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Metastability: A common phenomenon

The paradigm. Related to the dynamics of first order phase transitions

Change parameters quickly across the line of first order phase transition, the system

reveals the existence of multiple time scales:

Short time scales.

� Existence of disjoint subsets Si trapping

effectively the system

� Quasi-equilibrium ( =̂ metastable states)

is reached within Si

S1

S2

S3

S4

Larger time scales.

� Rapid transitions between Si and Sj occur induced by random fluctuations

PI and LSI via two-scale decomposition · 05. January 2016 · Page 2 (16)



Spectrum and metastability

Heuristic. Reversible Markov process {Xt : t ≥ 0}, generator L, λi ∈ spec(−L)

0 = λ1 λ2, . . . λ4 ≈ O(ε) λ5 λ̄1 = . . . = λ̄4 = 0 λ̄5

The goal. Understanding of quantitative aspects of dynamical phase transitions:

� expected time of a transition from a metastable to a stable state

� distribution of the exit time from a metastable state

� spectral properties of the generator and mixing times
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How to define metastability?

Elements of a definition.

� Represent Si by small sets Mi ⊂ Si (or even single points)

� Consider transitions between Mi’s, e.g.

A Markov process is called metastable if

there exists a collection M of disjoint sets

Mi such that

supx 6∈M Ex

[
τM
]

infi infm∈Mi Em

[
τM\Mi

] ≪ 1

S1

M1

S2M2

S3M3

S4M4

� Involves only well-computable quantities
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Reversible Markov chains

Setting.

� state space S (finite or countable infinite)

� µ measure on S
�

(
p(x, y) : x, y ∈ S

)
stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain X = {Xt : t ≥ 0} on S with generator

(Lf)(x) =
∑

y

p(x, y)
(
f(y)− f(x)

)

△! The Markov process X is reversible with respect to µ.

First return time. For any A ⊂ S, let

τA = inf{t > 0 : Xt ∈ A}

PI and LSI via two-scale decomposition · 05. January 2016 · Page 5 (16)



Reversible Markov chains

Setting.

� state space S (finite or countable infinite)

� µ measure on S
�

(
p(x, y) : x, y ∈ S

)
stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain X = {Xt : t ≥ 0} on S with generator

(Lf)(x) =
∑

y

p(x, y)
(
f(y)− f(x)

)

△! The Markov process X is reversible with respect to µ.

First return time. For any A ⊂ S, let

τA = inf{t > 0 : Xt ∈ A}

PI and LSI via two-scale decomposition · 05. January 2016 · Page 5 (16)



Reversible Markov chains

Setting.

� state space S (finite or countable infinite)

� µ measure on S
�

(
p(x, y) : x, y ∈ S

)
stochastic matrix, irreducible (positive recurrent)

Dynamics. Discrete-time Markov chain X = {Xt : t ≥ 0} on S with generator

(Lf)(x) =
∑

y

p(x, y)
(
f(y)− f(x)

)

△! The Markov process X is reversible with respect to µ.

First return time. For any A ⊂ S, let

τA = inf{t > 0 : Xt ∈ A}

PI and LSI via two-scale decomposition · 05. January 2016 · Page 5 (16)



Poincaré and logarithmic Sobolev inequality

E(f, f) =
1

2

∑

x,y∈S

µ(x) p(x, y)
(
f(x)− f(y)

)2

Poincaré inequality.

varµ[f ] ≤ 1

λ
E(f, f), ∀ f : S → R (PI(λ))

Logarithmic Sobolev inequality.

Entµ[f
2] = Eµ

[

f2 ln
f2

Eµ[f2]

]

≤ E(f, f)
α

, ∀ f : S → R (LSI(α))

The goal: Compute for metastable Markov chains

� the optimal constant λPI in the Poincaré inequality (spetral gap)

� the optimal constant αLSI in the logarithmic Sobolev inequlity
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Equilibrium potential and capacities

Equilibrium potential. Given A,B ⊂ S disjoint
{

LhA,B = 0, on (A ∪B)c

hA,B = 1A, on A ∪B
hA,B(x) = Px

[
τA < τB

]

Capacity.

