Diffusion of characteristic polynomials and edge universality in non-hermitian random matrix models

Maciej A. Nowak

Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

March 22nd, 2016

"Random matrix theory and strongly correlated systems" University of Warwick

Supported in part by the grant DEC-2011/02/A/ST1/00119 of National Centre of Science.

Jean-Paul Blaizot (IPhT Saclay), Zdzisław Burda (AGH), Jacek Grela (UJ), Wojciech Tarnowski (UJ), Piotr Warchoł (UJ) [Burda, Grela, MAN, Tarnowski and Warchoł, Phys. Rev. Lett. 113 (2014) 104102; Burda, Grela, MAN, Tarnowski and Warchoł, Nucl. Phys. B897

(2015) 421;

Blaizot, Grela, MAN, Tarnowski and Warchoł - On

Ornstein-Uhlenbeck diffusion of hermitian and non-hermitian matrices-unexpected links, math-th/1512.06599, to be published in JSTAT, 2016]

Yizhuang Liu and Ismail Zahed (Stony Brook)

[Liu, MAN, Zahed; hep-lat/1602.02578]

- Hermitian overture: diffusion of hermitian matrices -"Dysonian way" vs "Burgulent way"
- Unraveling the diffusion of nonhermitian matrices Ginibre ensemble
- Non-trivial example application to finite density QCD

"Dysonian way" ([Dyson; 1962])

• After considerable and fruitless efforts to develop a Newtonian theory of ensembles, we discovered that the correct procedure is quite different and much simpler.....

$$d\lambda_i(au) = rac{1}{\sqrt{N}} dB_i(au) + rac{1}{N} \sum_{i
eq j}^N rac{1}{\lambda_i - \lambda_j} d au - a\lambda_i d au$$

- The word "time" in this paper will always refer to a fictitious time which is a property of mathematical model.....
 In our case, "time" may be real time, area of the string, temperature, length of the mesoscopic wire etc.
- This term [Coulombic] is mainly sensitive to the local (microscopic) configurations of the gas particles... at the microscopic scale...After local equilibrium is established..the gas must adjust itself by a macroscopic motion on the time scale [which is N times larger comparing to the microscopic one]... "a rigorous proof that this picture is accurate would require a much deeper mathematical analysis...
 - We give support to this picture.

Diffusion of N by N hermitian matrices $H = H^{\dagger}$

• Gaussian Unitary Ensemble (GUE)

$$H_{ij} = \begin{cases} x_{ii} & \text{if } i = j \\ \frac{x_{ij} + iy_{ij}}{\sqrt{2}} & \text{if } i < j \end{cases}$$

where all x_{ij} , y_{ij} drawn from standard Gaussians, so

- $< dH_{ij} >= -aH_{ij}d\tau, \quad < (dH_{ij})^2 >= \frac{1}{N}d\tau$
- Probability distribution $\partial_{\tau} P(H, \tau) = L_{OU} P(H, \tau)$, with $P(H, \tau) = Cexp\left(-\frac{Na}{1-e^{-2a\tau}} \operatorname{tr}(H-H_0 e^{-a\tau})^2\right)$
- $< F(H) >_{\tau} = \int [dH]P(H,\tau)F(H)$

- We define $D_N(z, \tau) = \langle \det(z\mathbf{1}_N H) \rangle_{\tau}$
- Integrable, exact eq. (for any N and for any initial conditions) $\partial_{\tau} D_N(z,\tau) = -\frac{1}{2N} \partial_{zz} D_N(z,\tau) + az \partial_z D_N(z,\tau) - aND_N(z,\tau)$ [Blaizot,MAN,Warchoł; 2008-2013]
- Inverse Cole-Hopf transform $f_N = \frac{1}{N} \partial_z \ln D_N$
- Burgers equation $\partial_{\tau} f_N + f_N \partial_z f_N a \partial_z (z f_N) = \nu_s \partial_{zz} f_N$
- Spectral viscosity $\nu_s = -\frac{1}{2N}$

Burgers equation trivia

- Navier-Stokes eq. in d = 1 without pressure term.
- Toy model for turbulence (f(x, t) height of the wave at position x and time t)
 ∂_tf + f∂_xf = ν∂_{xx}f, where ν is a viscosity
 [Burgers; 1939]
- Exactly solvable by [Hopf-Cole;1950-51] transformation $f = -2\nu\partial_x \ln d$, so $\partial_t d = \nu\partial_{xx} d$
- Inviscid limit (ν → 0): Euler equation ∂_tf + f∂_xf = 0, solvable by the method of characteristics with implicit solution: f = f₀(x − tf), where f₀ = f(x, 0).
- Inviscid equation develops singularities (shocks) at $t^{\star} = 1/f'_0$.

