Einstein Metrics,

Symplectic 4-Manifolds, &

Smooth Topology

Claude LeBrun Stony Brook University

Symplectic and Algebraic Geometry University of Warwick, 2 August, 2017

Theme of this conference:

Algebraic Geometry Symplectic Geometry

Theme of this talk:

Theme of this talk:

Talk concerns phenomena specific to dimension 4.

Theme of this talk:

Talk concerns phenomena specific to dimension 4.

Higher dimensions are demonstrably different.

Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$.

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

 $\exp: T_pM \to M$

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M.

$$d\mu_g = d\mu_{\text{Euclidean}},$$

$$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The Ricci curvature

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

given by

$$v \longmapsto r(v,v).$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

"...the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$

If M smooth compact n-manifold, $n \geq 3$, $\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$

If M smooth compact n-manifold, $n \geq 3$, $\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$ then Einstein metrics = critical points of $Einstein\text{-}Hilbert \ action \ functional}$

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of Einstein- $Hilbert\ action$ functional

$$\begin{array}{ccc} \mathcal{S}:\mathcal{G}_{M} & \longrightarrow & \mathbb{R} \\ & g & \longmapsto & \int_{M} s_{g} d\mu_{g} \end{array}$$

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized *Einstein-Hilbert action* functional

$$S: \mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{(2-n)/n} \int_{M} s_{g} d\mu_{g}$$

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized *Einstein-Hilbert action* functional

$$S: \mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{(2-n)/n} \int_{M} s_{g} d\mu_{g}$$

where V = Vol(M, g) inserted to make scale-invariant.

$$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} \mathbf{s}_g d\mu_g$$

not bounded above or below.

$$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} s_g d\mu_g$$

not bounded above or below.

Yamabe:

Consider any conformal class

$$\gamma = [g_0] = \{ fg_0 \mid u : \mathbf{M} \to \mathbb{R}^+ \},$$

$$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} \mathbf{s}_g d\mu_g$$

not bounded above or below.

Yamabe:

Consider any conformal class

$$\gamma = [g_0] = \{ug_0 \mid u : M \to \mathbb{R}^+\},\$$

Then restriction $\mathcal{S}|_{\gamma}$ is bounded below.

Trudinger (1960s)

Trudinger (1960s)

Aubin (1970s)

Trudinger (1960s)

Aubin (1970s)

Schoen (1980s)

Trudinger (1960s)

Aubin (1970s)

Schoen (1980s)

 \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$.

Trudinger (1960s)

Aubin (1970s)

Schoen (1980s)

 \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$.

Has s = constant.

Trudinger (1960s)

Aubin (1970s)

Schoen (1980s)

 \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$.

Has s = constant.

Unique up to scale when $s \leq 0$.

"Yamabe metrics"

$$\mathbf{Y}_{\gamma} = \inf_{g \in \gamma} \frac{\int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g}{\left(\int_{\mathbf{M}} d\mu_g\right)^{\frac{n-2}{n}}};$$

$$Y_{\gamma} = \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}};$$

If g has s of fixed sign, agrees with sign of $Y_{[g]}$.

$$Y_{\gamma} = \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}};$$

If g has s of fixed sign, agrees with sign of $Y_{[g]}$.

Aubin:

$$Y_{\gamma} \leq \mathcal{S}(S^n, g_{\text{round}})$$

$$\mathbf{Y}_{\gamma} = \inf_{g \in \gamma} \frac{\int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g}{\left(\int_{\mathbf{M}} d\mu_g\right)^{\frac{n-2}{n}}};$$

If g has s of fixed sign, agrees with sign of $Y_{[g]}$.

Aubin:

$$Y_{\gamma} \leq \mathcal{S}(S^n, g_{\text{round}})$$

Schoen:

= only for round sphere.

Too good to be true!

Too good to be true! But ...

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma}$$

$$\mathcal{Y}(M) = \sup_{\gamma} \mathbf{Y}_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} \mathbf{s}_{g} \ d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

This is a diffeomorphism invariant of M.

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

$$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

$$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$

If \exists metric with s = 0, but $\not\equiv$ metric with s > 0,

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

$$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$

If \exists metric with s = 0, but $\not\equiv$ metric with s > 0, $\Longrightarrow \mathcal{Y}(M) = 0$.

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$

i.e. sup of s over all unit volume Yamabe metrics.

H. Yamabe, O. Kobayashi, R. Schoen.

$$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$

If \exists metric with s = 0, but $\not\equiv$ metric with s > 0, $\Longrightarrow \mathcal{Y}(M) = 0$.

