@ Define by analogy with equilibrium free energy as

P(g) = tlim\ t11In Z(g,t)

—00

o If configuration space is finite, can decompose
W(g) = > wil Vi) (Uil

@ Then v (g) = max; w; (Lebowitz Spohn)

@ Maximum eigenvalue “generically” non-degenerate

@ Same for bias in A; (activity, current etc), with

n_ [ W(C —Ce 920 £
ermgiey = { MIE cre
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Outline

© Biased dynamics & effective potential
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Eff

Bias as time-dependent master operator
(Transcribing from Chetrite & Touchette)

@ Can we write biased path probability
M
Plr,gl = Z(g,t) " [J(Cile™ D2 |Cim1) x po(Co)
i=1

@ ...as resulting from effective time-dependent master equation:

M
Plr.g] = [[(Cile™ ™19 1) x p§™(Co)
i=1
@ Idea: set
aux ] C)
C;leWiti@At o |y = _uil(C) C;ileW @At o
(Ci ICi-1) Ui—l(ci—1)< | ICi—1)
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Eff

Bias as time-dependent master operator (cont)

e Require: up/(Car) =1, p§™(Co) = po(Co)uo(Co)/Z(g,t) and
normalization

Yo (cilei@Ae, )y =T C|eW(9At|C =1
C, 13 Uj— 1 Ci— 1

Hence the u; can be determined backwards in time:

i (C Zuz )€l @A e )

In vector notation: (U;_1| = (U;|eV(9)A¢
Solution: (U;| = (e|eW(@)(M—D)At
Thus p§™(C) = (e|e™9|C)po(C)/(e]e™9)|0), normalized
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Eff

Effective transition rates
Continuous time: 7 = iA¢, At — 0

e Expanding relation between W™ and W(g) to O(At) gives
effective rates

ur(C)

ur (C'

(CIWF™[C’) = (C[W(g)IC")

~—

or explicitly

aux [/ _ / —ga(C',C) U’T(C)
W' —= C) =W (C" = C)e w(C)

o Effect of u-(C) can be interpreted as Metropolis-like factor

e BIEF OB (/2 with effective potential

ES(C) = (=2/8) Inu,(C)
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Effective exit rates

@ Effective exit rates follow from normalization as

aux _ <UT|W(g)’C>
—(CIWEIC) = ~{CIW (@) + ey
o Explicitly (U [W(g)|C)
o U-|W(g
rtC) = (@) + - ({Urey

@ Shift in general dependent on C (and 7)
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Time dependence

o Effective master operator and potential in general
time-dependent

@ Also state probabilities

€)= LTI CITO0) _ ur(Crr(C)
P = Z(g,1) AR

where |V;) = e"(9)7|0)
@ Product of forward (from past) and backward (from future)
factors
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Eff

Time-translation invariance
Restored for long ¢t — 7

o If W(g) has a non-degenerate maximal eigenvalue,
W(g) = ¥(g9)|[VWU| + ... then

eW@t=7) — V7)1V (U] + O(e 7))

in terms of gap I to next eigenvalue

o Neglecting exponentially small corrections for I'(t — 7) > 1,
(Ui—r| = (e|V)e? D= (U|

hence u;—,(C) x u(C), time-independent effective potential
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Eff

Time translation invariance: state probabilities

Need long ¢t — 7 and 7

@ Partition function becomes
Z(g,t) = (e|e™9")0) ~ e W (e|V)(U0)
and similarly |V;) ~ [V)e¥@7(U0)
@ State probabilities follow as:

(e|V)e? WU C) (Cle?@TV)(U]0)

pr(C)~ S e[V (0]0)

= {leycv)

@ Soif 't > 1and I'(t — 7) > 1, state probabilities are (e.g.
Giardina Kurchan Peliti 2006, Jack PS 2010, Popkov Schiitz Simon 2010)

p"HH(C) = u(C)u(C)

