Einstein Metrics, Symplectic 4-Manifolds, & Smooth Topology Claude LeBrun Stony Brook University Symplectic and Algebraic Geometry University of Warwick, 2 August, 2017 ## Theme of this conference: Algebraic Geometry Symplectic Geometry ## Theme of this talk: #### Theme of this talk: Talk concerns phenomena specific to dimension 4. #### Theme of this talk: Talk concerns phenomena specific to dimension 4. Higher dimensions are demonstrably different. Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$. Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $\exp: T_pM \to M$ Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M. $$d\mu_g = d\mu_{\text{Euclidean}},$$ $$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The Ricci curvature $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ given by $$v \longmapsto r(v,v).$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. "...the greatest blunder of my life!" — A. Einstein, to G. Gamow $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. As punishment ... $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$ If M smooth compact n-manifold, $n \geq 3$, $\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$ If M smooth compact n-manifold, $n \geq 3$, $\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$ then Einstein metrics = critical points of $Einstein\text{-}Hilbert \ action \ functional}$ If M smooth compact n-manifold, $n \geq 3$, $$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$ then Einstein metrics = critical points of Einstein- $Hilbert\ action$ functional $$\begin{array}{ccc} \mathcal{S}:\mathcal{G}_{M} & \longrightarrow & \mathbb{R} \\ & g & \longmapsto & \int_{M} s_{g} d\mu_{g} \end{array}$$ If M smooth compact n-manifold, $n \geq 3$, $$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$ then Einstein metrics = critical points of normalized *Einstein-Hilbert action* functional $$S: \mathcal{G}_{M} \longrightarrow \mathbb{R}$$ $$g \longmapsto V^{(2-n)/n} \int_{M} s_{g} d\mu_{g}$$ If M smooth compact n-manifold, $n \geq 3$, $$\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$$ then Einstein metrics = critical points of normalized *Einstein-Hilbert action* functional $$S: \mathcal{G}_{M} \longrightarrow \mathbb{R}$$ $$g \longmapsto V^{(2-n)/n} \int_{M} s_{g} d\mu_{g}$$ where V = Vol(M, g) inserted to make scale-invariant. $$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} \mathbf{s}_g d\mu_g$$ not bounded above or below. $$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} s_g d\mu_g$$ not bounded above or below. #### Yamabe: Consider any conformal class $$\gamma = [g_0] = \{ fg_0 \mid u : \mathbf{M} \to \mathbb{R}^+ \},$$ $$\mathcal{S}(g) = V^{(2-n)/n} \int_{M} \mathbf{s}_g d\mu_g$$ not bounded above or below. ## Yamabe: Consider any conformal class $$\gamma = [g_0] = \{ug_0 \mid u : M \to \mathbb{R}^+\},\$$ Then restriction $\mathcal{S}|_{\gamma}$ is bounded below. Trudinger (1960s) Trudinger (1960s) Aubin (1970s) Trudinger (1960s) Aubin (1970s) Schoen (1980s) Trudinger (1960s) Aubin (1970s) Schoen (1980s) \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$. Trudinger (1960s) Aubin (1970s) Schoen (1980s) \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$. Has s = constant. Trudinger (1960s) Aubin (1970s) Schoen (1980s) \exists metric $g \in \gamma$ which mimimizes $\mathcal{S}|_{\gamma}$. Has s = constant. Unique up to scale when $s \leq 0$. "Yamabe metrics" $$\mathbf{Y}_{\gamma} = \inf_{g \in \gamma} \frac{\int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g}{\left(\int_{\mathbf{M}} d\mu_g\right)^{\frac{n-2}{n}}};$$ $$Y_{\gamma} = \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}};$$ If g has s of fixed sign, agrees with sign of $Y_{[g]}$. $$Y_{\gamma} = \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}};$$ If g has s of fixed sign, agrees with sign of $Y_{[g]}$. Aubin: $$Y_{\gamma} \leq \mathcal{S}(S^n, g_{\text{round}})$$ $$\mathbf{Y}_{\gamma} = \inf_{g \in \gamma} \frac{\int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g}{\left(\int_{\mathbf{M}} d\mu_g\right)^{\frac{n-2}{n}}};$$ If g has s of fixed sign, agrees with sign of $Y_{[g]}$. Aubin: $$Y_{\gamma} \leq \mathcal{S}(S^n, g_{\text{round}})$$ Schoen: = only for round sphere. Too good to be true! Too good to be true! But ... $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma}$$ $$\mathcal{Y}(M) = \sup_{\gamma} \mathbf{Y}_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} \mathbf{s}_{g} \ d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. This is a diffeomorphism invariant of M. $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. H. Yamabe, O. Kobayashi, R. Schoen. $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. H. Yamabe, O. Kobayashi, R. Schoen. $$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$ $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. H. Yamabe, O. Kobayashi, R. Schoen. $$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$ If \exists metric with s = 0, but $\not\equiv$ metric with s > 0, $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. H. Yamabe, O. Kobayashi, R. Schoen. $$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$ If \exists metric with s = 0, but $\not\equiv$ metric with s > 0, $\Longrightarrow \mathcal{Y}(M) = 0$. $$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} d\mu_{g}}{\left(\int_{M} d\mu_{g}\right)^{\frac{n-2}{n}}}.$$ i.e. sup of s over all unit volume Yamabe metrics. H. Yamabe, O. Kobayashi, R. Schoen. $$\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$$ If \exists metric with s = 0, but $\not\equiv$ metric with s > 0, $\Longrightarrow \mathcal{Y}(M) = 0$. $\mathcal{Y}(M)$ $$\mathcal{Y}(M) \left\{ > 0 \iff Kod(M, J) = -\infty, \right.$$ $$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \end{cases}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2.