 $\mathcal{Y}(M)$

$$\mathcal{Y}(M) \left\{ > 0 \iff Kod(M, J) = -\infty, \right.$$

$$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \end{cases}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Recall:

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Recall:

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(\underline{K}^{\otimes \ell}))}{\log \ell}$$

Reminiscent of the situation for complex curves!

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Recall:

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Recall:

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

 $\mathcal{Y}(M)$ does not distinguish between Kod 0 and 1.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Recall:

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

 $\mathcal{Y}(M)$ does not distinguish between Kod 0 and 1.

But if
$$\mathcal{Y}(M^4) = 0$$
, $\exists g \text{ with } s \equiv 0 \iff \text{Kod}(M, J) = 0 \text{ and } M \text{ minimal.}$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Since \exists many simply connected complex surfaces of general type,

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Since \exists many simply connected complex surfaces of general type, \exists lots of simply connected 4-manifolds M with $\mathcal{Y}(M) < 0$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Since \exists many simply connected complex surfaces of general type, \exists lots of simply connected 4-manifolds M with $\mathcal{Y}(M) < 0$.

By contrast, ...

Builds on:

Theorem (Gromov/Lawson). Let M^n be a simply connected n-manifold, $n \ge 5$. If M is not spin, then M carries a metric g with s > 0. That is,

$$w_2(TM) \neq 0 \Longrightarrow \mathcal{Y}(M) > 0.$$

Perelman \Longrightarrow similarly when n = 3.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, J) be a compact complex surface of general type

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2).

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L'96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M,

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L'96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.
Then $\mathcal{Y}(M) = -4\pi \sqrt{2c_1^2(X)}$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that

$$\begin{split} M \approx & X \# k \overline{\mathbb{CP}}_2 \quad and \quad c_1^{\ 2}(X) > 0. \end{split}$$
 Then $\mathcal{Y}(M) = -4\pi \sqrt{2c_1^{\ 2}(X)}.$

Ingredients: Seiberg-Witten estimates for s; Kähler-Einstein metrics; gravitational instantons.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

$$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \\ < 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 2. \end{cases}$$

In same paper, I defined a symplectic 4-manifold (M, ω) to be of *general type* if its minimal model (X, ω') satisfies

$$c_1^2(X) > 0$$
 and $c_1 \cdot [\omega'] < 0$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

In same paper, I defined a symplectic 4-manifold (M, ω) to be of *general type* if its minimal model (X, ω') satisfies

$$c_1^2(X) > 0$$
 and $c_1 \cdot [\omega'] < 0$.

Same definition later rediscovered by Tian-Jun Li, who extended it to define a notion of Kodaira dimension for any symplectic 4-manifold.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.
Then $\mathcal{Y}(M) \leq -4\pi \sqrt{2c_1^2(X)}$.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Theorem (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that

$$M \approx X \# k \overline{\mathbb{CP}}_2$$
 and $c_1^2(X) > 0$.
Then $\mathcal{Y}(M) \leq -4\pi \sqrt{2c_1^2(X)}$.

Şuvaina: Equality can occur in non-complex case.

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Question:

$$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \\ < 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 2. \end{cases}$$

Question:

How much of above holds for symplectic 4-manifolds?

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Question:

How much of above holds for symplectic 4-manifolds?

For example, $\mathcal{Y}(M) > 0$ case still correct.

Theorem (L '99). Let (M, J) be a compact complex surface with b_1 even. Then

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Question:

How much of above holds for symplectic 4-manifolds?

For example, $\mathcal{Y}(M) > 0$ case still correct.

Ohta-Ono, McDuff-Lalonde, Li, et al.

Theorem (L '99). Let (M, J) be a compact complex surface with b_1 even. Then

$$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$

Question:

How much of above holds for symplectic 4-manifolds?

For example, $\mathcal{Y}(M) > 0$ case still correct.

Ohta-Ono, McDuff-Lalonde, Li, et al.

Key case: $\mathcal{Y}(M) = 0$.

Which 4-manifolds admit Einstein metrics?

Which 4-manifolds admit Einstein metrics?

What is the moduli space of such metrics?

A laboratory for exploring Einstein metrics.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Narrower Question.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, ω) is a symplectic 4-manifold,

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)?

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)? What if we also require $\lambda \geq 0$?

Theorem (L '09).

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω .

