Propagation of singular behavior in UE and GUE sums

Arno Kuijlaars (KU Leuven, Belgium)

with

Tom Claeys, Karl Liechty, Dong Wang

Random matrix theory and strongly correlated systems

University of Warwick, UK, 21 March 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. Unitary Ensemble plus GUE

Unitary ensemble (UE)

M is random $n \times n$ Hermitian matrix from UE

$$\frac{1}{Z_n}e^{-n\operatorname{Tr} V(M)}dM$$

• Eigenvalues have joint p.d.f.

$$\frac{1}{\tilde{Z}_n}\Delta_n(x)^2\prod_{j=1}^n e^{-nV(x_j)}, \qquad \Delta_n(x)=\prod_{1\leq i< j\leq n}(x_j-x_i)$$

• Equilibrium measure μ_V is the minimizer of

$$\iint \log rac{1}{|s-t|} d\mu(s) d\mu(t) + \int V(t) d\mu(t)$$

• μ_V is limiting eigenvalue distribution as $n \to \infty$

GUE matrix

H is $n \times n$ (scaled) GUE matrix with distribution

$$\frac{1}{Z_n}e^{-\frac{n}{2}\operatorname{Tr} H^2}dH$$

• Eigenvalues of $\sqrt{\tau}H$ follow semi-circle law with variance τ

$$d\lambda_{ au}(s) = rac{1}{2\pi au}\sqrt{4 au-s^2}\,ds, \qquad s\in [-2\sqrt{ au}, 2\sqrt{ au}].$$

Sum of UE and GUE

We are interested in eigenvalues of

$$X = M + \sqrt{\tau} H$$

with *M* from a unitary ensemble, *H* from a (scaled) GUE, independent from *M*, and $\tau > 0$.

- Eigenvalues are determinantal point process
- Interpretation as non-intersecting paths
- Free probability:

$$\mu_V \boxplus \lambda_\tau$$

is limiting distribution of eigenvalues as $n \to \infty$

Determinantal point process

Brézin and Hikami (1998), Zinn-Justin (1998), Johansson (2001)

• If *M* is fixed with eigenvalues a_1, \ldots, a_n , then eigenvalues of $M + \sqrt{\tau}H$ have joint density

$$\propto rac{1}{\Delta_n(a)} \cdot \Delta_n(x) \cdot \det \left[e^{-rac{n}{2 au} (x_k - a_j)^2}
ight]_{j,k=1}^n$$

• If *M* is random from *UE*, then after averaging over a_1, \ldots, a_n ,

$$\propto \Delta_n(x) \cdot \det \left[\int_{-\infty}^{\infty} a^{j-1} e^{-rac{n\tau}{2}(x_k-a)^2} e^{-nV(a)} da
ight]_{j,k=1}^n$$

• It is polynomial ensemble (special case of DPP)

Non-intersecting paths

Johansson (2001), Bleher and Kuijlaars (2004):

- Non-intersecting Brownian bridges with starting positions a_1, \ldots, a_n at time t = 0 and ending positions b_1, \ldots, b_n at time t = T
- Joint density for particles at time $t \in (0, T)$:

$$\propto \frac{1}{\Delta_n(a)\Delta_n(b)} \cdot \det \left[e^{-\frac{n}{2t}(a_j-x_k)^2} \right]_{j,k=1}^n \cdot \det \left[e^{-\frac{n}{2(T-t)}(x_j-b_k)^2} \right]_{j,k=1}^n$$

• In limit when all $b_k \rightarrow 0$

$$\propto rac{1}{\Delta_n(a)} \cdot \det \left[e^{-rac{n}{2t}(a_j-x_k)^2}
ight]_{j,k=1}^n \cdot \Delta_n(x) \cdot \prod_{j=1}^n e^{-rac{n}{2(T-t)}x_j^2}$$

Picture if all $a_j \rightarrow \pm 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Random starting points

• If a_j are random eigenvalues of matrix from UE ensemble $\frac{1}{Z_n}e^{-nV(M)}dM$ then, after averaging over a_1, \ldots, a_n ,

$$\propto \Delta_n(x) \cdot \det \left[\int_{-\infty}^{\infty} a^{j-1} e^{-\frac{n}{2t}(x_k-a)^2} e^{-nV(a)} da \right]_{j,k=1}^n \cdot \prod_{j=1}^n e^{-\frac{n}{2(T-t)}x_j^2}$$

• For $T \to \infty$, this is exactly the same as eigenvalues of $M + \sqrt{t}H$.

