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1.Motivation



Some examples of non-colliding processes or non-intersecting 
paths in the class of  determinantal point processes



Choose a number of horizontal 
sections      for   
and consider the linear statistic 
 
 

In this talk we will be interested 
in the behavior of the fluctuations 
of          as  

We will discuss N=1 separately. 

Global fluctuations via multi-time linear statistics
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2. Some example of results for linear 
statistics



Linear statistics and the GUE

For a smooth function     consider the linear statistic  
 
 
 
where, for now, the points                     are the eigenvalues of a 
(properly scaled) GUE matrix.  

Then, as              , the global distribution is given by  
 
 
 

We will be mostly interested in the limiting behavior of the  
fluctuations  
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Linear statistics and the GUE

Central Limit Theorem:  
For the fluctuations we have as             , for sufficiently smooth functions   , 
 
 
 
where  
 
 
and  
 
 
 
 
 
Johansson ’98,…. 

No normalization! Only for sufficiently smooth functions. One dimensional 
section of a 2d Gaussian Free Field.
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Linear statistics and the GUE

Dyson (1962). Consider a Hermitian matrix for which the entries (up 
to symmetry) evolve according to independent Ornstein-Uhlenbeck 
processes. Then the ordered eigenvalues form a non-colliding process 

The invariant measure is the eigenvalue  
distribution for the GUE.  

What about multi-time fluctuations 
 in the stationary situation?



Stationary DBM

Choose a number of horizontal sections      for   
 
 
 

Multi-time Global CLT: As             , for  
sufficiently smooth functions   ,   
 
 
where 
 
 
 
and 
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3. Biorthogonal Ensembles 

Single time fluctuations



Biorthogonal Ensembles

Consider a probability measure on       defined by  
 
 
 
 
where      is a Borel measure      and       are some square integrable 
functions with respect to    

By taking linear combination of the the rows in the determinants and 
the fact that the above is probability measure, we can assume, 
without loss of generality, that  
 
 
 
 
This also implies that
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Recurrence Matrices

Our main assumption will be that the functions     and      are part of 
large system of biorthogonal functions          and          ,  
 
 
 
 
for which there exists a banded matrix      such that  
 
 
 

This means that the      satisfy a finite term recurrence
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Orthogonal polynomials and Jacobi matrices

An example of such a system are the Orthogonal Polynomial 
Ensembles. In that case                                   are the orthonormal 
polynomials. That is, the polynomials of degree   with positive leading 
coefficients satisfying   
 

There exists                      and                 such that 

The recurrence matrix, or Jacobi operator, is symmetric tridiagonal

�j(x) =  j(x) = pj(x)

Z
pj(x)pk(x)dµ(x) = �jk

xpk(x) = ak+1pk+1(x) + bk+1pk(x) + akpk�1(x)

{ak}k ⇢ (0,1) {bk}k ⇢ R

j

J =

0

BBB@

b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
...

...
...

. . .

1

CCCA



Relevant part of the recurrence matrix (1)

Limit shape: If  is a polynomial then  
 
 
 
 
This means that the expected value of the moments of the empirical 
measure only depend on coefficients in an upper right block of size. 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Relevant parts of the recurrence matrix (2)
Fluctuations: The moments of the fluctuations                                        
 
 
 
of the moments of the empirical measure only depend on O(1) size 
block around n,n entry 

More precisly, The m-th moment only depends on the entries 
 
 
where     depends on     and the degree    of but not on    . 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Universality of fluctuations

Theorem (Breuer-D, to appear in JAMS) 
 
Given two biorthogonal ensembles, with recurrence matrices    and             
such that for all     and    we have   
 
 
 
Then, for any polynomial       and for each     ,  as             ,
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Theorem (Breuer-D, to appear in JAMS)  
Suppose that we have a biorthogonal ensemble with a recurrence matrix 
satisfying  

 
Then for any polynomial        as             ,  

 
where 
 

´In the symmetric case                , we also formulate general and weak 
conditions to allow       functions of polynomial growth. 