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g


```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M pprox \end{array} 
ight.
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \\ \end{array} \right.
```

```
 \begin{array}{c} \textit{nanifo.} \\ \textit{sure } \omega. \ Then \\ \textit{stric } g \ \textit{with } \lambda \geq 0 \ \textit{if } \epsilon. \\ \\ \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \end{array} \right. \\ M \stackrel{\textit{diff}}{\approx} \left\{ \begin{array}{c} \\ \end{array} \right.
```

```
manifo
sure \ \omega. Then if c
sure \ \omega and c
sure \ \omega are c and c
sure \ \omega. Then if c
sure \ \omega are c and c
sure \ \omega are c and c
sure \ \omega. Then if c
sure \ \omega are c and c
sure \ \omega are c and c
sure \ \omega are c and c
sure \ \omega are c
sure \ \omega. Then if c
sure \ \omega are c
sure \ \omega. Then if c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure \ \omega and c
sure \ \omega are c
sure \ \omega and c
sure \ \omega and c
sure
```

Theorem (L 09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$,

Theorem (L '09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and o
$$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \end{cases}$$

$$M \stackrel{diff}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

Einstein metric
$$g$$
 with $\chi \geq 0$ if and only if
$$\begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

Constructed Einstein metrics all conformally Kähler.

Einstein metric
$$g$$
 with $\chi \geq 0$ if and only if
$$\begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, ...

One tool: Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$

One tool: Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(\mathbf{M}) \ge 0,$$

with equality only if finitely covered by flat T^4 or Calabi-Yau K3.

One tool: Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(\mathbf{M}) \ge 0,$$

with equality only if finitely covered by flat T^4 or Calabi-Yau K3.

In these cases, any Einstein metric is Kähler!

Proposition. If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type.

Proposition. If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type.

Key point: $\operatorname{Kod}(M, \omega) \neq 1$.

Proposition. If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type.

Key point: $\operatorname{Kod}(M, \omega) \neq 1$.

Again, Hitchin-Thorpe:

 $c_1^2(M) > 0$ unless locally hyper-Kähler.

Recall Kähler case.

Recall Kähler case.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Recall Kähler case.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Remark. This happens $\Leftrightarrow -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$.

Recall Kähler case.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists holomorphic embedding$ $j: M \hookrightarrow \mathbb{CP}_k$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Remark. This happens $\Leftrightarrow -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$.

Remark. When m = 2, such M are necessarily minimal complex surfaces of general type.

Theorem (L '01). Let X be a minimal symplectic 4-manifold of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

Theorem (L '01). Let X be a minimal symplectic 4-manifold of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

(Better than Hitchin-Thorpe by a factor of 3.)

Theorem (L '01). Let X be a minimal symplectic 4-manifold of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

(Better than Hitchin-Thorpe by a factor of 3.)

So being "very" non-minimal is an obstruction.

Theorem (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein.

Theorem (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein.

Deduced from Weitzenböck formula for Seiberg-Witten.

Theorem (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein.

Deduced from Weitzenböck formula for Seiberg-Witten.

Play off basic classes against each other.

Let us now return to the $\lambda > 0$ case.

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

Definitive list . . .

```
\mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$ completely understood.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Know an Einstein metric on each manifold.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected?

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

In the remaining cases,

In the remaining cases, all known Einstein metrics are conformally Kähler:

In the remaining cases, all known Einstein metrics are conformally Kähler:

$$g = uh$$

In the remaining cases, all known Einstein metrics are conformally Kähler:

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces,

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form,

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial selfdual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

everywhere on M.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

everywhere on M. This scalar condition is a conformally invariant analog of the more familiar condition s > 0.

 $W_{+}(\omega,\omega)$ is non-trivially related

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω :

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average.

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average. But we will need this pointwise.

Theorem (L '14).

Theorem (L '14). Let (M, g) be a smooth compact

Theorem (L '14). Let (M, g) be a smooth compact Einstein 4-manifold

$$W_{+}(\omega,\omega) > 0$$

$$W_{+}(\omega,\omega) > 0$$

everywhere on M,

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

• the Kähler-Einstein metrics with $\lambda > 0$;

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$; and
- the CLW metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber...

Uniqueness: Bando-Mabuchi, L'12...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

 $\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^{+}_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^{+}(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14).

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^{+}_{\omega}(M)$ is connected.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14).
$$\mathscr{E}^+_{\omega}(M)$$
 is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$.

Today's talk has discussed on Einstein metrics on symplectic 4-manifolds.

Today's talk has discussed on Einstein metrics on symplectic 4-manifolds.

We know now something about the subject, but many interesting problems remain mysterious. Today's talk has discussed on Einstein metrics on symplectic 4-manifolds.

We know now something about the subject, but many interesting problems remain mysterious.

I hope that some of you will be intrigued enough to want to contribute something to the subject!