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Dynamic Order-Disorder in Atomistic
Models of Structural Glass Formers
Lester O. Hedges,1* Robert L. Jack,1,2* Juan P. Garrahan,3 David Chandler1†

The glass transition is the freezing of a liquid into a solid state without evident structural order.
Although glassy materials are well characterized experimentally, the existence of a phase transition
into the glass state remains controversial. Here, we present numerical evidence for the existence of
a novel first-order dynamical phase transition in atomistic models of structural glass formers. In
contrast to equilibrium phase transitions, which occur in configuration space, this transition occurs
in trajectory space, and it is controlled by variables that drive the system out of equilibrium.
Coexistence is established between an ergodic phase with finite relaxation time and a nonergodic
phase of immobile molecular configurations. Thus, we connect the glass transition to a true phase
transition, offering the possibility of a unified picture of glassy phenomena.

When supercooled far below their melt-
ing temperatures, many liquids be-
come extremely viscous, so much so

that at low enough temperatures these materials
become amorphous solids (1, 2). This phenom-
enon is termed the “glass transition.” The
dynamical behavior of molecules in a glass is
heterogeneous in that there are domains of
mobile and immobile molecules segregated in
space (3–6). At equilibrium, the spatial extent of
these domains is large compared with molecular
dimensions (5) but not so large to imply an actual
phase transition. Indeed, and despite the name
given to it, there is no observation that demon-
strates a link between the glass transition and a
phase transition controlled by traditional thermo-
dynamic variables like temperature and pressure.

Nevertheless, for idealized lattice models, re-
cent work has established the existence of a
nontraditional phase transition, one controlled by
variables that drive a system out of equilibrium
(7–9). Here, we present numerical evidence for
the same behavior in atomistic models of struc-
tural glass formers.We do so with a suitable form
of transition path sampling (10) that allows us to
study ensembles of long trajectories for super-
cooled fluids with several hundred particles
driven out of equilibrium by a field that couples
to their mobility. By adjusting field strength,
trajectories of these supercooled fluids can be
moved reversibly between ergodic and non-
ergodic behaviors. The former are mobile states
with finite relaxation times: the system forgets its
initial state. The latter are immobile states that
remember initial conditions for all time. At inter-
mediate field strengths, trajectory space is filled

by two coexisting domains, one that is ergodic
and one that is nonergodic.

In this way, it appears that dynamic hetero-
geneity observed in the equilibrium dynamics of
supercooled fluids is a precursor to a first-order
phase transition in space-time. First-order tran-
sitions are associated with a discontinuity in an
order parameter and a corresponding singularity
in a partition function, such as the discontinuity
in density for a liquid-vapor transition. These
mathematical features emerge from the principles
of statistical mechanics in the limit of a very large
system, what is usually called the “thermody-
namic” limit (11). For finite systems studied
numerically, there are no such singularities. Evi-
dence of a phase transition in these cases is found
in the behaviors of crossovers from one phase to
another (12). Figure 1 illustrates the system-size
behavior of a crossover. For the transition we
consider, the partition function is a sum over dy-
namical histories (i.e., trajectories) of the system,
and the order parameter measures the amount of

activity or mobility that occurs amongN particles
in a volume V with trajectories that run for an
observation time, tobs. As such, the pertinent mea-
sure of system size is a volume in space-time, the
product N × tobs or equivalently V × tobs. In the
work reported here, we consider spatial volumes
that are 10 to 30 times larger than the correlation
volume of the equilibrium system and observa-
tion times that are 10 to 100 times longer than a
structural relaxation time of the undriven system.
These sizes are sufficient to exhibit behaviors
suggestive of a nonequilibrium phase transition.

Equilibrium and nonequilibrium phase
transitions. To discuss how these behaviors
are revealed, let us first recall how Gibbs’ sta-
tistical mechanics is used to study traditional
equilibrium phase transitions (11). Taking a sys-
tem of N particles at a pressure p, we use the
volume V as an order parameter and take micro-
states to be points in configuration space, x =
(r1, r2, ..., rN), where the vector ri denotes the
position of the ith particle. Different phases, such
as liquid and vapor, are distinguished from the
other by the typical size of V. Changes in V are
coupled to the thermodynamic field p or bp, where
1/b stands for Boltzmann’s constant times temper-
ature, kBT. In particular, the probability of a con-
figuration, x, is proportional toP0(x)exp[–bDpV(x)],
where P0(x) is the probability of x at the reference
field or pressure p0 = p – Dp. The mean volume
of the system with this distribution is 〈V〉p ≡ Vp,
which is depicted schematically in Fig. 1. A first-
order phase transition is manifested by a dis-
continuity at the pressure p = p*. At this value of
the pressure, two phases coexist with respective
volumes per particle v1 and v2.

