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1. Unitary Ensemble plus GUE



Unitary ensemble (UE)

M is random n × n Hermitian matrix from UE

1

Zn
e−nTrV (M)dM

Eigenvalues have joint p.d.f.

1

Z̃n

∆n(x)2
n∏

j=1

e−nV (xj ), ∆n(x) =
∏

1≤i<j≤n

(xj − xi)

Equilibrium measure µV is the minimizer of∫∫
log

1

|s − t|
dµ(s)dµ(t) +

∫
V (t)dµ(t)

µV is limiting eigenvalue distribution as n→∞



GUE matrix

H is n × n (scaled) GUE matrix with distribution

1

Zn
e−

n
2
TrH2

dH

Eigenvalues of
√
τH follow semi-circle law with

variance τ

dλτ (s) =
1

2πτ

√
4τ − s2 ds, s ∈ [−2

√
τ , 2
√
τ ].



Sum of UE and GUE

We are interested in eigenvalues of

X = M +
√
τH

with M from a unitary ensemble, H from a (scaled)
GUE, independent from M, and τ > 0.

Eigenvalues are determinantal point process

Interpretation as non-intersecting paths

Free probability:
µV � λτ

is limiting distribution of eigenvalues as n→∞



Determinantal point process

Brézin and Hikami (1998), Zinn-Justin (1998),
Johansson (2001)

If M is fixed with eigenvalues a1, . . . , an, then
eigenvalues of M +

√
τH have joint density

∝ 1

∆n(a)
·∆n(x) · det

[
e−

n
2τ

(xk−aj )2
]n
j ,k=1

If M is random from UE , then after averaging over
a1, . . . , an,

∝ ∆n(x) · det

[∫ ∞
−∞

aj−1e−
nτ
2
(xk−a)2e−nV (a)da

]n
j ,k=1

It is polynomial ensemble (special case of DPP)



Non-intersecting paths

Johansson (2001), Bleher and Kuijlaars (2004):

Non-intersecting Brownian bridges with starting
positions a1, . . . , an at time t = 0 and ending
positions b1, . . . , bn at time t = T

Joint density for particles at time t ∈ (0,T ):

∝ 1

∆n(a)∆n(b)
·det

[
e−

n
2t
(aj−xk )2

]n
j ,k=1
·det

[
e−

n
2(T−t)

(xj−bk )2
]n
j ,k=1

In limit when all bk → 0

∝ 1

∆n(a)
· det

[
e−

n
2t
(aj−xk )2

]n
j ,k=1

·∆n(x) ·
n∏

j=1

e−
n

2(T−t)
x2j
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Picture if all aj → ±1.



Random starting points

If aj are random eigenvalues of matrix from UE
ensemble 1

Zn
e−nV (M)dM then, after averaging over

a1, . . . , an,

∝ ∆n(x) ·det

[∫ ∞
−∞

aj−1e−
n
2t
(xk−a)2e−nV (a)da

]n
j ,k=1

·
n∏

j=1

e−
n

2(T−t)
x2j

For T →∞, this is exactly the same as eigenvalues
of M +

√
tH.



2. Singular potential



Typical behavior of equilibrium measure

Suppose V is real analytic.

µV is supported on finite union of intervals with
density ψV

Generically ψV has square root vanishing at
endpoints, and is positive in the interior of each of
the intervals.



Singular behavior

Singular interior point
ψV vanishes at interior point x∗

ψV (x) ∼ (x − x∗)κ, κ = 2k for integer k ≥ 1.

Singular edge point
ψV vanishes to higher order at edge point x∗

ψV (x) ∼ |x − x∗|κ, κ = 2k + 1
2

for integer k ≥ 1.



Correlation kernels

Limiting correlation kernels

Sine kernel at regular interior point

Airy kernel at regular edge point

Painlevé kernels at singular points



3. Results

(a) Propagation of singular density for τ < τcr

(b) Propagation of correlation kernel

(c) Density at critical τcr



4 Propagation of singular density



Propagation of singular density

Suppose µV has density

ψV (s) = cκ+1
0 |s − x∗|κ h(s), h(x∗) = 1,

where h is real analytic at x∗. Define

τ < τcr =

[∫
dµV (s)

(s − x∗)2

]−1
and x∗τ = x∗ − τ

∫
dµV (s)

s − x∗

Theorem

µτ = µV � λτ has density ψτ satisfying

ψτ (s) = cκ+1
τ |s − x∗τ |κhτ (s), cτ =

τcr
τcr − τ

c0, hτ (x∗) = 1

where hτ is real analytic at x∗τ
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Propagation of singular density

The singularity at an interior point or edge point
propagates in the model M +

√
τH.

