Metastability in stochastic dynamics:
Poincaré and logarithmic Sobolev inequality via two-scale decomposition

Martin Slowik
Institute for mathematics, TU Berlin
joint work with A. Schlichting
Mathematics of kinetically constrained dynamics and metastability, Warwick

Metastability: A common phenomenon

The paradigm. Related to the dynamics of first order phase transitions
Change parameters quickly across the line of first order phase transition, the system reveals the existence of multiple time scales:

Short time scales.

■ Existence of disjoint subsets S_{i} trapping effectively the system

- Quasi-equilibrium ($\hat{=}$ metastable states) is reached within S_{i}

Larger time scales.
■ Rapid transitions between S_{i} and S_{j} occur induced by random fluctuations

Spectrum and metastability

Heuristic. Reversible Markov process $\left\{X_{t}: t \geq 0\right\}$, generator $L, \lambda_{i} \in \operatorname{spec}(-L)$

The goal. Understanding of quantitative aspects of dynamical phase transitions:

- expected time of a transition from a metastable to a stable state
- distribution of the exit time from a metastable state
= spectral properties of the generator and mixing times

Spectrum and metastability

Heuristic. Reversible Markov process $\left\{X_{t}: t \geq 0\right\}$, generator $L, \lambda_{i} \in \operatorname{spec}(-L)$

The goal. Understanding of quantitative aspects of dynamical phase transitions:

- expected time of a transition from a metastable to a stable state
- distribution of the exit time from a metastable state
- spectral properties of the generator and mixing times

Spectrum and metastability

Heuristic. Reversible Markov process $\left\{X_{t}: t \geq 0\right\}$, generator $L, \lambda_{i} \in \operatorname{spec}(-L)$

The goal. Understanding of quantitative aspects of dynamical phase transitions:

- expected time of a transition from a metastable to a stable state
- distribution of the exit time from a metastable state

■ spectral properties of the generator and mixing times

How to define metastability?

Elements of a definition.

■ Represent S_{i} by small sets $M_{i} \subset S_{i}$ (or even single points)

- Consider transitions between M_{i} 's, e.g.

A Markov process is called metastable if there exists a collection \mathcal{M} of disjoint sets M_{i} such that

$$
\frac{\sup _{x \notin \mathcal{M}} \mathbb{E}_{x}\left[\tau_{\mathcal{M}}\right]}{\inf _{i} \inf _{m \in M_{i}} \mathbb{E}_{m}\left[\tau_{\mathcal{M} \backslash M_{i}}\right]} \ll 1
$$

■ Involves only well-computable quantities

Reversible Markov chains

Setting.

- state space \mathcal{S} (finite or countable infinite)
- μ measure on \mathcal{S}

■ $(p(x, y): x, y \in \mathcal{S})$ stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain $X=\left\{X_{t}: t \geq 0\right\}$ on \mathcal{S} with generator

$$
(L f)(x)=\sum_{y} p(x, y)(f(y)-f(x))
$$

The Markov process X is reversible with respect to μ.

First return time. For any $A \subset \mathcal{S}$, let

Reversible Markov chains

Setting.

- state space \mathcal{S} (finite or countable infinite)
- μ measure on \mathcal{S}
$\square(p(x, y): x, y \in \mathcal{S})$ stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain $X=\left\{X_{t}: t \geq 0\right\}$ on \mathcal{S} with generator

$$
(L f)(x)=\sum_{y} p(x, y)(f(y)-f(x))
$$

©
The Markov process X is reversible with respect to μ.

First return time. For any $A \subset \mathcal{S}$, let

Reversible Markov chains

Setting.

- state space \mathcal{S} (finite or countable infinite)
- μ measure on \mathcal{S}
$\square(p(x, y): x, y \in \mathcal{S})$ stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain $X=\left\{X_{t}: t \geq 0\right\}$ on \mathcal{S} with generator

$$
(L f)(x)=\sum_{y} p(x, y)(f(y)-f(x))
$$

The Markov process X is reversible with respect to μ.