At coexistence, the distribution function for
the order parameter is bimodal. The two peaks in
the distribution coincide with the two equilibrium
phases. There is a low probability to observe an
intermediate value of V, between Nv1 and Nv2 in
Fig. 1. This low probability decreases exponen-
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Fig. 1. Finite size effects
of equilibrium and non-
equilibrium phase transi-
tions. The mean volume
Vp manifests an equilibri-
um first-order phase tran-
sition at pressure p = p*,
whereas the mean dynam-
ical activity Ks manifests a
dynamical first-order phase
transition at the dynamical
field s = s*. At conditions
of phase coexistence, the
volumedistribution function,
Pp(V), and the dynamical
activity distribution, Ps(K),
are bimodal. Configurations
or trajectories with interme-
diate behaviors lie at much
higher free energies (or lower probabilities) than those of the basins. For finite systems, discontinuous
phase transitions become crossovers with widths that vanish as system size, N, and observation time, tobs,
grow to infinity.
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More	  on	  first	  order	  phase	  transi8on	

Second	  order	  phase	  transi8on	

-‐  Where	  is	  true	  cri8cal	  point?	  
(with	  finite	  size	  simula8ons)	  

-‐  Precise	  order	  of	  the	  transi8on	  	

-‐  From	  small	  system	  size	  simula8ons,	  	

-‐  (i)	  Scaling	  speed	  ?	  
-‐  (ii)	  Scaling	  func8ons	  ?	  	
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asymptotic amplitudes, a+ in Eq. (3.5) may vanish
identically. More physically, however, when con-
sidering the behavior of a large finite system, one
may interpret the exponent vH as relating to what
might better be called a coherence or persistence
Iength for the coexisting phases. Its divergence cor-
responds to the occurrence of Iong-range order in
those correlation functions that distinguish the two
phases. For the simple Ising ferromagnet it suffices
to consider the standard spin-spin correlation func-
tion (s Os, ) which approaches the square of the
spontaneous magnetization as

l
r

l
~ ao. (Note that

it is the net correlation function (s 0 s-, )—(s 0 s - ) which determines the finite correlation
length in the separate coexisting or "ordered"
phases. ) This interpretation is also quite consistent
with the standard hyperscaling relations "

theory yields a first-order transition in zero field.
There are now two "nearby" critical points, C+ andC, symmetrically placed in the ferromagnetic ex-
ample; if, as some parameter changes, both C+ and
C approach F, one obtains a tricritical point when
they just merge; if only one of C+ or C meets Y,
one obtains instead a critical endpoint.
In the second case, which might be termed a

"first-order critical point, " the transition in ques-
tion remains topologically the terminal point on a
line of first-order transitions, as in Fig. 1(a). It is
intuitively plausible that if the spontaneous magnet-
ization then has a discontinuity at the critical point
C, it implies that the susceptibihty X=(BM/BH)r
must diverge as C is approached from above in zero
field. ' Thus we may postulate the usual critical-
point form

2—ri =d (5—1)/(5+ 1)=(2/vH )—d X=C+
l
T—T,

~

" as T~T,+, (3.9)

which, when 5~ oo or Eq. (3.6) is used, yield the
decay exponent d —2+q=0 corresponding to no
decay, i.e., to long-range order.
In some models and various real systems one also

observes a first-order transition when the tempera-
ture is increased at fixed, zero ordering field.
Specifically, one may find a discontinuity in the
spontaneous magnetization at T=T, in place of the
normally expected critical-point variation

Mo(T)=B l T T, l

~ as T—~T,—, (3.7)

with P&0. Similarly, one may observe a latent heat
at the transition corresponding to a discontinuity in
the internal energy, in place of the normal critical
behavior

U(T) U, =+A+ i
T—T,—l ' ~ as T +T, + . —

(3.8)