2. Singular potential

<□ > < @ > < E > < E > E のQ @

Typical behavior of equilibrium measure

Suppose V is real analytic.

- μ_V is supported on finite union of intervals with density ψ_V
- Generically ψ_V has square root vanishing at endpoints, and is positive in the interior of each of the intervals.

Singular behavior

Singular interior point

• ψ_V vanishes at interior point x^*

 $\psi_V(x) \sim (x - x^*)^{\kappa}, \qquad \kappa = 2k \text{ for integer } k \ge 1.$

Singular edge point

• ψ_V vanishes to higher order at edge point x^*

$$\psi_V(x) \sim |x - x^*|^{\kappa}, \qquad \kappa = 2k + \frac{1}{2} \text{ for integer } k \geq 1.$$

Correlation kernels

Limiting correlation kernels

- Sine kernel at regular interior point
- Airy kernel at regular edge point
- Painlevé kernels at singular points

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3. Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (a) Propagation of singular density for $\tau < \tau_{\rm cr}$
- (b) Propagation of correlation kernel
- (c) Density at critical τ_{cr}

Suppose μ_V has density

$$\psi_V(s) = c_0^{\kappa+1} |s - x^*|^{\kappa} h(s), \qquad h(x^*) = 1,$$

where *h* is real analytic at x^* . Define

$$au < au_{cr} = \left[\int \frac{d\mu_V(s)}{(s-x^*)^2}\right]^{-1} \text{ and } x_{ au}^* = x^* - au \int \frac{d\mu_V(s)}{s-x^*}$$

Suppose μ_V has density

$$\psi_V(s) = c_0^{\kappa+1} |s - x^*|^{\kappa} h(s), \qquad h(x^*) = 1,$$

where h is real analytic at x^* . Define

$$au < au_{cr} = \left[\int rac{d\mu_V(s)}{(s-x^*)^2}
ight]^{-1} ext{ and } x_{ au}^* = x^* - au \int rac{d\mu_V(s)}{s-x^*}$$

Theorem

 $\mu_{ au} = \mu_{V} \boxplus \lambda_{ au}$ has density $\psi_{ au}$ satisfying

$$\psi_ au(s)=c_ au^{\kappa+1}|s-x_ au^*|^\kappa h_ au(s), \quad c_ au=rac{ au_{cr}}{ au_{cr}- au}c_0, \quad h_ au(x^*)=1$$

where h_{τ} is real analytic at x_{τ}^*

The singularity at an interior point or edge point propagates in the model $M + \sqrt{\tau}H$.

- Interpretation in terms of non-intersecting Brownian paths
- Connection with two-matrix model

Duits (2014)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

About the proof

Biane (1997) describes how to calculate the density of

$$\mu_{\tau} = \mu_{V} \boxplus \lambda_{\tau}$$

The mapping

$$w\mapsto w+ au\int rac{d\mu_V(s)}{w-s}$$

has an inverse $z \mapsto F_{\tau}(z)$ that extends continuously and injectively to $\overline{\mathbb{C}^+}$. Then

$$\psi_{\tau}(x) = -\frac{1}{\pi} \operatorname{Im} \left(\int \frac{d\mu_{V}(s)}{F_{\tau}(x) - s} \right), \qquad x \in \mathbb{R}.$$

About the proof

$$\psi_{\tau}(x) = -rac{1}{\pi} \operatorname{Im} \left(\int rac{d\mu_V(s)}{F_{\tau}(x) - s}
ight), \qquad x \in \mathbb{R}.$$

- Expand $w + \tau \int \frac{d\mu_V(s)}{w-s}$ around $w = x^*$
- Expand its inverse $F_{\tau}(z)$ around $z = x_{\tau}^*$
- Combine this to find first non-zero term in expansion of $\psi_{\tau}(x)$ around $x = x_{\tau}^*$.