@ Independent of time away from temporal boundaries
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Eff

Time translation invariance: exit rates

o As (U;| < (U] for large t — 7, shift of exit rates

{U-[W(g)lc) _ {UIW(9)C)
(U-[C) {uic)

=(9)
@ So in TTI regime, all exit rates

r(C) = r(C) +¥(9)

are shifted by same amount (RML Evans)

@ Implies bound 9(g) > — min¢ r(C)
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Bouchaud

Outline

@ Bouchaud trap model
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Bouchaud
Trap models

@ Picture of glassy dynamics: if(!) dominated by energy then
at low T have activated jumps. ..

... between local energy minima in configuration space
Take each minimum as a configuration C; or “trap”
Trap depth E; >0

Simplest assumption on kinetics gives Bouchaud trap model

W(C; — Cj) = %exp(—ﬂEi)

where N = number of configurations
@ Golf course landscape: always activate to “top” (E = 0)

@ Mean field connectivity
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Bouchaud
Glass transition and aging

e Model specified by energies {F;}
@ For N — oo, distribution of energies p(E)

Typically taken as p(E) = exp(—F)

@ Gibbs-Boltzmann equilibrium distribution

x exp(BE) exp(—FE) normalizable only for § < 1
Glass transition at T =1/ =1

For T' < 1 system must age, typical £ ~ T In(t)
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Bouchaud
Focus

How do aging and activity bias interact?

@ Method: find Laplace transforms of u.(E), v (F)

@ Then look at large t — 7 or 7 (2 — 0)
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Bouchaud

Dynamical free energy
T =25
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g

Dynamical phase transition
15t order for T > 1, 2™ order for T' < 1
Note: —'(g) = average activity
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Bouchaud

Above average activity
g = —2(dark), —0.2, —0.02 (light), steady state energy distributions

0 2 4 6 8
Energy Energy

Left: T'= 2.5; right: T'=0.7

For T' < 1, typical energy increases as g — 0;
remnant of transition to aging dynamics
Effective potential Ef = (2/8)In(1 + 1efF)
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Bouchaud

Effective transition rates

g=—2,-0.2,—-0.02

0.15
3
3 0.10
=

0.05

0.00

E2
Wa(E] — E3) (for E1 =2, T =0.7)
Jumps to shallow traps are favoured
Overall rate increases with |g]|
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Bouchaud

Below average activity

g >0, large t, po(E) = p(E), T = 0.1,0.5, 1.0 left to right
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Energy
pr(E) x p(E) exp(—te_BE) (away from boundaries)
Independent of ¢ and 7
B = 27 (t — 7)e PE is time-dependent
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Bouchaud

Effective transition rates
t — 7 = 10%(light), 10*,10°, 105(dark)
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2.x1077

1.5x107

Waux

1.x107

5.x107¢

0 2 4 6 8 10 12
E2

WA (E) — E9) (at E1 = 7,T = 0.4)

At early times jumps only into deep traps
Effective threshold level rises towards end of trajectory

P Sollich & C Marteau Driven trap models



Bouchaud
Phase diagram

systéme
actif

systéme
figé

v
«

g<0 g=0 g>0

Direct signature of glass transition only at g =0
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Bouchaud
Summary & Outlook

Summary
@ Activity bias in Bouchaud trap model has non-trivial effects
@ Wipes out most signatures of glass transition

@ Low-activity phase: time-dependent effective potential
forces time-independent p.(E)

Outlook

@ Outlook: other trap models, e.g. Barrat-Mézard, transition
rates 1/[1 + (¥ =F)]

@ At T' = 0 this shows (entropic) aging for any g
@ Indications of dynamic transition at g # 0 for 7' < 1/2

@ Trap models on graphs with finite connectivity — study using
cavity method

P Sollich & C Marteau Driven trap models



	Dynamical phase transitions and large deviations
	Biased trajectory ensembles
	Biased dynamics & effective potential
	Bouchaud trap model