[Note, however, that the absence of a latent heat on
varying the magnetic field across a first-order fer-
romagnetic transition below T, is merely an ac-
cident due to the fact that this phase boundary hap-
pens to be parallel to the temperature axis; by con-
trast, crossing the first-order phase boundary H, (T)
of a metamagnet below its tricritical point is associ-
ated with a latent heat].
Two cases must now be distinguished: The most

common situation in practice is illustrated in Fig.
1(b), where it is seen that the first-order transition
observed in zero field, at the point now labeled F, is
properly described as a trE'pIe point at which three
phases, all noncritical, may coexist. This is the
standard situation when mean-field or Landau

and expect yg 0.
An example of such a first-order critical point

occurs in a one-dimensional Ising model with long-
range ferromagnetic interactions decaying with dis-
tance as I/r, as first suggested by Thouless' "
and later proved for a similar model by Dyson. ' ' '
The critical point at T=H =0 in the nearest-
neighbor one-dimensional Ising model represents a
degenerate case of the same phenomenon.
Now the discontinuous vanishing of Mo(T) at

T=T, may be described by P=O in Eq. (3.7). The
scaling relation 2—a=P(1+ 5) then implies 5= ao
(since a (1) and similar arguments, as before, indi-
cate a renormalization-group eigenvalue AH ——b".
Thermodynamically, a discontinuous spontaneous

magnetization does not necessarily imply a latent
heat but, via scaling, we would have y=2—a. A
latent heat can evidently be described in Eq. (3.8) by
a=1. Parallel arguments then yield a correlation
length exponent v= 1/d and a thermal
renormalization-group eigenvalue Az ——b, as be-
fore.
Note, however, that in principle one may also

slope g „(Lj

FIG. 2. Schematic magnetization vs field curves for
an infinite system and a system of finite size L.
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where m is the (infinite volume) spontaneous bulk mag-
netization per lattice site and p is the inverse tempera-
ture, P=llkT. This yields the magnetization (under
periodic boundary conditions)

m~„(T,h;L) =m tanh(PhmV), (2)

which is rounded on the scale L
The situation is less clear for models with asymmetric

(field- or temperature-driven) transitions. An attempt to
understand the finite-size scaling for such models was
made by approximating the equilibrium probability dis-
tribution Pt (s) of an order parameter s [for Ising-like
systems s =(I/V)+cr; is the magnetization per lattice
site] by a sum of two Gaussian distributions. Unfor-
tunately, this approach leads to a controversy [3-5]. Two
different results are obtained if, on one hand [4], the rela-
tive height of these Gaussians is chosen in such a way
that the area under both peaks of PI is equal at the tran-
sition point h =h, (p), or if, on the other hand [5], it is

I irst-order phase transitions are characterized by
discontinuities in the first derivatives of the free energy in
the idealized infinite-volume limit. However, experimen-
tal or simulation data are taken from finite samples,
where the discontinuity is smoothed. As a result, it is a
priori not clear where to locate the transition point, and
sometimes even the order of the transition is difficult to
distinguish. A clear understanding of the details of the
finite-size rounding is therefore important when interpret-
ing experimental or simulation data.
A typical situation in Monte Carlo simulations is to

consider a cubic lattice system of volume V=L with
periodic boundary conditions [1]. For a symmetric first-
order transition, say an Ising magnet, the finite-size scal-
ing is well understood [2,3]: The dependence of the parti-
tion function on an ordering field h is well approximated
by the sum

Phi)I V+ —Phnl V

chosen in such a way that both peaks of PI have equal
height at the transition point [6,7].
Our aim in this Letter is not only to resolve this contro-

versy, but in general, to put the theory of finite-size
effects on a rigorous footing. Restricting ourselves, for
the moment, to the case of field-driven transitions, we will
consider the magnetization

m .,(h,L)=, lnz „(h,L),L d
pLd dh

and the susceptibility

dm .,(h, L)
JA

(3)

(4)

where Z~, (h, L) is the partition function in a volume
V=L with periodic boundary conditions. Our results
will cover a large class of models [8], including perturbed
Ising models at low temperatures, large-N lattice Higgs
models, lattice P(p)d and continuum P(p)2 models, and
more generally, all those models which can be treated by
the Pirogov-Sinai theory [9]. One important class of
models that do not have a contour representation and to
which neither the Pirogov-Sinai theory, nor our results
apply, are Heisenberg-like systems with continuous sym-
metries.
The theory presented here starts from the fact, proven

in Ref. [8], that the partition function of a model describ-
ing the coexistence of N phases at h =h, is, at low tem-
peratures, very well approximated [10] by

Zt.,(h, L) = g exP[ fv(h)PL j, — (5)

where fv(h) is some sort of "metastable free energy" of
the phase q. The quantity f„(h) is equal to the free ener-
gy f(h) of the model whenever q is stable, and
fv(h) &f(h) if q is unstable. While it is not expected
that f„(h) can be chosen as an analytic function [I I], it
still may be introduced in such a way that it is differ-

1734
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Ex.)	  Ising	  spins	  (d-‐dimension)	  	

Zper (h,L) ≈ e
βhmLd + e−βhmL

d

mper (h,L) ≈ m tanh(βhmL
d )

System	  volume	

In	  general	  	
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the crossover between block and cylinder geometry can be described more 
satisfactorily. 