Interpretation in terms of non-intersecting
Brownian paths

Connection with two-matrix model
Duits (2014)



About the proof

Biane (1997) describes how to calculate the density of

µτ = µV � λτ

The mapping

w 7→ w + τ

∫
dµV (s)

w − s

has an inverse z 7→ Fτ (z) that extends continuously and
injectively to C+. Then

ψτ (x) = − 1

π
Im

(∫
dµV (s)

Fτ (x)− s

)
, x ∈ R.



About the proof

ψτ (x) = − 1

π
Im

(∫
dµV (s)

Fτ (x)− s

)
, x ∈ R.

Expand w + τ
∫ dµV (s)

w−s around w = x∗

Expand its inverse Fτ (z) around z = x∗τ
Combine this to find first non-zero term in
expansion of ψτ (x) around x = x∗τ .



5 Propagation of correlation kernel



Propagation of correlation kernel

M is from unitary ensemble with eigenvalue
correlation kernel KM

n (x , y) and scaling limit

lim
n→∞

1

c0nγ
KM

n

(
x∗ +

x

c0nγ
, x∗ +

y

c0nγ

)
= Kcrit,κ(x , y)

with γ = (κ + 1)−1

X = M +
√
τH has correlation kernel KX

n (x , y)

Theorem

Under these conditions

lim
n→∞

e−Hn(x)+Hn(y)

cτnγ
KX

n

(
x∗τ +

x

cτnγ
, x∗τ +

y

cτnγ

)
= Kcrit,κ(x , y)

for certain function Hn



Propagation of correlation kernel

M is from unitary ensemble with eigenvalue
correlation kernel KM

n (x , y) and scaling limit

lim
n→∞

1

c0nγ
KM

n
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x

c0nγ
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y
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X = M +
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τH has correlation kernel KX

n (x , y)

Theorem

Under these conditions

lim
n→∞

e−Hn(x)+Hn(y)

cτnγ
KX

n

(
x∗τ +

x

cτnγ
, x∗τ +

y

cτnγ

)
= Kcrit,κ(x , y)

for certain function Hn



About the proof

For X = M +
√
τH,

KX
n (x , y) =

n

2πiτ

∫ x∗+i∞

x∗−i∞
ds

∫ ∞
−∞

dt KM
n (s, t)

× e
n
2
(V (s)−V (t))e

n
2τ

((s−x)2−(t−y)2)

Claeys-K-Wang (2015)

Proof is basically a steepest descent analysis of this
double integral.



Local part and rest

Separate

KX
n (x , y) = KX

n,loc(x , y) + KX
n,rest(x , y)

with

KX
n,loc(x , y) =

n

2πiτ

∫ x∗+iRn−γ

x∗−iRn−γ

ds

∫ x∗+Rn−γ

x∗−Rn−γ

dt KM
n (s, t)

× e
n
2
(V (s)−V (t))e

n
2τ

((s−x)2−(t−y)2)

R is large, but fixed constant, independent of n,
but it will depend on x and y .



Analysis of local part

After change of variables

1

cτnγ
KX

n,loc

(
x∗τ +

x

cτnγ
, x∗τ +

y

cτnγ

)
=

n1−2γ

2πic0cτ

∫ x∗+ic0R

x∗−ic0R
ds

∫ x∗+c0R

x∗−c0R
dt eFn(s,x)−Fn(t,y)

× 1

c0nγ
KM

n

(
x∗ +

s

c0nγ
, x∗ +

t

c0nγ

)
︸ ︷︷ ︸

→ Kcrit,κ(s, t)

with

Fn(s, x) =
n

2
V

(
x∗ +

s

c0nγ

)
+

n

2τ

(
s

c0nγ
− τ

2
V ′(x∗)− x

cτnγ

)