5 Propagation of correlation kernel

Propagation of correlation kernel

٥

• *M* is from unitary ensemble with eigenvalue correlation kernel $K_n^M(x, y)$ and scaling limit

$$\lim_{n \to \infty} \frac{1}{c_0 n^{\gamma}} \mathcal{K}_n^M \left(x^* + \frac{x}{c_0 n^{\gamma}}, x^* + \frac{y}{c_0 n^{\gamma}} \right) = \mathcal{K}_{crit,\kappa}(x, y)$$

with $\gamma = (\kappa + 1)^{-1}$
 $X = M + \sqrt{\tau} H$ has correlation kernel $\mathcal{K}_n^X(x, y)$

Propagation of correlation kernel

• *M* is from unitary ensemble with eigenvalue correlation kernel $K_n^M(x, y)$ and scaling limit

$$\lim_{n \to \infty} \frac{1}{c_0 n^{\gamma}} K_n^M \left(x^* + \frac{x}{c_0 n^{\gamma}}, x^* + \frac{y}{c_0 n^{\gamma}} \right) = \mathcal{K}_{crit,\kappa}(x, y)$$

with $\gamma = (\kappa + 1)^{-1}$
 $X = M + \sqrt{\tau} H$ has correlation kernel $K_n^X(x, y)$

Theorem

Under these conditions

$$\lim_{n\to\infty}\frac{e^{-H_n(x)+H_n(y)}}{c_{\tau}n^{\gamma}}K_n^X\left(x_{\tau}^*+\frac{x}{c_{\tau}n^{\gamma}},x_{\tau}^*+\frac{y}{c_{\tau}n^{\gamma}}\right)=\mathcal{K}_{crit,\kappa}(x,y)$$

for certain function H_n

About the proof

For
$$X = M + \sqrt{\tau}H$$
,

$$K_n^X(x,y) = \frac{n}{2\pi i\tau} \int_{x^*-i\infty}^{x^*+i\infty} ds \int_{-\infty}^{\infty} dt \, K_n^M(s,t)$$

$$\times e^{\frac{n}{2}(V(s)-V(t))}e^{\frac{n}{2\tau}((s-x)^2-(t-y)^2)}$$

Claeys-K-Wang (2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof is basically a steepest descent analysis of this double integral.

Local part and rest

Separate

$$K_n^X(x,y) = K_{n,loc}^X(x,y) + K_{n,rest}^X(x,y)$$

with

$$K_{n,loc}^{X}(x,y) = \frac{n}{2\pi i \tau} \int_{x^{*}-iRn^{-\gamma}}^{x^{*}+iRn^{-\gamma}} ds \int_{x^{*}-Rn^{-\gamma}}^{x^{*}+Rn^{-\gamma}} dt K_{n}^{M}(s,t)$$
$$\times e^{\frac{n}{2}(V(s)-V(t))} e^{\frac{n}{2\tau}((s-x)^{2}-(t-y)^{2})}$$

• *R* is large, but fixed constant, independent of *n*, but it will depend on *x* and *y*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analysis of local part

After change of variables

$$\frac{1}{c_{\tau}n^{\gamma}} \mathcal{K}_{n,loc}^{X} \left(x_{\tau}^{*} + \frac{x}{c_{\tau}n^{\gamma}}, x_{\tau}^{*} + \frac{y}{c_{\tau}n^{\gamma}} \right) \\
= \frac{n^{1-2\gamma}}{2\pi i c_{0}c_{\tau}} \int_{x^{*}-ic_{0}R}^{x^{*}+ic_{0}R} ds \int_{x^{*}-c_{0}R}^{x^{*}+c_{0}R} dt \, e^{F_{n}(s,x)-F_{n}(t,y)} \\
\times \frac{1}{c_{0}n^{\gamma}} \mathcal{K}_{n}^{M} \left(x^{*} + \frac{s}{c_{0}n^{\gamma}}, x^{*} + \frac{t}{c_{0}n^{\gamma}} \right)$$

$$ightarrow \mathcal{K}_{\textit{crit},\kappa}(s,t)$$

with

$$F_n(s,x) = \frac{n}{2}V\left(x^* + \frac{s}{c_0n^{\gamma}}\right) + \frac{n}{2\tau}\left(\frac{s}{c_0n^{\gamma}} - \frac{\tau}{2}V'(x^*) - \frac{x}{c_{\tau}n^{\gamma}}\right)$$