One unstated assumption leading to (2.16)-(2.20) is immediately obvi- 
ous, namely, here (as in FB) it has been implicitly assumed that the 
dimensions satisfy 

Lj>>~(T)  (all j )  (2.21) 

where 400 represents the bulk ( Lj ~ oo) single-phase correlation length mea- 
sured by the decay, or by the second spatial moment of the net correlation 
function 

G(r, - rj) = (sisj) - (sg)(sj) 

This condition is needed in order that the long-distance behavior of the 
correlation functions, (sisj), dominates in (2.12). However, it should cause 
no problems except near the critical point where 400 diverges as Itl 

More serious is the fact that in asserting the predominance of the 
states of "up" or "down" with total magnetization +_ Vmo(T), we have 
overlooked all configurations in which some regions of the system are 
magnetized "up" while others are magnetized "down," as illustrated in Fig. 
1. Such configurations are, of course, suppressed by a Boltzmann factor 
representing the excess free energy associated with the interface (or domain 
wall) between the oppositely magnetized regions: Including them does, 
however, increase the entropy. For block geometry, configurations of this 
sort may thus yield corrections which, relative to the bulk, will be of order 
A / V ~  1/L o. This already suggests corrections to (2.18) [or (2.6)] of order 
1 / V  1/d which remain undisplayed. (See, however, Sections 3 and 4 below.) 

LII ~ . LII--~ 
(b) 

L• I -- + - + 

(C) LII >> ~II (L~'T) 

Fig. 1. Some typical configurations of a system of finite size exhibiting nonuniform ordering 
(or magnetization) forming "up" (or +) and "down" (or - )  domains in a block geometry, (a) 
and (b), and in a cylinder geometry, (c), where Lil-~ oo. 

In	  general	  	
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Fig. 1 Model for the space-time
configuration of the system in the
interfacial regime λ > λc . An
island of activity density
K = 4c2(1 − c) is delimited by
two non-crossing biased random
walks x+(τ ) and x−(τ ),
constrained to start at 0 and end
at 0 at time t

they conjectured that there exists a critical value λc > 0 of λ such that

ϕ(λ) = lim
L→∞

ϕL(λ) =
{−Kλ for λ ≤ λc

−Σ for λ ≥ λc

(7)

where K = 1
Lt

⟨Kt ⟩ = 4c2(1 − c) is the mean average activity in the system, and Σ is the
surface tension accounting for the cost of maintaining an interface between an active and an
inactive region in the system for a long time. In [8], the limit (7) was derived only in a range
of values λ < λ0 and λ > λ1 for some parameters 0 < λ0 < λ1 and not up to the conjectured
critical value λc = Σ

K .
Note that Σ ≠ r∞: the typical configurations of the system at finite λ > λc are not given

by those of the s → ∞ limit. In particular, they present more than a finite number of active
sites. Our aim in this article is to identify the typical configurations occurring at λ > λc ,
and to determine the finite size corrections that they imply on the infinite size result (7).
These configurations are interesting to characterise because they are the first to appear when
increasing λ (that is, they are the first to appear when considering histories of the system
displaying an activity Kt lower than the typical one).

We introduce now a simplified dynamics in order to model the configurations at λ > λc .
In the slow activity regime, the system can be described at a macroscopic level by a small
active “island” of mean activity K in a large sea of an inactive region (see Fig. 1). In the
unbiased dynamics (λ = 0), the inactive region would be invaded and become active. Thus at
the macroscopic level, an interface between an active and an inactive region should perform
a biased random walk with effective jump rates p, q which take into account the growth of
the active region. When λ > λc, the growth of the active region is penalised as the activity
of the system is proportional to the area of the active droplet.