Naive large N, i.e. inviscid limit

- Green's function $G(z,\tau) = \frac{1}{N} \left\langle \operatorname{tr} \frac{1}{z \mathbf{1}_N H} \right\rangle_{\tau} = \frac{1}{N} \left\langle \sum_{k=1}^N \frac{1}{z \lambda_k} \right\rangle$
- $G(z,\tau) = \lim_{N \to \infty} f_N = \lim_{N \to \infty} \frac{1}{N} \partial_z \ln \langle \det(z-H) \rangle$ = $\lim_{N \to \infty} \frac{1}{N} \partial_z \langle \operatorname{Tr} \ln(z-H) \rangle$
- inviscid complex Burgers equation $\partial_{\tau}G + G\partial_{z}G - a\partial_{z}(zG) = 0$
- Stationary limit $\tau \to \infty$ yields $\partial_z (\frac{G^2}{2} azG) = 0$
- Spectrum from Sochocki Plemelj eq. $\frac{1}{\lambda - \lambda' \pm i\epsilon} = P.V. \frac{1}{\lambda - \lambda'} \mp i\pi\delta(\lambda - \lambda')$
- $\rho(\lambda) = \frac{a}{\pi}\sqrt{2/a \lambda^2}$
- Warning: Shock phenomena at the edges of the spectrum

- Burgers equation is exactly integrable
- Lamperti Transformation [Lamperti; 1962] $D(z, \tau) = (1 + 2a\tau')^{-N/2}D'(z', \tau')$ $z' = e^{a\tau}z \quad \tau' = \frac{1}{2}(e^{2a\tau} - 1)$
- Diffusion equation in "primed" variables $\partial_{\tau'} D' = -\frac{1}{2N} \partial_{z'z'} D'$
- Similar behavior (modulo the sign) for the inverse characteristic determinant.
- Solution at the vicinity of the shock leads to either Airy-like oscillations (trivial initial conditions) or Pearcey-like oscillations (non-trivial initial conditions)

- Tracing the singularities of the flow allows to understand the pattern of the evolution of the complex system without explicit solutions of the complicated hydrodynamic equations...
- Zooming at singularities allows to infer the universal scaling (critical) exponents, since viscous equations are exact for arbitrary number of colors.
- Example 1. [Durhuus-Olesen; 1981] transition for the Wilson loop spectra in large *N* Yang-Mills [Narayanan, Neuberger; 2008], [Blaizot, MAN; 2008]
- Example 2. Critical chiral transitions for the Dirac operator (e.g. Bessoid class) [Janik, MAN, Papp, Zahed; 1997], [Blaizot, MAN, Warchoł; 2013]

- [Ginibre ensemble, 1964] academic exercise
- Random walk for $\beta = 2$ [Osada; 2012] ???
- Random walk for $\beta = 1$ [Mihail Poplavskyi, Roger Tribe, Oleg Zaboronski, 2012-2015]

Nonhermitian operators 52 years later...

- Nonhermitian quantum mechanics (resonances, complex potentials,...)
- Statistics (lagged correlators) $C_{i,j}(\Delta) = \frac{1}{T} \sum_{t=1}^{T} X_{i,t} X_{j,t+\Delta}$
- Complexity (directed graphs/networks, non-backtracking (Hashimoto) operators for sparse systems)
- "Pathological" Euclidean Dirac operators

•

Analytic methods break down, since spectra are complex $\rho(z) = \frac{1}{N} \left\langle \sum_{i} \delta^{(2)}(z - \lambda_i) \right\rangle.$