Taylor expansion of F_n

Expand as $n \to \infty$

$$F_n(s,x) = \frac{n}{2}V(x^*) + \frac{\tau n}{8}V'(x^*)^2 + \frac{n^{1-\gamma}}{2c_{\tau}}V'(x^*)x + \frac{n^{1-2\gamma}}{4c_0c_{\tau}}V''(x^*)x^2 + \frac{n^{1-2\gamma}}{2\tau c_0c_{\tau}}\left[(s-x)^2 + O(n^{-\gamma})\right]$$

- No term $sn^{-\gamma}$ because of choice for x_{τ}^*
- Complete square $(s-x)^2$ because of choice for c_{τ}
- Saddle point equation $\frac{\partial F_n}{\partial s} = 0$ gives the saddle

$$x + O(n^{-\gamma})$$

Analysis of rest

$$\mathcal{K}_{n,rest}^{X}(x,y) = \mathcal{K}_{n}^{X}(x,y) - \mathcal{K}_{n,loc}^{X}(x,y)$$

Scaled version

$$e^{-H_n(x)+H_n(y)}K_{n,rest}^X\left(x_{\tau}^*+\frac{x}{c_{\tau}n^{\gamma}},x_{\tau}^*+\frac{y}{c_{\tau}n^{\gamma}}\right)$$

becomes $O(e^{-cn^{1-\gamma}})$ as $n \to \infty$ if R is large enough.

 Proof uses deformation of *t*-contour into the complex plane, and uses bounds on orthogonal polynomials that come from steepest descent analysis of Riemann-Hilbert problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about the density for critical $\tau_{cr} = \left[\frac{d\mu_V(s)}{(s-x^*)^2}\right]^{-1}$?

What about the density for critical $\tau_{cr} = \left[\frac{d\mu_V(s)}{(s-x^*)^2}\right]^{-1}$?

We have results for

Singular interior point $\psi_V(s) \sim (s - x^*)^{2k}$ as $s \to x^*$

•
$$\kappa = 2k = 2$$

• $\kappa = 2k \ge 4$ and $\int \frac{d\mu_V(s)}{(s - x^*)^3} = 0$
• $\kappa = 2k \ge 4$ and $\int \frac{d\mu_V(s)}{(s - x^*)^3} \neq 0$

Singular edge point $\psi_V(s) \sim (x^* - s)^{2k + \frac{1}{2}}$ as $s \to x^* -$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Singular interior point with exponent $\kappa = 2k = 2$

Theorem

$$\psi_{ au_{cr}}(s) = A_{\pm} \left|s - x^*_{ au_{cr}}
ight|^{1/2} + O(s - x^*_{ au_{cr}}), \hspace{0.5cm} ext{ as } s o x^*_{ au_{cr}} \pm$$

where

$$\begin{pmatrix} A_-\\A_+ \end{pmatrix} = \frac{1}{(\pi \tau_{cr} c_0)^{3/2} (1 + (\frac{1}{\pi} \int \frac{h(s)}{s - x^*} ds)^2)^{1/4}} \begin{pmatrix} \cos \theta\\\sin \theta \end{pmatrix}$$
$$\theta = \frac{\pi}{4} + \arctan\left(\frac{1}{\pi} \int \frac{h(s)}{s - x^*} ds\right)$$

Singular interior point with exponent $\kappa = 2k \ge 4$.