More precisely, the boundaries x+(t) and x−(t) of the active region perform non-crossing
random walks of jump rate p (resp. q) to the left (resp. right) for x+(t) and mirror rates for
x−(t). For simplicity the walks are constrained to start from x = 0 at time 0, and to come
back to 0 at final time t (this assumption does not change the large time asymptotics). In
this effective description, the total activity in the system is proportional to the area of the
active droplet and approximated by K

∫ t

0 dτ [x+(τ ) − x−(τ )] with K = 4c2(1 − c) the mean
density of activity. Thus the counterpart of ⟨e−sKt ⟩ reads

Zeff(s, t) ≡ ⟨e−sK
∫ t

0 dτ [x+(τ )−x−(τ )]δ(x±(t) = 0)⟩p,q

⟨δ±(x(t) = 0)⟩p,q

(8)

where ⟨·⟩p,q denotes the average over trajectories x±(τ )0≤τ≤t without constraint at final time.
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This is the simplest model one can think of to represent the separation between active
and inactive regions in the system. In particular adding more interfaces would lead to a
metastable situation where the active regions eventually merge together to form a unique
island of activity. We think that the interface model represents the correct dynamics of the
system at large scale, but we have not found a rigorous derivation starting from the micro-
scopic dynamics. However, the numerical results of Sect. 3 support the scaling derived from
the simplified model (11).

Thus we conjecture that the finite size corrections to the large deviation function
ϕL(λ) (6) for λ > λc are related to

ϕ̂L(λ) = lim
t→∞

1
t

logZeff

(
λ

L
, t

)
(9)

Inspired by the study of interfaces in the static Ising model [21, 22], and using results from
Brownian bridge theory [23], we show in Appendix A that this leads to the following scaling
at large L

ϕ̂L(λ) = −4
√

pq

(
λK

4L
√

pq

) 2
3

2− 1
3 α1 (10)

where α1 ≈ 2.3381 . . . is the first zero of the Airy function on the negative real axis. As a
consequence, we expect that the finite size scaling of the microscopic model should be given
by (10) plus the extra cost −Σ for creating the interfaces

ϕL(λ) = −Σ − 4
√

pq

(
λK

4L
√

pq

) 2
3

2− 1
3 α1 (11)

for appropriate choice of the effective parameters p, q (see Sect. 4.1 for a discussion on the
effective jump rates). In other words the interface model we have considered leads to L− 2

3

corrections to the constant −Σ .

3 Numerical Results

3.1 Results from the Cloning Algorithm (i): The Free Energy

To investigate whether the finite size corrections (11) inferred from the interface model are
correct, we have measured ϕL(λ) in numerical simulations. Since large deviations are by
definition difficult to measure, a direct sampling of ψL(s) through (3) is not achievable. We
have resorted to a continuous-time version [24, 25] of the Giardinà-Kurchan-Peliti cloning
algorithm [26] in which the dynamics is modified so as to make the large deviation typical,
at the price of mutation/selection rules between a large number of copies of the system
(see [27] for a review on cloning algorithms). Those algorithms have already been used to
determine large deviation functions in lattice gases [6, 28, 29] but not in the scaling regime
s = λ/L that we consider in this article.

A first result (Fig. 2) is that the large deviation function agrees qualitatively with the
conjectured infinite size result (7): the large deviation function ϕL(λ) tends to become linear
for λ < λc and constant for λ > λc as L increases. The critical value is determined as λc =
Σ/K.

The scaling of the deviations from the infinite size result is examined in Fig. 3. In agree-
ment with the interfacial model result (11), ϕL(λ)+Σ scales in L−α at fixed λ (Fig. 3, left),

4 T. Bodineau et al.

Fig. 1 Model for the space-time
configuration of the system in the
interfacial regime λ > λc . An
island of activity density
K = 4c2(1 − c) is delimited by
two non-crossing biased random
walks x+(τ ) and x−(τ ),
constrained to start at 0 and end
at 0 at time t
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⟨Kt ⟩ = 4c2(1 − c) is the mean average activity in the system, and Σ is the
surface tension accounting for the cost of maintaining an interface between an active and an
inactive region in the system for a long time. In [8], the limit (7) was derived only in a range
of values λ < λ0 and λ > λ1 for some parameters 0 < λ0 < λ1 and not up to the conjectured
critical value λc = Σ
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by those of the s → ∞ limit. In particular, they present more than a finite number of active
sites. Our aim in this article is to identify the typical configurations occurring at λ > λc ,
and to determine the finite size corrections that they imply on the infinite size result (7).
These configurations are interesting to characterise because they are the first to appear when
increasing λ (that is, they are the first to appear when considering histories of the system
displaying an activity Kt lower than the typical one).

We introduce now a simplified dynamics in order to model the configurations at λ > λc .
In the slow activity regime, the system can be described at a macroscopic level by a small
active “island” of mean activity K in a large sea of an inactive region (see Fig. 1). In the
unbiased dynamics (λ = 0), the inactive region would be invaded and become active. Thus at
the macroscopic level, an interface between an active and an inactive region should perform
a biased random walk with effective jump rates p, q which take into account the growth of
the active region. When λ > λc, the growth of the active region is penalised as the activity
of the system is proportional to the area of the active droplet.