- Electrostatic potential [Girko;1984],[Brown;1986],[Sommers et al.;1988] $\phi(z, \bar{z}) \equiv \lim_{\epsilon \to 0} \lim_{N \to \infty} \langle \frac{1}{N} \operatorname{tr} \ln[|z - X|^2 + \epsilon^2] \rangle$
- Green's function (electric field) $g = \partial_z \phi = \lim_{\epsilon \to 0} \lim_{N \to \infty} \left\langle \frac{1}{N} \operatorname{tr} \frac{\bar{z} - X^{\dagger}}{|z - X|^2 + \epsilon^2} \right\rangle$
- Gauss law $\rho(z,\tau) = \frac{1}{\pi} \partial_{\overline{z}} g|_{\epsilon=0} = \frac{1}{\pi} \frac{\partial^2 \phi}{\partial z \partial \overline{z}}|_{\epsilon=0}$ Proof: $\delta^{(2)}(z) = \lim_{\epsilon \to 0} \frac{1}{\pi} \frac{\epsilon^2}{(|z|^2 + \epsilon^2)^2}$

"Linearization trick" [Janik, MAN, Papp, Zahed; 1997]

•
$$\phi(z, \bar{z}) \equiv \lim_{\epsilon \to 0} \lim_{N \to \infty} \langle \frac{1}{N} \operatorname{tr} \ln[|z - X|^2 + \epsilon^2] \rangle$$

= $\lim_{\epsilon \to 0} \lim_{N \to \infty} \langle \frac{1}{N} \ln D_N \rangle$ where
 $D_N(z, \bar{z}, \epsilon) = \det(Z \otimes \mathbf{1}_N - \mathcal{X})$ with
 $Z = \begin{pmatrix} z & i\epsilon \\ i\epsilon & \bar{z} \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} X & 0 \\ 0 & X^{\dagger} \end{pmatrix}$
• $\mathcal{G}(z, \bar{z}) = \frac{1}{N} \langle \operatorname{btr} \frac{1}{(Z - \mathcal{X})} \rangle = \begin{pmatrix} \mathcal{G}_{11} & \mathcal{G}_{1\bar{1}} \\ \mathcal{G}_{\bar{1}1} & \mathcal{G}_{\bar{1}\bar{1}} \end{pmatrix}$
 $\operatorname{btr} \begin{pmatrix} A & B \\ C & D \end{pmatrix}_{2N \times 2N} \equiv \begin{pmatrix} \operatorname{tr} A & \operatorname{tr} B \\ \operatorname{tr} C & \operatorname{tr} D \end{pmatrix}_{2 \times 2}$

• $G_{11} = g(z, \overline{z})$ yields spectral function

• $\mathcal{G}_{1\overline{1}} \cdot \mathcal{G}_{\overline{1}1}$ yields elements of a certain eigenvector correlator [Savin,Sokolov; 1997],[Chalker,Mehlig;1998].

Loophole in the standard arguments

For non-hermitian matrices X, we have left and right eigenvectors X = Σ_k λ_k |R_k >< L_k| where X |R_k >= λ_k |R_k > and < L_k |X = λ_k < L_k|

•
$$< L_j | R_k >= \delta_{jk}$$
, but $< L_i | L_j > \neq 0$ and $< R_i | R_j > \neq 0$.

•
$$D_N = \det(Z - \mathcal{X}) = \det[U^{-1}(Z - \mathcal{X})U] =$$

 $\det\begin{pmatrix} z\mathbf{1}_N - \Lambda & -i\epsilon < L|L > \\ i\epsilon < R|R > & \overline{z}\mathbf{1}_N - \overline{\Lambda} \end{pmatrix}$

- Spectrum (Λ) entangled with diagonal part of the overlap of eigenvectors O_{ij} ≡< L_i|L_j >< R_j|R_i >.
- Naive limit $\epsilon \to 0$ kills the entanglement leading to incomplete description of the non-hermitian RM

Cure: Hidden variable

We promote $i\epsilon$ to full, complex-valued dynamical variable.