First return time. For any $A \subset \mathcal{S}$, let

$$
\tau_{A}=\inf \left\{t>0: X_{t} \in A\right\}
$$

$$
\mathcal{E}(f, f)=\frac{1}{2} \sum_{x, y \in \mathcal{S}} \mu(x) p(x, y)(f(x)-f(y))^{2}
$$

Poincaré inequality.

$$
\operatorname{var}_{\mu}[f] \leq \frac{1}{\lambda} \mathcal{E}(f, f), \quad \forall f: \mathcal{S} \rightarrow \mathbb{R}
$$

Logarithmic Sobolev inequality.

$$
\begin{equation*}
\operatorname{Ent}_{\mu}\left[f^{2}\right]=\mathrm{E}_{\mu}\left[f^{2} \ln \frac{f^{2}}{\mathrm{E}_{\mu}\left[f^{2}\right]}\right] \leq \frac{\mathcal{E}(f, f)}{\alpha}, \quad \forall f: \mathcal{S} \rightarrow \mathbb{R} \tag{LSI}
\end{equation*}
$$

The goal: Compute for metastable Markov chains

- the optimal constant λ_{PI} in the Poincaré inequality (spetral gap)

■ the optimal constant $\alpha_{\text {LSI }}$ in the logarithmic Sobolev inequlity

Equilibrium potential and capacities

Equilibrium potential. Given $A, B \subset \mathcal{S}$ disjoint

$$
\left\{\begin{array}{rlrl}
L h_{A, B} & =0, & & \text { on }(A \cup B)^{c} \\
h_{A, B} & =\mathbb{1}_{A}, & & \text { on } A \cup B
\end{array} \quad h_{A, B}(x)=\mathbb{P}_{x}\left[\tau_{A}<\tau_{B}\right]\right.
$$

Capacity.

$$
\begin{aligned}
\operatorname{cap}(A, B) & =\sum_{x \in A} \mu(x)\left(-L h_{A, B}\right)(x) \\
& =\left\langle h_{A, B},-L h_{A, B}\right\rangle_{\mu} \\
& =\sum_{x \in A} \mu(x) \mathbb{P}_{x}\left[\tau_{B}<\tau_{A}\right]
\end{aligned}
$$

Fact.

$$
\operatorname{cap}(A, B)=\operatorname{cap}(B, A) \quad \text { and } \quad \operatorname{cap}\left(A^{\prime}, B\right) \leq \operatorname{cap}(A, B), \quad \forall A^{\prime} \subset A
$$

Computation of capacities

Variational principles. Allows to bound capacities from above and from below
Dirichlet principle.

$$
\operatorname{cap}(A, B)=\inf _{h \in \mathcal{H}_{A, B}} \frac{1}{2} \sum_{x, y} \mu(x) p(x, y)(h(x)-h(y))^{2}
$$

$\mathcal{H}_{A, B}$: space of functions with boundary constraints; minimizer harmonic function
Thomson principle.

$$
\frac{1}{\operatorname{cap}(A, B)}=\inf _{f \in \mathcal{U}_{A, B}} \frac{1}{2} \sum_{x, y} \frac{f(x, y)^{2}}{\mu(x) p(x, y)}
$$

$\mathcal{U}_{A, B}$: space of unit $A B$-flows; maximizer harmonic flow.
Berman-Konsowa principle.

$$
\operatorname{cap}(A, B)=\sup _{f \in \mathcal{U}_{A, B}^{+}} \mathbb{E}^{f}\left[\left(\sum_{(x, y) \in \mathcal{X}} \frac{f(x, y)}{\mu(x) p(x, y)}\right)^{-1}\right]
$$

$\mathcal{U}_{A, B}^{+}$: space of cycle-free, non-negative unit $A B$-flows; maximizer harmonic flow. \mathbb{E}^{f} is the law of a directed Markov chain with transition probabilities proportional to f.

Connection between capacities and mean hitting times

Mean hitting times.

$$
\left\{\begin{array}{rlrl}
L w_{B} & =-1, & & \text { on } B^{c} \\
w_{B} & =0, & & \text { on } B
\end{array} \quad w_{B}(x)=\mathbb{E}_{x}\left[\tau_{B}\right]\right.
$$

Last exit biased distribution. Let $A, B \subset \mathcal{S}$ be disjoint. $\nu_{A, B}$ measure on A

$$
\nu_{A, B}(x)=\frac{\mu(x) \mathbb{P}_{x}\left[\tau_{B}<\tau_{A}\right]}{\sum_{x \in A} \mu(\sigma) \mathbb{P}_{x}\left[\tau_{B}<\tau_{A}\right]}, \quad x \in A
$$

Representation.

$$
\mathbb{E}_{\nu_{A, B}}\left[\tau_{B}\right]=\frac{1}{\operatorname{cap}(A, B)} \sum_{x \notin B} \mu(x) h_{A, B}(x)
$$

$$
\text { Proof : } \operatorname{cap}(A, B) \mathbb{E}_{\nu_{A, B}}\left[\tau_{B}\right]=\left\langle-L h_{A, B}, w_{B}\right\rangle_{\mu}=\left\langle h_{A, B},-L w_{B}\right\rangle_{\mu}=\left\langle h_{A, B}, 1\right\rangle_{\mu}
$$