Central Limit Theorem 
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Example GUE
The eigenvalues of a GUE matrix have the  
 
 
 
where            are rescaled and normalized Hermite polynomials, i.e. 

The (rescaled) Hermite polynomials have there recurrence  
 

Hence we find the following recurrence matrix and the relevant limit
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Remarks on the generality

This theorem gives a criterium for which the model has Gaussian 
limiting fluctuation for the linear statistics. Work is still needed to show 
that the criteria is practical.  

For models involving  classical functions / orthogonal polynomials, the 
criteria is often satisfied and can be simply looked up on any standard 
reference on special functions.  

Often, the question of finding leading term in the asymptotics for the 
recurrence coefficients is an intrinsically easier question that finding the 
full asymptotic description for the correlation kernel.  

In certain cases there are general result ensuring that the criterium is 
fulfilled for a remarkably wide class of models. 

The criterium fails in multi-cut cases since the recurrence coefficients 
have quasi-periodic behavior. The fluctuations are not always gaussian.  
Pastur ’06, Borot-Guionnet ’13, Shcherbina ’13



Example: OPRL

As the first consider                            the OP’s for  
 

Recurrence 

Jacobi operator  
 
 
 
 

We allow varying measures so all objects may depend on 
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Example: OPRL

For non-varying measures we have the: 
 
Denissov-Rakhmanov Theorem: If     is  a compactly supported 
measure for which  the essential part of the support  is a single 
interval                       and the absolutely continuous part has a 
density that is strictly positive a.e. on the essential part. Then  
 

For varying measure related to Unitary Ensembles, we have limits of 
the recurrence coefficients for one-cut situations.  

Also many discrete examples from tiling models fall in this class.
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DBM with random initial condition
Take as the initial configuration the eigenvalues 
of a matrix take randomly from a unitary ensemble  
with a convex potential  
 

Then run DBM and consider the distribution 
of the points at time   . These have the same 
distribution as the eigenvalues  of  
 
 
 
(Recall talk by Kuijlaars on Monday) 

In this case, we have multiple orthogonal 
polynomials with wider band recurrence matrices  
but we still find a Toeplitz structure in the limit  
with relative ease, see Breuer-D.  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DBM with two initial points
Now consider DBM with two starting points     and     . We assume 
that the number of paths     is even and that half of the points start at 
each point. 

(Equivalent picture  
of brownian bridges)

↵1 ↵2

↵1 ↵2

n



Multiple Hermite polynomials
The locations at time t form a biorthogonal ensembles constructed by 
Multiple Hermite Polynomials (Johansson ’02, Bleher-Kuijlaars ’04) 
 
 
 
 
 
 
 
 
The           is a polynomial of degree           . 

Then, up to a rescaling and re-parametrization, the points at time t 
form a biorthogonal ensemble with 
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Recurrence relations for Multiple Hermite  Polynomials

One can show that  
 

We can exchange indices according to the rule 
 
 

Then we have the following recurrence relation

xPk1,k2(x) = Pk1+1,k2(x) + a1Pk1,k2(x) + k1Pk1�1,k2(x) + k2Pk1,k2�1(x)

Pk1+1,k2(x) = Pk1,k2+1(x) + (a2 � a1)Pk1,k2(x).

xPk1,k2(x) = Pk1+1,k2(x) + a1Pk1,k2(x) + (k1 + k2)Pk1,k2�1(x)� (a2 � a1)k1Pk1�1,k2�1(x).

xPk1,k2(x) = Pk1,k2+1(x) + a2Pk1,k2(x) + (k1 + k2)Pk1�1,k2(x)� (a1 � a2)k1Pk1�1,k2�1(x).



Limit of the recurrence matrix
After some computation by plugging in the recurrences we find 
 
 
 
 
where 
 
 
 
 
and 

J =

0

BBB@

A0 A�1

A1 A0 A�1

A1 A0 A�1

. . .
. . .

