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Talk concerns phenomena specific to dimension 4.

Higher dimensions are demonstrably different.
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Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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for some constant A € R.
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Variational Approach

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized Finstein-Hilbert action functional

SZQMHR

g — V(Qn)/n/ Sgd,ug
M

where V' = Vol(M, ¢) inserted to make scale-invariant.
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Basic difficulty:

S(g) = V<2_n>/n/ Sgditg
M

not bounded above or below.

Yamabe:
Consider any conformal class

v =lg0) = {ugy | u: M — RT},

Then restriction S| is bounded below.
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Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

3 metric g € v which mimimizes S|.
Has s = constant.
Unique up to scale when s < 0.

“Yamabe metrics”
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Sg d

g€ o2
(s ig)
If ¢ has s of fixed sign, agrees with sign of Y[g].

Aubin:
Y, <857, Jround)

Schoen:
= only for round sphere.
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V(M) =supY - = sup inf Jur 59 /ig_z.

! T IS (fM dﬂ‘g)T

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

Y(M) >0 <= M admits g with s > 0.

If 3 metric with s = 0, but 4 metric with s > 0,
— V(M) =0.

e
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Kod(M) = limsup o diml'(AM, O(K™)
(—+00 log £
V(M) does not distinguish between Kod 0 and 1.

But if V(M%) = 0, 3¢ with s = 0 <=
Kod(M, .J) =0 and M minimal.
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Since 4 many simply connected complex surfaces of

general type, d lots of simply connected 4-manifolds
M with Y(M) < 0.

By contrast, ...
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That 1s,
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Theorem (I, '96). Let (M, .J) be a compact com-
plex surface of general type (Kod(M,.J) = 2).
Let X be the minimal model of M, so that

M~X#kECPy and 012(X) > ().
Then Y(M) = —4m/2c12(X).

Ingredients: Seiberg-Witten estimates for s;
Kahler-Einstein metrics; gravitational instantons.
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(M, w) to be of general type if its minimal model

(X, ') satisfies
(2(X)>0 and ¢ -[W] <0.
Same definition later rediscovered by Tian-Jun Li,

who extended it to define a notion of Kodaira di-
mension for any symplectic 4-manifold.
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Then Y(M) < —4m+/2¢12(X).

Suvaina: Equality can occur in non-complex case.
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Theorem (I, '99). Let (M, .J) be a compact com-
plex surface with by even. Then

>0 <= Kod(M,J)=—o0,
YM)s=0 <= Kod(M,J])=0 orl,
<0 <= Kod(M,J)=2.
Question:
How much of above holds for symplectic 4-manifolds?
For example, V(M) > 0 case still correct.

Ohta-Ono, McDufit-Lalonde, Li, et al.

Key case: V(M) = 0.
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What is the moduli space of such metrics?
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symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Narrower Question. If (M*,w) is a symplec-
tic A-manifold, when does M* admit an Finstein

metric g (unrelated to w)? What if we also re-
quire A > 07



Theorem (L '09).



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w.



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with A > 0



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an

Einstein metric g with X > 0 if and only if
(




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

[ CPy#kCPy,




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPo#kCPy, 0<k <S8,

52 x SQ,




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPy#kCPy, 0< k<8,

52 x SQ,

K3,




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPy#kCPy, 0<k <38,

52 x SQ,

K3,
M =~  K3/Z9,




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,

T4

)




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T4 )2, T )23, T )24, T ) Zs,

\



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T4 )2, T )23, T )24, T ) Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

S2 % 2.
K3,
di
M 2 K3/7,,
T4

T4 )2, T )23, T )24, T ) Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T4 )2, T )23, T )24, T ) Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T2y, T 23, T | 24, T | T,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T2y, T 23, T | 24, T | T,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

Constructed Einstein metrics all conformally Kahler.



Theorem (1. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP.#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K3/7,,
T4

T2y, T 23, T | 24, T | T,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, . ..
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if finitely covered by flat T* or
Calabi-Yau K3.

In these cases, any Einstein metric is Kahler!
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Proposition. If M* admits both a symplectic
form w and an (unrelated) FEinstein metric g,
it 1s either on the previous list, or else it is of

general type.

Key point: Kod(M,w) # 1.

Again, Hitchin-Thorpe:
¢12(M) > 0 unless locally hyper-Kéhler.
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What about A < 07

Recall Kahler case.

Theorem (Aubin/Yau). Compact complex man-
ifold (M?™,J) admits compatible Kdhler-Einstein
metric with s < 0 <= 4 holomorphic embedding

7 M — (CIP)k
such that c1(M) is negative multiple of 7% ¢ (CPy.).

Remark.  This happens < —ci(M) is a Kéhler
class. Short-hand: ¢{(M) < 0.

Remark.  When m = 2, such M are necessarily
minimal complex surfaces of general type.
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S0 being “very’ non-minimal is an obstruction.
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Moduli space &(M) connected!
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In the remaining cases, all known Einstein metrics
are conformally Kahler:

g =uh

for some Kahler metric  and a positive function .

These live on Del Pezzo surtaces, which are, in par-
ticular, oriented 4-manifolds with b4 = 1.

As Riemannian metrics, they satisfy a curious cur-
vature condition. Namely, if w is a non-trivial self-
dual harmonic 2-form, they satisfy

Wi(w,w) >0

everywhere on M. This scalar condition is a con-
formally invariant analog of the more familiar con-
dition s > 0.
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W (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for harmonic self-dual 2-form w:

0=V*Vw —2W " (w, ) + gw

Taking inner product with w and integrating:

/ W (o, w)dpt > / w2 dy
M M6

In particular, an Einstein metric with A > 0 has

Wi(w,w) >0

on average. But we will need this pointwise.
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pact Einstein 4-manifold with by = 1. If g sat-
isfies
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everywhere on M, then g s conformally Kahler
and has Einstein constant A > 0. Moreover, M
i1s diffeomorphic to a Del Pezzo surface. Con-
versely, every Del Pezzo surface admits Einstein
metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo
surfaces have these properties. They are

e the Kahler-Einstein metrics with A > 0:
e the Page metric on CPy#CPy: and

e the CLW metric on CP>#2CP».
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line, no 6 on conic, no 8 on nodal cubic.
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and

this metric 1s unique up to automorphisms and
rescaling.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .

Uniqueness: Bando-Mabuchi, L "12. ..
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

For each topological type:
Moduli space of such (M4, .J) is connected.

Just a point if by( M) < 5.
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For M*? a Del Pezzo surface, set
&(M) = {Einstein g on M }/(Diffeos x RT)

& (M) = {Einstein ¢ with W (w,w) > 0} /~

Theorem (L '14). &5 (M) is connected. More-
over, if bo(M) < 5, then & (M) = {point}.

Corollary. &%(M) is exactly one connected com-
ponent of &(M).



Today’s talk has discussed on Einstein metrics on
symplectic 4-manifolds.



Today’s talk has discussed on Einstein metrics on
symplectic 4-manifolds.

We know now something about the subject, but
many interesting problems remain mysterious.



Today’s talk has discussed on Einstein metrics on
symplectic 4-manifolds.

We know now something about the subject, but
many interesting problems remain mysterious.

[ hope that some of you will be intrigued enough to
want to contribute something to the subject!