More precisely, the boundaries x+(t) and x−(t) of the active region perform non-crossing
random walks of jump rate p (resp. q) to the left (resp. right) for x+(t) and mirror rates for
x−(t). For simplicity the walks are constrained to start from x = 0 at time 0, and to come
back to 0 at final time t (this assumption does not change the large time asymptotics). In
this effective description, the total activity in the system is proportional to the area of the
active droplet and approximated by K

∫ t

0 dτ [x+(τ ) − x−(τ )] with K = 4c2(1 − c) the mean
density of activity. Thus the counterpart of ⟨e−sKt ⟩ reads

Zeff(s, t) ≡ ⟨e−sK
∫ t

0 dτ [x+(τ )−x−(τ )]δ(x±(t) = 0)⟩p,q

⟨δ±(x(t) = 0)⟩p,q

(8)

where ⟨·⟩p,q denotes the average over trajectories x±(τ )0≤τ≤t without constraint at final time.

Dynamical	  free	  energy	

1d-‐FA	  !	  2	  dimensional	  spin	  problem?	  	

Brownian	  mo8on	

Brownian	  mo8on	
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This is the simplest model one can think of to represent the separation between active
and inactive regions in the system. In particular adding more interfaces would lead to a
metastable situation where the active regions eventually merge together to form a unique
island of activity. We think that the interface model represents the correct dynamics of the
system at large scale, but we have not found a rigorous derivation starting from the micro-
scopic dynamics. However, the numerical results of Sect. 3 support the scaling derived from
the simplified model (11).

Thus we conjecture that the finite size corrections to the large deviation function
ϕL(λ) (6) for λ > λc are related to
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Inspired by the study of interfaces in the static Ising model [21, 22], and using results from
Brownian bridge theory [23], we show in Appendix A that this leads to the following scaling
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where α1 ≈ 2.3381 . . . is the first zero of the Airy function on the negative real axis. As a
consequence, we expect that the finite size scaling of the microscopic model should be given
by (10) plus the extra cost −Σ for creating the interfaces
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√

pq

(
λK

4L
√

pq

) 2
3

2− 1
3 α1 (11)

for appropriate choice of the effective parameters p, q (see Sect. 4.1 for a discussion on the
effective jump rates). In other words the interface model we have considered leads to L− 2

3

corrections to the constant −Σ .

3 Numerical Results

3.1 Results from the Cloning Algorithm (i): The Free Energy

To investigate whether the finite size corrections (11) inferred from the interface model are
correct, we have measured ϕL(λ) in numerical simulations. Since large deviations are by
definition difficult to measure, a direct sampling of ψL(s) through (3) is not achievable. We
have resorted to a continuous-time version [24, 25] of the Giardinà-Kurchan-Peliti cloning
algorithm [26] in which the dynamics is modified so as to make the large deviation typical,
at the price of mutation/selection rules between a large number of copies of the system
(see [27] for a review on cloning algorithms). Those algorithms have already been used to
determine large deviation functions in lattice gases [6, 28, 29] but not in the scaling regime
s = λ/L that we consider in this article.

A first result (Fig. 2) is that the large deviation function agrees qualitatively with the
conjectured infinite size result (7): the large deviation function ϕL(λ) tends to become linear
for λ < λc and constant for λ > λc as L increases. The critical value is determined as λc =
Σ/K.

The scaling of the deviations from the infinite size result is examined in Fig. 3. In agree-
ment with the interfacial model result (11), ϕL(λ)+Σ scales in L−α at fixed λ (Fig. 3, left),

Dynamical	  free	  energy	
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Fig. 2 Evaluation of the large
deviation function ϕL(λ) using
the cloning algorithm (blue
circles, increasing sizes
L ∈ {8,16,32,64} from bottom
to top at positive λ), and using
direct diagonalisation of the
operator of evolution (54) (plain
green line, L = 8 run as a check).
The red dashed line is the infinite
L result −Kλ for λ < λc , while
the purple dotted horizontal line
is the infinite L result −Σ for
λ > λc . We took c = 1

2

Fig. 3 (Left) Log-log plot of ϕL(λ0)+Σ , for Σ = 0.077, at fixed λ0 = 4.6 as a function of L: the numerical
evaluation (blue dots) fits with a power law corresponding to the exponent α = 2

3 (red line). (Right) Plot
of Lα(ϕL(λ) + Σ) for different values of L (L ∈ {64,96,128,160,192,256,320}). The curves collapse
on a single master curve −1.05λα (dashed blue), in agreement with the interfacial model result (11). The
parameter c of the model is c = 1

2

with α = 2
3 , while the rescaled curves Lα(ϕL(λ) + Σ) collapse onto a master curve −A1λ

α ,
with A1 ≃ 1.04 (Fig. 3, right). Simulations were performed at mean density c = 1

2 , but the
results and the scaling analysis we present do not depend on this value.