\end{cases}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Recall: $$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Recall: $$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(\underline{K}^{\otimes \ell}))}{\log \ell}$$ Reminiscent of the situation for complex curves! $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Recall: $$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Recall: $$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$ $\mathcal{Y}(M)$ does not distinguish between Kod 0 and 1. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Recall: $$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$ $\mathcal{Y}(M)$ does not distinguish between Kod 0 and 1. But if $$\mathcal{Y}(M^4) = 0$$, $\exists g \text{ with } s \equiv 0 \iff \text{Kod}(M, J) = 0 \text{ and } M \text{ minimal.}$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Since \exists many simply connected complex surfaces of general type, $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Since \exists many simply connected complex surfaces of general type, \exists lots of simply connected 4-manifolds M with $\mathcal{Y}(M) < 0$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Since \exists many simply connected complex surfaces of general type, \exists lots of simply connected 4-manifolds M with $\mathcal{Y}(M) < 0$. By contrast, ... ## Builds on: Theorem (Gromov/Lawson). Let M^n be a simply connected n-manifold, $n \ge 5$. If M is not spin, then M carries a metric g with s > 0. That is, $$w_2(TM) \neq 0 \Longrightarrow \mathcal{Y}(M) > 0.$$ **Perelman** \Longrightarrow similarly when n = 3. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Theorem (L '96). Let (M, J) be a compact complex surface of general type $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Theorem (L'96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Theorem (L'96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. Then $\mathcal{Y}(M) = -4\pi \sqrt{2c_1^2(X)}$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, J) be a compact complex surface of general type (Kod(M, J) = 2). Let X be the minimal model of M, so that $$\begin{split} M \approx & X \# k \overline{\mathbb{CP}}_2 \quad and \quad c_1^{\ 2}(X) > 0. \end{split}$$ Then $\mathcal{Y}(M) = -4\pi \sqrt{2c_1^{\ 2}(X)}.$ Ingredients: Seiberg-Witten estimates for s; Kähler-Einstein metrics; gravitational instantons. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ $$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \\ < 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 2. \end{cases}$$ In same paper, I defined a symplectic 4-manifold (M, ω) to be of *general type* if its minimal model (X, ω') satisfies $$c_1^2(X) > 0$$ and $c_1 \cdot [\omega'] < 0$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ In same paper, I defined a symplectic 4-manifold (M, ω) to be of *general type* if its minimal model (X, ω') satisfies $$c_1^2(X) > 0$$ and $c_1 \cdot [\omega'] < 0$. Same definition later rediscovered by Tian-Jun Li, who extended it to define a notion of Kodaira dimension for any symplectic 4-manifold. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. Then $\mathcal{Y}(M) \leq -4\pi \sqrt{2c_1^2(X)}$. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ **Theorem** (L '96). Let (M, ω) be a symplectic 4-manifold of general type. Let (X, ω') be the minimal model of M, so that $$M \approx X \# k \overline{\mathbb{CP}}_2$$ and $c_1^2(X) > 0$. Then $\mathcal{Y}(M) \leq -4\pi \sqrt{2c_1^2(X)}$. Şuvaina: Equality can occur in non-complex case. $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ Question: $$\mathcal{Y}(\mathbf{M}) \begin{cases} > 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = -\infty, \\ = 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 0 \text{ or } 1, \\ < 0 & \iff Kod(\mathbf{M}, \mathbf{J}) = 2. \end{cases}$$ ## Question: How much of above holds for symplectic 4-manifolds? $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ ## Question: How much of above holds for symplectic 4-manifolds? For example, $\mathcal{Y}(M) > 0$ case still correct. **Theorem** (L '99). Let (M, J) be a compact complex surface with b_1 even. Then $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ #### Question: How much of above holds for symplectic 4-manifolds? For example, $\mathcal{Y}(M) > 0$ case still correct. Ohta-Ono, McDuff-Lalonde, Li, et al. Theorem (L '99). Let (M, J) be a compact complex surface with b_1 even. Then $$\mathcal{Y}(M) \begin{cases} > 0 & \iff Kod(M, J) = -\infty, \\ = 0 & \iff Kod(M, J) = 0 \text{ or } 1, \\ < 0 & \iff Kod(M, J) = 2. \end{cases}$$ #### **Question:** How much of above holds for symplectic 4-manifolds? For example, $\mathcal{Y}(M) > 0$ case still correct. Ohta-Ono, McDuff-Lalonde, Li, et al. Key case: $\mathcal{Y}(M) = 0$. Which 4-manifolds admit Einstein metrics? #### Which 4-manifolds admit Einstein metrics? What is the moduli space of such metrics? A laboratory for exploring Einstein metrics. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits
a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Narrower Question. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, ω) is a symplectic 4-manifold, A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)? A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)? What if we also require $\lambda \geq 0$? **Theorem** (L '09). Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g ``` M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M pprox \end{array} ight. ``` ``` M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \\ \end{array} \right. ``` ``` \begin{array}{c} \textit{nanifo.} \\ \textit{sure } \omega. \ Then \\ \textit{stric } g \ \textit{with } \lambda \geq 0 \ \textit{if } \epsilon. \\ \\ \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \end{array} \right. \\ M \stackrel{\textit{diff}}{\approx} \left\{ \begin{array}{c} \\ \end{array} \right. ``` ``` manifo sure \ \omega. Then if c sure \ \omega and c sure \ \omega are c and c sure \ \omega. Then if c sure \ \omega are c and c sure \ \omega are c and c sure \ \omega. Then if c sure \ \omega are c and c sure \ \omega are c and c sure \ \omega are c and c sure \ \omega are c sure \ \omega. Then if c sure \ \omega are c sure \ \omega. Then if c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure \ \omega and c sure \ \omega are c sure \ \omega and c sure \ \omega and c sure ``` Theorem (L 09). Suppose that $$M$$ is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$, Theorem (L '09). Suppose that $$M$$ is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and o $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \end{cases}$$ $$M \stackrel{diff}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$ Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces. Existence: Yau, Tian, Page, Chen-L-Weber, et al. Einstein metric $$g$$ with $\chi \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. Constructed Einstein metrics all conformally Kähler. Einstein metric $$g$$ with $\chi \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. No others: Hitchin-Thorpe, Seiberg-Witten, ... One tool: Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$ Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$ One tool: Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$ Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$ **Theorem** (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then $$(2\chi + 3\tau)(\mathbf{M}) \ge 0,$$ with equality only if finitely covered by flat T^4 or Calabi-Yau K3. One tool: Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$ Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$ **Theorem** (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then $$(2\chi + 3\tau)(\mathbf{M}) \ge 0,$$ with equality only if finitely covered by flat T^4 or Calabi-Yau K3. In these cases, any Einstein metric is Kähler! **Proposition.** If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type. **Proposition.** If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type. Key point: $\operatorname{Kod}(M, \omega) \neq 1$. **Proposition.** If M^4 admits both a symplectic form ω and an (unrelated) Einstein metric g, it is either on the previous list, or else it is of general type. Key point: $\operatorname{Kod}(M, \omega) \neq 1$. Again, Hitchin-Thorpe: $c_1^2(M) > 0$ unless locally hyper-Kähler. Recall Kähler case. Recall Kähler case. Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding $$j: M \hookrightarrow \mathbb{CP}_k$$ such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$. Recall Kähler case. Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding $$j: M
\hookrightarrow \mathbb{CP}_k$$ such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$. Remark. This happens $\Leftrightarrow -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$. Recall Kähler case. Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists holomorphic embedding$ $j: M \hookrightarrow \mathbb{CP}_k$ such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$. Remark. This happens $\Leftrightarrow -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$. Remark. When m = 2, such M are necessarily minimal complex surfaces of general type. **Theorem** (L '01). Let X be a minimal symplectic 4-manifold of general type, and let $$M = X \# k \overline{\mathbb{CP}}_2.$$ Then M cannot admit an Einstein metric if $$k \ge c_1^2(X)/3.$$ Theorem (L '01). Let X be a minimal symplectic 4-manifold of general type, and let $$M = X \# k \overline{\mathbb{CP}}_2.$$ Then M cannot admit an Einstein metric if $$k \ge c_1^2(X)/3.$$ (Better than Hitchin-Thorpe by a factor of 3.) Theorem (L '01). Let X be a minimal symplectic 4-manifold of general type, and let $$M = X \# k \overline{\mathbb{CP}}_2.$$ Then M cannot admit an Einstein metric if $$k \ge c_1^2(X)/3.