Capacitary inequalities

$$
\langle h,-L g\rangle_{\mu}=\frac{1}{2} \sum_{x, y \in \mathcal{S}} \mu(x) p(x, y)(h(x)-h(y))(g(x)-g(y))
$$

Proposition

Let $B \subset \mathcal{S}$ be non-empty. For any $f: \mathcal{S} \rightarrow \mathbb{R}$ with $f \equiv 0$ on B set

$$
A_{t}:=\{x \in \mathcal{S}:|f(x)|>t\} .
$$

Then,

$$
\int_{0}^{\infty} 2 t \operatorname{cap}\left(A_{t}, B\right) \mathrm{d} t \leq 4 \mathcal{E}(f, f)
$$

Previous and related work

■ Maz'ya (1972), operators in divergence form on \mathbb{R}^{d}

Idea of the proof on the blackboard.

Capacitary inequalities

$$
\langle h,-L g\rangle_{\mu}=\frac{1}{2} \sum_{x, y \in \mathcal{S}} \mu(x) p(x, y)(h(x)-h(y))(g(x)-g(y))
$$

Proposition

Let $B \subset \mathcal{S}$ be non-empty. For any $f: \mathcal{S} \rightarrow \mathbb{R}$ with $f \equiv 0$ on B set

$$
A_{t}:=\{x \in \mathcal{S}:|f(x)|>t\} .
$$

Then,

$$
\int_{0}^{\infty} 2 t \operatorname{cap}\left(A_{t}, B\right) \mathrm{d} t \leq 4 \mathcal{E}(f, f)
$$

Previous and related work
■ Maz'ya (1972), operators in divergence form on \mathbb{R}^{d}

Idea of the proof on the blackboard.

Consequences

Proposition

Let $B \subset \mathcal{S}$ be non-empty and $\nu \in \mathcal{P}_{1}(\mathcal{S})$. Then, there exist $C_{1}, C_{2} \in(0, \infty)$
satisfying $C_{1} \leq C_{2} \leq 4 C_{1}$ such that the following statements are equivalent:
(i) For all $A \subset \mathcal{S} \backslash B$ it holds

$$
\nu[A] \leq C_{1} \operatorname{cap}(A, B)
$$

(ii) For all $f: \mathcal{S} \rightarrow \mathbb{R}$ with $\left.f\right|_{B} \equiv 0$ holds

$$
\left\|f^{2}\right\|_{\ell^{1}(\nu)} \leq C_{2} \mathcal{E}(f, f)
$$

Consequences

$$
\|f\|_{\Phi, \nu}:=\sup \left\{\mathrm{E}_{\nu}[|f| g]: g \geq 0, \mathrm{E}_{\nu}[\Psi(g)] \leq 1\right\}
$$

Proposition

Let $B \subset \mathcal{S}$ be non-empty and $\nu \in \mathcal{P}_{1}(\mathcal{S})$. Then, for any Orlicz pair (Φ, Ψ), there exist $C_{1}, C_{2} \in(0, \infty)$ satisfying $C_{1} \leq C_{2} \leq 4 C_{1}$ such that the following statements are equivalent:
(i) For all $A \subset \mathcal{S} \backslash B$ it holds

$$
\nu[A] \Psi^{-1}(1 / \nu[A]) \leq C_{1} \operatorname{cap}(A, B)
$$

(ii) For all $f: \mathcal{S} \rightarrow \mathbb{R}$ with $\left.f\right|_{B} \equiv 0$ holds

$$
\left\|f^{2}\right\|_{\Phi, \nu} \leq C_{2} \mathcal{E}(f, f)
$$

Examples.

Consequences

$$
\|f\|_{\Phi, \nu}:=\sup \left\{\mathrm{E}_{\nu}[|f| g]: g \geq 0, \mathrm{E}_{\nu}[\Psi(g)] \leq 1\right\}
$$

Proposition

Let $B \subset \mathcal{S}$ be non-empty and $\nu \in \mathcal{P}_{1}(\mathcal{S})$. Then, for any Orlicz pair (Φ, Ψ), there exist $C_{1}, C_{2} \in(0, \infty)$ satisfying $C_{1} \leq C_{2} \leq 4 C_{1}$ such that the following statements are equivalent:
(i) For all $A \subset \mathcal{S} \backslash B$ it holds

$$
\nu[A] \Psi^{-1}(1 / \nu[A]) \leq C_{1} \operatorname{cap}(A, B)
$$

(ii) For all $f: \mathcal{S} \rightarrow \mathbb{R}$ with $\left.f\right|_{B} \equiv 0$ holds

$$
\left\|f^{2}\right\|_{\Phi, \nu} \leq C_{2} \mathcal{E}(f, f)
$$

Examples.