Then, "orthogonal direction" *w* unravels the eigenvector correlator $O(z,t) = \frac{1}{N^2} \langle \sum_k O_{kk} \delta^{(2)}(z - \lambda_k(t)) \rangle$, where $O_{ij} = \langle L_i | L_j \rangle \langle R_j | R_i \rangle$ and $| L_i \rangle (| R_i \rangle)$ are left (right) eigenvectors of *X*. [Janik, MAN, Noerenberg, Papp, Zahed; 1999] Replacing $Z = \begin{pmatrix} z & i \\ i \\ \epsilon & \overline{z} \end{pmatrix}$ by **quaternion** $Q = \begin{pmatrix} z & -\overline{w} \\ w & \overline{z} \end{pmatrix}$ provides algebraic generalization of free random variables calculus for nonhermitian RMM. [Janik, MAN, Papp, Zahed, 1997], [Feinberg, Zee; 1997], [Jarosz, MAN; 2006], [Belinschi, Sniady, Speicher; 2015].

Maciej A. Nowak Shock waves in Ginibre ensemble

Approach to nonhermitian variables

- We replace $D_N(z,\tau) = \langle \det(z\mathbf{1}_N H) \rangle_{\tau}$ by the determinant $\mathcal{D}_N(z, \bar{z}, w, \bar{w}, \tau) = \langle \det(Q \otimes \mathbf{1}_N \mathcal{X}) \rangle_{\tau}$
- Using the evolution equation, we arrive at exactly integrable equation for any N and any initial conditions $\partial_{\tau} \mathcal{D}_{N} = \frac{1}{N} \partial_{w\bar{w}} \mathcal{D}_{N} 2Na\mathcal{D}_{N} + ad\mathcal{D}_{N}$, where operator $d = z\partial_{z} + w\partial_{w} + \bar{z}\partial_{\bar{z}} + \bar{w}\partial_{\bar{w}}$
- Switching to "primed" variables (Lamperti transformation) removes the O-U drift, yielding exact 2d diffusion equation $\partial_{\tau'} \mathcal{D}'_N(z', w', \tau') = \frac{1}{N} \partial_{w'\bar{w}'} \mathcal{D}'_N(z', w', \tau')$

"Burgulent way" - nonhermitian case, $N=\infty$ limit

 The hermitian-case Burgers equation ∂_τ'g' + g'∂_zg' = 0 is now superimposed by the system (two Cole-Hopf transforms)

$$\begin{array}{rcl} \partial_{\tau'}v' &=& v'\partial_{r'}v'\\ \partial_{\tau'}g' &=& \partial_{z'}v'^2 \end{array}$$

where v'^2 controls eigenvectors, g' controls the complex spectrum and |w'| = r'

- Evolution of overlaps (v') prior to the evolution of spectra
- Shock phenomenon in eigenvector sector
- "Missed " complex plane (w') is relevant quaternion (Q') description.

Historical example

- For trivial initial conditions $X_0 = 0$ $O(z) = \frac{1}{\pi}(1 - |z|^2)\Theta(1 - |z|)$ [Chalker-Mehlig;1998],[Janik et al.;1998]
- $\rho(z) = \frac{1}{\pi} \Theta(1 |z|)$ [Ginibre; 1964]
- Despite the fact, that in the large *N* limit, overlap of eigenvectors is **prior** to eigenvalues, this correlator was calculated 34 years after the spectral density calculation (*sic!*).
- "Duality" helps!

Microscopic universality

- $\mathcal{D}(z, r, \tau) = \frac{2N}{\tau} \int_0^\infty r' exp(-N \frac{r^2 + r'^2}{\tau}) I_0(\frac{2Nrr'}{\tau}) \mathcal{D}_0(z, r') dr'$ where $\mathcal{D}_0(z, r') = (|z|^2 + r'^2)^N$
- Three saddle points $r_0'=0, r_\pm'=\pm\sqrt{ au-|z|^2}$
- Unfolding $r' = \theta N^{-1/4}$, $|z| = \sqrt{\tau} + \eta N^{-1/2}$
- $\lim_{N\to\infty} \mathcal{D}(z=\sqrt{\tau}+\eta N^{-1/2},r=0,\tau)\sim \frac{1}{2\pi\tau}\mathrm{erfc}(\sqrt{2/\tau}\eta)$