Taylor expansion of Fn

Expand as n→∞

Fn(s, x) =
n

2
V (x∗) +

τn

8
V ′(x∗)2 +

n1−γ

2cτ
V ′(x∗)x +

n1−2γ

4c0cτ
V ′′(x∗)x2

+
n1−2γ

2τc0cτ

[
(s − x)2 + O(n−γ)

]
No term sn−γ because of choice for x∗τ
Complete square (s − x)2 because of choice for cτ

Saddle point equation
∂Fn

∂s
= 0 gives the saddle

x + O(n−γ)



Analysis of rest

KX
n,rest(x , y) = KX

n (x , y)− KX
n,loc(x , y)

Scaled version

e−Hn(x)+Hn(y)KX
n,rest

(
x∗τ +

x

cτnγ
, x∗τ +

y

cτnγ

)
becomes O(e−cn

1−γ
) as n→∞ if R is large enough.

Proof uses deformation of t-contour into the
complex plane, and uses bounds on orthogonal
polynomials that come from steepest descent
analysis of Riemann-Hilbert problem



6 Density at critical τcr



Density at critical τcr

What about the density for critical τcr =

[
dµV (s)

(s − x∗)2

]−1
?

We have results for

Singular interior point ψV (s) ∼ (s − x∗)2k as s → x∗

κ = 2k = 2

κ = 2k ≥ 4 and

∫
dµV (s)

(s − x∗)3
= 0

κ = 2k ≥ 4 and

∫
dµV (s)

(s − x∗)3
6= 0

Singular edge point ψV (s) ∼ (x∗ − s)2k+
1
2 as s → x∗−
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Density at critical τcr

Singular interior point with exponent κ = 2k = 2

Theorem

ψτcr (s) = A±
∣∣s − x∗τcr

∣∣1/2 + O(s − x∗τcr ), as s → x∗τcr±

where(
A−

A+

)
=

1

(πτcrc0)3/2(1 + ( 1
π
−
∫ h(s)

s−x∗ds)2)1/4

(
cos θ

sin θ

)

θ =
π

4
+ arctan

(
1

π
−
∫

h(s)

s − x∗
ds

)



Density at critical τcr

Singular interior point with exponent κ = 2k ≥ 4.

Theorem

Suppose

∫
dµV (s)

(s − x∗)3
ds = 0. Then

ψτcr (s) = A
∣∣s − x∗τcr

∣∣1/3 + O(|s − x∗τcr |
2/3), as s → x∗τcr

where

A =

√
3

2πτ
4/3
cr

(∫
dµV (s)

(s − x∗)4
ds

)1/3



Density at critical τcr

Singular interior point with exponent κ = 2k ≥ 4.

Theorem

Suppose

∫
dµV (s)

(s − x∗)3
ds > 0. Then

ψτcr (s) =

A
∣∣s − x∗τcr

∣∣1/2 + O(s − x∗τcr ), as s → x∗τcr +

B
∣∣s − x∗τcr

∣∣k−1/2 + O((s − x∗τcr )
k) as s → x∗τcr−

where

A =
1

πτ
3/2
cr

(∫ dµV (s)
(s−x∗)3ds

)1/2 , B =
c2k+1
0

2τ
k+1/2
cr

(∫ dµV (s)
(s−x∗)3ds

)k+1/2



Density at critical τcr

Singular right edge point with exponent κ = 2k + 1
2
.

Theorem

Suppose

∫
dµV (s)

(x∗ − s)3
ds > 0. Then

ψτcr (s) = A
(
x∗τcr − s

)1/2
+ O((s − x∗τcr )

3/4) as s → x∗τcr−

where

A =
1

τ
3/2
cr c

1/4
0

(∫
dµV (s)

(s − x∗)3
ds

)1/2



Speculations about correlation kernel

We have no results yet for the correlation kernels at
critical τcr

Case κ = 2k = 2 leads to exponent 1/2:
Tacnode kernel of Duits-Geudens (2013) !?

Case κ = 2k ≥ 4 with

∫
dµV (s)

(s − x∗)3
= 0 leads to

exponent 1/3: Pearcey kernel !??

Case κ = 2k ≥ 4 with

∫
dµV (s)

(s − x∗)3
≤ 0 leads to two

exponents 1/2 and k − 1/2: · · · kernel ???

Case κ = 2k + 1/2 leads to exponent 1/2:
Airy kernel ??
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Thank you for your attention