$$
\left(\Phi_{p}(r), \Psi_{p}(r)\right):=\left(\frac{1}{p} r^{p}, \frac{1}{p_{*}} r^{p_{*}}\right), \quad\left(\Phi_{\mathrm{Ent}}(r), \Psi_{\mathrm{Ent}}(r)\right):=\left(r \ln r-r+1, \mathrm{e}^{r}-1\right)
$$

Definition of metastability

Definition

Let $\rho>0$ and $\mathcal{M} \subset \mathcal{S}$ be finite. $\left\{X_{t}: t \geq 0\right\}$ is ρ-metastable with respect to \mathcal{M} (set of metastable points), if

$$
\frac{\max _{m \in \mathcal{M}} \mathbb{P}_{m}\left[\tau_{\mathcal{M} \backslash m}<\tau_{m}\right]}{\min _{A \subset \mathcal{S} \backslash \mathcal{M}} \mathbb{P}_{\mu_{A}}\left[\tau_{\mathcal{M}}<\tau_{A}\right]} \leq \rho \ll 1
$$

Previous and related definition
■ Bovier (2006), reversible Markov chains with finite state space; reversible diffusions

Metastable partition. $\mathcal{S}=\bigcup_{m \in \mathcal{M}} S_{m}$, the sets $S_{m}, m \in \mathcal{M}$ are mutually disjoint

Definition of metastability

Definition

Let $\rho>0$ and $\mathcal{M} \subset \mathcal{S}$ be finite. $\left\{X_{t}: t \geq 0\right\}$ is ρ-metastable with respect to \mathcal{M} (set of metastable points), if

$$
\frac{\max _{m \in \mathcal{M}} \mathbb{P}_{m}\left[\tau_{\mathcal{M} \backslash m}<\tau_{m}\right]}{\min _{A \subset \mathcal{S} \backslash \mathcal{M}} \mathbb{P}_{\mu_{A}}\left[\tau_{\mathcal{M}}<\tau_{A}\right]} \leq \rho \ll 1
$$

Previous and related definition
■ Bovier (2006), reversible Markov chains with finite state space; reversible diffusions

Metastable partition. $\mathcal{S}=\bigcup_{m \in \mathcal{M}} S_{m}$, the sets $S_{m}, m \in \mathcal{M}$ are mutually disjoint

$$
S_{m} \subset\left\{x \in \mathcal{S}: \mathbb{P}_{x}\left[\tau_{m}<\tau_{\mathcal{M} \backslash m}\right] \geq \max _{m^{\prime} \in \mathcal{M} \backslash m} \mathbb{P}_{x}\left[\tau_{m^{\prime}}<\tau_{\mathcal{M} \backslash m^{\prime}}\right]\right\}
$$

Main result

Theorem

Suppose $\left\{X_{t}: t \geq 0\right\}$ is a ρ-metastable Markov chain with $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$. Then,

$$
\lambda_{\mathrm{PI}}=\frac{\operatorname{cap}\left(m_{1}, m_{2}\right)}{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}(1+O(\sqrt{\rho}))
$$

Moreover, under further conditions on $\mu\left[\cdot \mid S_{i}\right]$, it holds

$$
\alpha_{\mathrm{LSI}}=\Lambda\left(\mu\left[S_{1}\right], \mu\left[S_{2}\right]\right) \frac{\operatorname{cap}\left(m_{1}, m_{2}\right)}{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}(1+O(\sqrt{\rho})),
$$

where $\Lambda(s, t)=(s-t) /(\ln s-\ln t)$ denotes the logarithmic mean.

Main result

Theorem

Suppose $\left\{X_{t}: t \geq 0\right\}$ is a ρ-metastable Markov chain with $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$. Then,

$$
\lambda_{\mathrm{PI}}=\frac{\operatorname{cap}\left(m_{1}, m_{2}\right)}{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}(1+O(\sqrt{\rho}))
$$

Moreover, under further conditions on $\mu\left[\cdot \mid S_{i}\right]$, it holds

$$
\alpha_{\mathrm{LSI}}=\Lambda\left(\mu\left[S_{1}\right], \mu\left[S_{2}\right]\right) \frac{\operatorname{cap}\left(m_{1}, m_{2}\right)}{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}(1+O(\sqrt{\rho}))
$$

where $\Lambda(s, t)=(s-t) /(\ln s-\ln t)$ denotes the logarithmic mean.