cap(A,B) =
∑

x∈A

µ(x) (−LhA,B)(x)

= 〈hA,B ,−LhA,B〉µ

=
∑

x∈A

µ(x) Px

[
τB < τA

]

A
B

V1

+

+

+

+

+

+
+ +

+

+

− −
−
−

−

−

−

−

−

−

−

−
− − −

−
−

−

+ +
+

−

Fact.

cap(A,B) = cap(B,A) and cap(A′, B) ≤ cap(A,B), ∀A′ ⊂ A
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Computation of capacities

Variational principles. Allows to bound capacities from above and from below

Dirichlet principle.

cap(A,B) = inf
h∈HA,B

1

2

∑

x,y

µ(x) p(x, y)
(
h(x)− h(y)

)2

HA,B : space of functions with boundary constraints; minimizer harmonic function

Thomson principle.

1

cap(A,B)
= inf

f∈UA,B

1

2

∑

x,y

f(x, y)2

µ(x) p(x, y)

UA,B : space of unit AB-flows; maximizer harmonic flow.

Berman-Konsowa principle.

cap(A,B) = sup
f∈U+

A,B

E
f

[(
∑

(x,y)∈X

f(x, y)

µ(x) p(x, y)

)−1]

U+
A,B : space of cycle-free, non-negative unit AB-flows; maximizer harmonic flow.

E
f is the law of a directed Markov chain with transition probabilities proportional to f .
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Connection between capacities and mean hitting times

Mean hitting times.

{
LwB = −1, on Bc

wB = 0, on B
wB(x) = Ex[τB ]

Last exit biased distribution. Let A,B ⊂ S be disjoint. νA,B measure on A

νA,B(x) =
µ(x) Px

[
τB < τA

]

∑

x∈A µ(σ) Px

[
τB < τA

] , x ∈ A

Representation.

EνA,B

[
τB
]
=

1

cap(A,B)

∑

x 6∈B

µ(x) hA,B(x)

Proof : cap(A,B)EνA,B
[τB ] = 〈−LhA,B , wB〉µ = 〈hA,B ,−LwB〉µ = 〈hA,B , 1〉µ
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Capacitary inequalities

〈h,−Lg〉µ =
1

2

∑

x,y∈S

µ(x) p(x, y)
(
h(x)− h(y)

)(
g(x)− g(y)

)

Proposition

Let B ⊂ S be non-empty. For any f : S → R with f ≡ 0 on B set

At := {x ∈ S : |f(x)| > t}.

Then,

∫ ∞

0

2t cap(At, B) dt ≤ 4 E(f, f).

Previous and related work

� Maz’ya (1972), operators in divergence form on R
d

Idea of the proof on the blackboard.
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Consequences

Proposition

Let B ⊂ S be non-empty and ν ∈ P1(S). Then, there exist C1, C2 ∈ (0,∞)

satisfying C1 ≤ C2 ≤ 4C1 such that the following statements are equivalent:

(i) For all A ⊂ S \B it holds

ν[A] ≤ C1 cap(A,B).

(ii) For all f : S → R with f |B ≡ 0 holds

‖f2‖ℓ1(ν) ≤ C2 E(f, f).
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Consequences

‖f‖Φ,ν := sup
{
Eν [|f |g] : g ≥ 0, Eν [Ψ(g)] ≤ 1

}

Proposition

Let B ⊂ S be non-empty and ν ∈ P1(S). Then, for any Orlicz pair (Φ,Ψ), there exist

C1, C2 ∈ (0,∞) satisfying C1 ≤ C2 ≤ 4C1 such that the following statements are

equivalent:

(i) For all A ⊂ S \B it holds

ν[A] Ψ−1(1/ν[A]
)

≤ C1 cap(A,B).

(ii) For all f : S → R with f |B ≡ 0 holds

‖f2‖Φ,ν ≤ C2 E(f, f).

Examples.

(
Φp(r),Ψp(r)

)
:=

(
1
p
rp, 1

p∗
rp∗
)
,
(
ΦEnt(r),ΨEnt(r)

)
:=

(
r ln r − r + 1, er − 1

)
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Definition of metastability

Definition

Let ρ > 0 and M ⊂ S be finite. {Xt : t ≥ 0}
is ρ-metastable with respect to M (set of

metastable points), if

maxm∈M Pm

[
τM\m < τm

]

minA⊂S\M PµA

[
τM < τA

] ≤ ρ ≪ 1.