	GUE	GE
Spectrum	real	complex
Green's f.	complex-valued	quaternion-valued
	$G(z) = rac{1}{N} \left\langle \operatorname{Tr}(z - H)^{-1} ight angle$	$\mathcal{G}(Q) = rac{1}{N} \left\langle \mathrm{bTr}(Q - \mathcal{X})^{-1} ight angle$
Det	$D(z, \tau) = < \det(z - H) >$	$\mathcal{D}(\mathcal{Q}, au) = < \det(\mathcal{Q} - \mathcal{X}) >$
Diffusion eq.	$\partial_{\tau} D = -\frac{1}{2N} \partial_{zz} D$	$\partial_{ au} \mathcal{D} = + rac{1}{N} \partial_{w ar{w}} \mathcal{D}$
Viscosity	negative	positive
Universality	oscillatory (Airy)	smooth (Erfc)
R-transform	$R_{GUE}(G) = G$	$\mathcal{R}_{GG}(\mathcal{G}) = \left(egin{array}{cc} 0 & \mathcal{G}_{1ar{1}} \ \mathcal{G}_{ar{1}1} & 0 \end{array} ight)$
Voiculescu eq.	$\frac{\partial G}{\partial \tau} + R(G) \frac{\partial G}{\partial z} = 0$	$\frac{\partial \mathcal{G}_{ab}}{\partial \tau} + \sum_{c,d=1}^{2} \mathcal{R}[\mathcal{G}]_{cd} \frac{\partial \mathcal{G}_{ab}}{\partial Q_{cd}} = 0$
Shocks	eigenvalues	eigenvectors

Non-trivial example: Euclidean QCD at finite density

$$Z_{N_{f}}(\tau, z = -im_{f}, \mu) = \int dT dT^{\dagger} P(\tau, T) \det \begin{pmatrix} z & T - i\mu \\ T^{\dagger} - i\mu & z \end{pmatrix}^{N_{f}} \text{ where } P(\tau, T) = e^{-\frac{N}{\tau} \operatorname{Tr} T^{\dagger} T}$$

- For μ = 0: Universality in the bulk (sine kernel) [MAN,Verbaarschot,Zahed;1989]
- For $\mu = 0$: Universality at the chiral point (Bessel kernel) [Shuryak,Verbaarschot,Zahed;1993]
- For $\mu \neq 0$: [Stephanov;1994], suggested the solution of the "mystery of the baryonic pion".

"Deformed Wishart model" [Liu,MAN,Zahed;2016]

•
$$\mathbf{Z}_{N_f}(\mathbf{z}, w, \mu) = \langle (\det(|\mathbf{z} - W|^2 + w\bar{w})^{N_f/4} \rangle$$
, where $W = T^{\dagger}T - i\mu(T + T^{\dagger})$, $\mathbf{z} = z^2 + \mu^2$

- $\mathbf{Z}_{N_f}(\mathbf{z}, w, \mu) \equiv \langle e^{F+G} \rangle$ where $F = q^{\dagger}(\mathbf{z} - W)q + Q^{\dagger}(\bar{\mathbf{z}} - W^{\dagger})Q$ and $G = \bar{w}q^{\dagger}Q + wQ^{\dagger}q$
- z, \overline{z} act as complex masses for $q^{\dagger}q, Q^{\dagger}Q$, whereas w, \overline{w} act as mixing masses for $q^{\dagger}Q, Q^{\dagger}q$.
- For $N_f = 4$, we managed to write exact for finite N "diffusive-like" evolution equation.

"Deformed Wishart model" [Liu,MAN,Zahed;2016] cont.

- WKB analysis reproduces (via known conformal mapping) expanding droplet boundary in agreement with the Stephanov result
- Model reproduces known Airy universalities for $\mu = 0$ and chiral universalities (after nontrivial unfolding of the type $\mu^2 N$ fixed for large N) of the 1-matrix model Osborn, Splittorff, Verbaarschot [2006-2008] and 2-matrix model of Akemann and Osborn [2003-2007]
- Model yields novel microscopic edge profile of the erfc type, depending on the value of the quark condensate, providing *a priori* a way of extracting the physical condensate from current and quenched Dirac lattice data, without having to solve the sign problem
- More work to be done to include temperature, realistic masses, numerical identification of zero mode zone... (work in progress).

- Formalism of Dysonian dynamics for non-hermitian RMM $(\beta = 2)$, involving coevolution of eigenvalues and eigenvectors, based on hidden variable
- Unexpected similarity between hermitian and non-hermitian RMM based on "Burgulence" concepts
- Verification in various applications of hermitian and non-hermitian random matrix models
- Unexplored mathematics