Previous and related results
■ Bovier, Eckhoff, Gayrard, Klein (2002), low lying spectrum, reversible Markov chains

- Bovier, Gayrard, Klein (2005), low lying spectrum, reversible diffusion

■ Bianchi, Gaudilliére (2011), spectral gap, reversible Markov chains
■ Menz, Schlichting (2014), PI and LSI, reversible diffusions

$$
\mu_{i}[\cdot]:=\mu\left[\cdot \mid S_{i}\right] \quad \text { and } \quad \bar{\mu}:=\mu\left[S_{1}\right] \delta_{m_{1}}+\mu\left[S_{2}\right] \delta_{m_{2}}
$$

Splitting the variance.

$$
\operatorname{var}_{\mu}[f]=\mu\left[S_{1}\right] \underbrace{\operatorname{var}_{\mu_{1}}[f]}_{\text {local variance }}+\mu\left[S_{2}\right] \underbrace{\operatorname{var}_{\mu_{2}}[f]}_{\text {local variance }}+\mu\left[S_{1}\right] \mu\left[S_{2}\right](\underbrace{\mathrm{E}_{\mu_{1}}[f]-\mathrm{E}_{\mu_{2}}[f]}_{\text {mean difference }})^{2}
$$

Splitting the entropy.

$$
\operatorname{Ent}_{\mu}\left[f^{2}\right]=\mu\left[S_{1}\right] \underbrace{\operatorname{Ent}_{\mu_{1}}\left[f^{2}\right]}_{\text {local entropy }}+\mu\left[S_{2}\right] \underbrace{\operatorname{Ent}_{\mu_{2}}\left[f^{2}\right]}_{\text {local entropy }}+\underbrace{\operatorname{Ent}_{\bar{\mu}}\left[\mathrm{E}_{\mu .}\left[f^{2}\right]\right]}_{\text {macroscopic entropy }}
$$

$\operatorname{Ent}_{\bar{\mu}}\left[\mathrm{E}_{\mu}\left[f^{2}\right]\right] \leq \frac{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}{\Lambda\left(\mu\left[S_{1}\right], \mu\left[S_{2}\right]\right)}\left(\operatorname{var}_{\mu_{1}}[f]+\operatorname{var}_{\mu_{2}}[f]+\left(\mathrm{E}_{\mu_{1}}[f]-\mathrm{E}_{\mu_{2}}[f]\right)^{2}\right)$

The strategy.

- rough bounds for local quantities,
- sharp bounds for the mean difference

Local variances and mean difference estimate

Fact.

$$
\mathbb{P}_{\mu_{A}}\left[\tau_{m_{i}}<\tau_{A}\right] \geq \frac{1}{|\mathcal{M}|} \mathbb{P}_{\mu_{A}}\left[\tau_{\mathcal{M}}<\tau_{A}\right] \quad \forall A \subset S_{i} \backslash\left\{m_{i}\right\}
$$

Key estimate. For all $A \subset S_{i} \backslash\left\{m_{i}\right\}$

$$
\mu_{1}[A] \leq \frac{\rho|\mathcal{M}|}{\mu\left[S_{i}\right]}\left(\max _{m \in \mathcal{M} \backslash\left\{m_{i}\right\}} \mathbb{P}_{m}\left[\tau_{\mathcal{M} \backslash\{m\}}<\tau_{m}\right]\right) \operatorname{cap}\left(A, m_{i}\right)
$$

Local variances. $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$

$$
\mu\left[S_{i}\right] \operatorname{var}_{\mu_{i}}[f] \leq 2 \rho|\mathcal{M}| \frac{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}{\operatorname{cap}\left(m_{1}, m_{2}\right)} \mathcal{E}(f, f)
$$

Mean difference estimate.

$$
\mu\left[S_{1}\right] \mu\left[S_{2}\right]\left(\mathrm{E}_{\mu_{1}}[f]-\mathrm{E}_{\mu_{2}}[f]\right)^{2} \leq \frac{\mu\left[S_{1}\right] \mu\left[S_{2}\right]}{\operatorname{cap}\left(m_{1}, m_{2}\right)} \mathcal{E}(f, f)(1+O(\sqrt{\rho|\mathcal{M}|}))
$$

Summary and open Problems

What have been done so far.

- Capacitary inequality that allows to establish a local PI and LSI inequality
- Method can be applied beyond the situtation of metastable points (e.g. RFCW)

Next task and major challenges.

- Establish a $\ell^{2}\left(\mu_{i}\right)$-bound on the density of the last exit biased distribution wrt. μ_{i}

Previous and related results
■ Dahlberg (1977), Jerrison, Kenig (1982), Brownian motion on Lipschitz domains, $L^{2+\varepsilon}$ bound on the density of the harmonic measure