3.2 Results from the Cloning Algorithm (ii): The Density

One may test another consequence of the interfacial model by computing the density of ac-
tive sites. Taking the derivative with respect to s in (3) leads to 1

t
⟨Kt ⟩s = −ψ ′

L(s). Thus
using the relation (6) implies that 1

t
⟨Kt ⟩λ = −Lϕ′

L(λ) and from (11) the mean activity
1
t
⟨Kt ⟩λ for histories weighted by e−λKt /L scales as L

1
3 . Therefore, one expects that the

average width of the active droplet is L
1
3 when λ > λc. Strong finite-size effects are still

present (Fig. 4) and wouldn’t allow to check precisely the power 2
3 of the scaling rela-

tion (11). To understand the origin of these corrections a useful tool is the escape rate
r(C) from a configuration C = (ni)1≤i≤L defined as the sum of the jump rates from C :
r(C) = ∑L

i=1[(1 − c)ni + c(1 − ni)](ni−1 + ni+1). As shown in Appendix B, the fluctua-
tions of Kt and of the time integral of the escape rate Rt =

∫ t

0 dτ r(C(τ )) are closely related
(this result is valid in general):

ψL(s) = 1
t
⟨Kt ⟩s − 1

t
⟨Rt ⟩s (12)
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2 , but the
results and the scaling analysis we present do not depend on this value.
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One may test another consequence of the interfacial model by computing the density of ac-
tive sites. Taking the derivative with respect to s in (3) leads to 1
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L(s). Thus
using the relation (6) implies that 1
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L(λ) and from (11) the mean activity
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3 . Therefore, one expects that the

average width of the active droplet is L
1
3 when λ > λc. Strong finite-size effects are still

present (Fig. 4) and wouldn’t allow to check precisely the power 2
3 of the scaling rela-

tion (11). To understand the origin of these corrections a useful tool is the escape rate
r(C) from a configuration C = (ni)1≤i≤L defined as the sum of the jump rates from C :
r(C) = ∑L

i=1[(1 − c)ni + c(1 − ni)](ni−1 + ni+1). As shown in Appendix B, the fluctua-
tions of Kt and of the time integral of the escape rate Rt =
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(this result is valid in general):
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1d-‐FA	  !	  2	  dimensional	  spin	  problem?	  	
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On	  the	  contrary,	  	

-‐	  With	  the	  simplest	  model	  showing	  dynamical	  phase	  transi8on	  
	  
-‐	  Directly	  checking	  if	  classical	  approach	  can	  work	  

Answer:	  	

-‐	  It	  can	  work.	  (But	  another	  procedure	  is	  needed)	  

-‐	  It	  is	  more	  close	  to	  quantum	  phase	  transi8on	  
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1.   Preliminary:	  Introduc2on	  of	  mean-‐field	  FA	  
	  
2.   Problems	  and	  how	  to	  overcome	  it	  
	  
3.   Discussions	  



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Model	

What	  is	  KCMs?	
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Model	

(e.g.	  J.	  P	  Garrahan	  et	  al,	  J.	  Phys.	  A,	  Math.	  Theor.	  42	  (2009)	  075007)	

Detailed	  balance	  condi2on	



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Dynamical	  phase	  transi2on	

An	  ensemble	  biased	  by	  a	  fic88ous	  field	  s	s	  -‐	  ensemble	

n(t) = ni
i
∑ =1,2,...,L :	  state	  of	  the	  system	  (total	  spin)	



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Dynamical	  phase	  transi2on	

Ac2vity	  ?	 K(t0 ≤ t ≤ t2 ) = 2Ex.	  	
K(t0 ≤ t < t1) = 0

...
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1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Dynamical	  phase	  transi2on	

s	  -‐	  ensemble	

Large	  devia8on	  func8on	  of	  	x = K / τ
I(x) =maxs xs− f (s)[ ]