Theorem

Suppose
$$\int rac{d\mu_V(s)}{(s-x^*)^3} ds = 0.$$
 Then

$$\psi_{ au_{cr}}(s) = A \left| s - x^*_{ au_{cr}}
ight|^{1/3} + O(|s - x^*_{ au_{cr}}|^{2/3}), \quad ext{ as } s o x^*_{ au_c}$$

where

$$A = \frac{\sqrt{3}}{2\pi\tau_{cr}^{4/3} \left(\int \frac{d\mu_V(s)}{(s-x^*)^4} ds\right)^{1/3}}$$

Singular interior point with exponent $\kappa = 2k \ge 4$.

Theorem

Suppose
$$\int \frac{d\mu_V(s)}{(s-x^*)^3} ds > 0$$
. Then

$$\psi_{ au_{cr}}(s) = \begin{cases} A \left| s - x_{ au_{cr}}^* \right|^{1/2} + O(s - x_{ au_{cr}}^*), & \text{as } s \to x_{ au_{cr}}^* + \\ B \left| s - x_{ au_{cr}}^* \right|^{k-1/2} + O((s - x_{ au_{cr}}^*)^k) & \text{as } s \to x_{ au_{cr}}^* - \end{cases}$$

where

$$A = \frac{1}{\pi \tau_{cr}^{3/2} \left(\int \frac{d\mu_V(s)}{(s-x^*)^3} ds \right)^{1/2}}, \quad B = \frac{c_0^{2k+1}}{2\tau_{cr}^{k+1/2} \left(\int \frac{d\mu_V(s)}{(s-x^*)^3} ds \right)^{k+1/2}}$$

Singular right edge point with exponent $\kappa = 2k + \frac{1}{2}$.

Theorem

Suppose
$$\int rac{d\mu_V(s)}{(x^*-s)^3} ds > 0.$$
 Then

$$\psi_{ au_{cr}}(s) = A \left(x^*_{ au_{cr}} - s
ight)^{1/2} + O((s - x^*_{ au_{cr}})^{3/4}) \quad \text{ as } s o x^*_{ au_{cr}} -$$

where

$$A = \frac{1}{\tau_{cr}^{3/2} c_0^{1/4} \left(\int \frac{d\mu_V(s)}{(s-x^*)^3} ds \right)^{1/2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

We have no results yet for the correlation kernels at critical τ_{cr}

• Case $\kappa = 2k = 2$ leads to exponent 1/2: Tacnode kernel of Duits-Geudens (2013) !?

We have no results yet for the correlation kernels at critical $\tau_{\rm cr}$

• Case $\kappa = 2k = 2$ leads to exponent 1/2: Tacnode kernel of Duits-Geudens (2013) !?

• Case
$$\kappa = 2k \ge 4$$
 with $\int \frac{d\mu_V(s)}{(s-x^*)^3} = 0$ leads to exponent 1/3: Pearcey kernel !??

We have no results yet for the correlation kernels at critical $\tau_{\rm cr}$

• Case $\kappa = 2k = 2$ leads to exponent 1/2: Tacnode kernel of Duits-Geudens (2013) !?

• Case
$$\kappa = 2k \ge 4$$
 with $\int \frac{d\mu_V(s)}{(s-x^*)^3} = 0$ leads to exponent 1/3: Pearcey kernel !??

• Case
$$\kappa = 2k \ge 4$$
 with $\int \frac{d\mu_V(s)}{(s-x^*)^3} \le 0$ leads to two exponents $1/2$ and $k - 1/2$: \cdots kernel ???

We have no results yet for the correlation kernels at critical τ_{cr}

• Case $\kappa = 2k = 2$ leads to exponent 1/2: Tacnode kernel of Duits-Geudens (2013) !?

• Case
$$\kappa = 2k \ge 4$$
 with $\int \frac{d\mu_V(s)}{(s-x^*)^3} = 0$ leads to exponent 1/3: Pearcey kernel !??

• Case
$$\kappa = 2k \ge 4$$
 with $\int \frac{d\mu_V(s)}{(s-x^*)^3} \le 0$ leads to two exponents $1/2$ and $k - 1/2$: \cdots kernel ???

• Case $\kappa = 2k + 1/2$ leads to exponent 1/2: Airy kernel ??

Thank you for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>