S1

m1

S2m2

S3
m3

S4m4

Previous and related definition

� Bovier (2006), reversible Markov chains with finite state space; reversible diffusions

Metastable partition. S =
⋃

m∈M Sm, the sets Sm, m ∈ M are mutually disjoint

Sm ⊂
{

x ∈ S : Px

[
τm < τM\m

]
≥ max

m′∈M\m
Px

[
τm′ < τM\m′

]}
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Main result

Theorem

Suppose {Xt : t ≥ 0} is a ρ-metastable Markov chain with M = {m1,m2}. Then,

λPI =
cap(m1,m2)

µ[S1]µ[S2]

(
1 +O(

√
ρ)
)
.

Moreover, under further conditions on µ[·|Si], it holds

αLSI = Λ(µ[S1], µ[S2])
cap(m1,m2)

µ[S1]µ[S2]

(
1 +O(

√
ρ)
)
,

where Λ(s, t) = (s− t)/(ln s− ln t) denotes the logarithmic mean.

Previous and related results

� Bovier, Eckhoff, Gayrard, Klein (2002), low lying spectrum, reversible Markov chains

� Bovier, Gayrard, Klein (2005), low lying spectrum, reversible diffusion

� Bianchi, Gaudilliére (2011), spectral gap, reversible Markov chains

� Menz, Schlichting (2014), PI and LSI, reversible diffusions
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Two-scale decomposition

µi[ · ] := µ[ · |Si] and µ̄ := µ[S1] δm1
+ µ[S2] δm2

Splitting the variance.

varµ[f ] = µ[S1] varµ1
[f ]

︸ ︷︷ ︸

local variance

+ µ[S2] varµ2
[f ]

︸ ︷︷ ︸

local variance

+ µ[S1]µ[S2]
(
Eµ1

[f ]− Eµ2
[f ]

︸ ︷︷ ︸

mean difference

)2

Splitting the entropy.

Entµ[f
2] = µ[S1] Entµ1

[f2]
︸ ︷︷ ︸

local entropy

+ µ[S2] Entµ2
[f2]

︸ ︷︷ ︸

local entropy

+ Entµ̄
[
Eµ·

[f2]
]

︸ ︷︷ ︸

macroscopic entropy

Entµ̄
[
Eµ·

[f2]
]
≤ µ[S1]µ[S2]

Λ(µ[S1], µ[S2])

(

varµ1
[f ] + varµ2

[f ] +
(
Eµ1

[f ]− Eµ2
[f ]
)2
)

The strategy.

� rough bounds for local quantities,

� sharp bounds for the mean difference
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Local variances and mean difference estimate

Fact.

PµA

[
τmi < τA

]
≥ 1

|M| PµA

[
τM < τA] ∀A ⊂ Si \ {mi}

Key estimate. For all A ⊂ Si \ {mi}

µ1[A] ≤ ρ|M|
µ[Si]

(

max
m∈M\{mi}

Pm

[
τM\{m} < τm

]
)

cap(A,mi)

Local variances. M = {m1,m2}

µ[Si] varµi [f ] ≤ 2 ρ |M| µ[S1]µ[S2]

cap(m1,m2)
E(f, f)

Mean difference estimate.

µ[S1]µ[S2]
(
Eµ1

[f ]− Eµ2
[f ]
)2 ≤ µ[S1]µ[S2]

cap(m1,m2)
E(f, f)

(
1 +O(

√

ρ|M|)
)
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Summary and open Problems

What have been done so far.

� Capacitary inequality that allows to establish a local PI and LSI inequality

� Method can be applied beyond the situtation of metastable points (e.g. RFCW)

Next task and major challenges.

� Establish a ℓ2(µi)-bound on the density of the last exit biased distribution wrt. µi

Previous and related results

� Dahlberg (1977), Jerrison, Kenig (1982), Brownian motion on Lipschitz domains, L2+ε

bound on the density of the harmonic measure
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