An	  ensemble	  biased	  by	  a	  fic88ous	  field	  s	



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Dynamical	  phase	  transi2on	

How	  to	  calculate	  dynamical	  free	  energy?	
-‐	  Popula8on	  dynamics	  method	  (In	  general,	  numerical	  method)	  	

C.	  Giardin`a,	  J.	  Kurchan,	  and	  L.	  Peli8,	  Phys.	  Rev.	  Lej.	  96,	  120603	  (2006).	  	  
	

-‐	  Transfer	  matrix	  (largest	  eigenvalue	  problem,	  solvable	  model)	  	
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Dynamical	  phase	  transi2on	

How	  to	  calculate	  dynamical	  free	  energy?	
-‐	  Transfer	  matrix	  (largest	  eigenvalue	  problem,	  solvable	  model)	  	

Escape	  rate	

Largest	  eigenvalue	  of	  	Ls =	  	  dynamical	  free	  energy	



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Dynamical	  phase	  transi2on	

Numerical	  example	  (c=0.3)	

f (s) :	  Dynamical	  free	  energy	



1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Finite	  size	  scaling	

Biased	  total	  spin,	  biased	  suscep2bility	
ρ(s) = Ps (hist)

history
∑ 1

τL
dt n(t)

0

τ

∫Biased	  total	  spin	  (per	  site)	

Biased	  suscep8bility	 χ (s) = Ps (hist)
history
∑ 1

τL
dt n(t)− Lρ(s)[ ]

0

τ

∫
2

ρ(s)
χ (s)

Numerical	  example	  (c=0.3)	
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1.	  Preliminary:	  Intro	  of	  mean-‐field	  FA	  	  
Finite	  size	  scaling	

Scaling	  func2on	  (numerical	  check)	

Q1.	  Analy8cal	  expression	  of	  these	  func8ons?	  
Q2.	  How	  to	  derive	  the	  exponen8al	  scaling?	



Construc2on	  of	  this	  talk	

27	

1.   Preliminary:	  Introduc2on	  of	  mean-‐field	  FA	  
	  
2.   Problems	  and	  how	  to	  overcome	  it	  
	  
3.   Discussions	  



2.	  Problems	  and	  how	  to	  overcome	  it	  
Problem…?	

Metastable	  free	  energy??	  	  
(No	  canonical	  distribu8on)	



2.	  Problems	  and	  how	  to	  overcome	  it	  
Idea	  to	  solve	

-‐	  Auxiliary	  dynamics	
R.	  L.	  Jack	  and	  P.	  Sollich,	  Prog.	  Theor.	  Phys.	  Supp.	  184,	  304	  (2010).	  	  

-‐	  Donsker-‐Varadhan	  type	  varia2onal	  formula	

T.	  N.	  and	  S.	  Sasa,	  Phys.	  Rev.	  E	  84,	  061113	  (2011)	
e.g.	  J.	  P	  Garrahan	  et	  al,	  J.	  Phys.	  A,	  Math.	  Theor.	  42	  (2009)	  075007	

Ps (hist) ≈ Ps
aux (hist)



2.	  Problems	  and	  how	  to	  overcome	  it	  
Idea	  to	  solve	

-‐	  Modifying	  free	  energy	



2.	  Problems	  and	  how	  to	  overcome	  it	  
Idea	  to	  solve	

Numerical	  example	  of	  h*	  (L=100)	  
c	  =	  0.3	

DYNAMICAL	  free	  energy	
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-‐	  Our	  ansatz	
For	  finite	  L,	  we	  assume	  that	  we	  know,	  for	  	  	  	

Distribu8on:	  	
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Idea	  to	  solve	

-‐	  Scaling	  factor	

T.	  N.	  V.	  Lecomte,	  S.	  Sasa,	  F.	  van	  Wijland,	  J.	  Stat.	  Mech.	  (2014)	  P10001	  	  	

κ ≅ eaL

a = − 1
2
log(1− c)

A	  is	  the	  poten2al	  height	  separa2ng	  two	  phases	
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a = − 1
2
log(1− c)
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Conclusion	

•  For	  mean	  field	  FA,	  we	  performed	  finite	  size	  
scaling	  around	  1st	  order	  phase	  transi8on.	  

•  Idea	  is	  similar	  to	  classical	  one,	  but	  we	  used	  
auxiliary	  poten8al	  and	  varia8onal	  principle	  

•  The	  dynamical	  phase	  transi8on	  is	  close	  to	  
quantum	  phase	  transi8on:	  mean	  field	  
quantum	  ferromagnet	
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