. . .

1

CCCA

A0 = e�t

✓
a1 1
0 a2

◆
+ (et � e�t)

✓
0 0
1 0

◆

A�1 = e�t

✓
0 0
1 0

◆

A1 = (et � e�t)

✓
1
2 (a1 � a2) 1

0 1
2 (a2 � a1)

◆

J

lim
n!1

⇣
(J (n))n+k,n+l � (J)n+k,n+l

⌘
= 0.



A more general Central Limit Theorem
The CLT of Breuer-D. can be generalized into 
 
Theorem  
Suppose there exists and such that  
 
 
 
and that for a polynomial  we can decompose  
such that  
 
1)               is lower triangular,  
2)               is upper triangular,  
3)                          is trace class  
 
Then, as              , we have 
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Some comments

If     is a Toeplitz matrix, the conditions are satisfied for every 
polynomial and therefore the aforementioned theorem in Breuer-D is a 
direct consequence of this theorem. This follows by simple identities for 
Toeplitz matrices.  

If    is a block Toeplitz matrix, then this generically fails, although it may 
be true for some polynomials (e.g. in the symmetric two-cut case for 
unitary ensemble, even polynomials still satisfy a CLT) 

However, in the case of multiple Hermite polynomials, the condition is 
true for every polynomial! This is because of a very particular structure 
in the blocks. 

It is an interesting problem for the theory of multiple orthogonal 
polynomials to characterize conditions under which this happens. 

J

J



CLT for DBM with two starting points
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4. Extended Biorthogonal Ensembles  
 

Multi-time fluctuations



Extended Biorthogonal Ensembles

Now consider  a probability measure on            of the form 
 
 
 
 
 
 

We assume that the operators 
 
 
defined by 
 
 
are bounded.
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Recurrence matrices
We assume that the functions are biorthogonal in the sense  

Then define the functions            and  
 
 
 
which are biorthogonal as well 
 

The marginals for fixed       gives a biorthogonal ensemble with 
respect to the functions           and           .
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Recurrence matrices 

We assume that         and           can be embedded into families such 
that 
 
 
 
 
and that there exists band matrices 
 
 

The matrices may depend on    , except for the bandwidths. 
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Consider linear statistics  

Theorem (D. arXiv)  Suppose we have two different extended 
biorthogonal ensembles such that for each  
 
 
 
Then for any               such that it is a polynomial in     and 
 
 
 
as

Universality
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Theorem (D. arXiv)  Suppose that for each  
 
 
 
Then for any               that is a polynomial in   , as              , 
 
 
 
 
 
 
where 

Central Limit Theorem
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Example: Stationary DBM

 
where 
 
 
 
 
where         stands for the j-th Hermite polynomial and 
 
 
 
is the transition probability for the OU process.  
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Multi-time Global CLT: As             , for  sufficiently smooth functions     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and 

Then  
 
 
and hence we obtain the recurrence matrices 

Example: Dyson’s Brownian motion (2)
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Further comments

This construction can be generalized in a straightforward way. The 
Hermite functions are eigenfunctions for the generator of the Ornstein-
Uhlenbeck processes. Similar statements are true other process for 
which the generator has the classical orthogonal polynomials as 
eigenfunctions. Such as Laguerre and Jacobi polynomials in the 
continuous case and in the discrete case one can turn to birth/death 
processes, Meixner, Charlier, Krawtchouk. 

It can also be applied to tiling models, such as lozenge tilings of a 
regular hexagon. 

One can rigorously show that the CLT explains a convergence of the 
fluctuation of the associated random height function to the Gaussian 
Free Field.  

By an extension we can also handle certain cases involving multiple 
orthogonal polynomials:



Multi-time CLT for DBM with two starting points

Theorem [D. upcoming]  
Let           be a polynomial in    . Then  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Thank you for you attention!