$$ (Better than Hitchin-Thorpe by a factor of 3.) So being "very" non-minimal is an obstruction. **Theorem** (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities: $$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$ $$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$ Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein. **Theorem** (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities: $$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$ $$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$ Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein. Deduced from Weitzenböck formula for Seiberg-Witten. **Theorem** (Curvature Estimates). For any Riemannian metric g on a symplectic manifold M with minimal model X. If $Kod(M, \omega) \neq -\infty$, then g satisfies the following curvature inequalities: $$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$ $$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X).$$ Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein. Deduced from Weitzenböck formula for Seiberg-Witten. Play off basic classes against each other. Let us now return to the $\lambda > 0$ case. Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ## Definitive list . . . ``` \mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ Below the line: $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ completely understood. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Know an Einstein metric on each manifold. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected? $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. In the remaining cases, In the remaining cases, all known Einstein metrics are conformally Kähler: In the remaining cases, all known Einstein metrics are conformally Kähler: $$g = uh$$ In the remaining cases, all known Einstein metrics are conformally Kähler: $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a
curious curvature condition. Namely, if ω is a non-trivial selfdual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ everywhere on M. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ everywhere on M. This scalar condition is a conformally invariant analog of the more familiar condition s > 0. $W_{+}(\omega,\omega)$ is non-trivially related $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω : $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ Taking inner product with ω and integrating: via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ Taking inner product with ω and integrating: $$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$ via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ Taking inner product with ω and integrating: $$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$ In particular, an Einstein metric with $\lambda > 0$ has via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ Taking inner product with ω and integrating: $$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$ In particular, an Einstein metric with $\lambda > 0$ has $$W_{+}(\omega,\omega) > 0$$ on average. via Weitzenböck for harmonic self-dual 2-form ω : $$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$ Taking inner product with ω and integrating: $$\int_{M} W_{+}(\omega, \omega) d\mu \geq \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$ In particular, an Einstein metric with $\lambda > 0$ has $$W_{+}(\omega,\omega) > 0$$ on average. But we will need this pointwise. **Theorem** (L '14). **Theorem** (L '14). Let (M, g) be a smooth compact Theorem (L '14). Let (M, g) be a smooth compact Einstein 4-manifold $$W_{+}(\omega,\omega) > 0$$ $$W_{+}(\omega,\omega) > 0$$ everywhere on M, $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are • the Kähler-Einstein metrics with $\lambda > 0$; $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are - the Kähler-Einstein metrics with $\lambda > 0$; - the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are - the Kähler-Einstein metrics with $\lambda > 0$; - the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$; and - the CLW metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, no 8 on nodal cubic. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling. Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber... Uniqueness: Bando-Mabuchi, L'12... (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: Moduli space of such (M^4, J) is connected. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: Moduli space of such (M^4, J) is connected. Just a point if $b_2(M) \leq 5$. $\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$ $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^{+}_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^{+}(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $$\mathscr{E}(M) =
\{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $\mathscr{E}^{+}_{\omega}(M)$ is connected. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $$\mathscr{E}^+_{\omega}(M)$$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. Corollary. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$. Today's talk has discussed on Einstein metrics on symplectic 4-manifolds. Today's talk has discussed on Einstein metrics on symplectic 4-manifolds. We know now something about the subject, but many interesting problems remain mysterious. Today's talk has discussed on Einstein metrics on symplectic 4-manifolds. We know now something about the subject, but many interesting problems remain mysterious. I hope that some of you will be intrigued enough to want to contribute something to the subject!