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Background

Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

A symplectic manifold is a manifold (M?", w) where M is a
smooth, oriented manifold, and w is a closed 2-form such that w”
is the volume form compatible with the given orientation, called a
symplectic form.

Cohomological invariants:
[w] € H?*(M;R) and ¢;(M,w) € H¥(M;Z)

An almost complex structure J is an automorphism of TM with

J2 = —id. Jis tamed by w if w(v, Jv) > 0 for any nonzero v. The
space J,, of w—tamed J is connected. Thus we can define the
symplectic Chern classes:

¢i(M,w) = ci(TM, J) for any w—tamed J.

K, = —c1(M,w) is called the symplectic canonical class.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Submanifolds—symplectic, Lagrangian, contact

Symplectic submanifolds

Donaldson: If M is closed and the class [w] is closed, there are
symplectic hypersurfaces Poincare dual to some high multiple of
[w].

Such a hypersurface is called a Donaldson hypersurface.

A consequence is that any closed symplectic manifold has
symplectic submanifolds of arbitrary codimension.

Lagrangian submanifolds

Hypersurfaces of contact type
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Contact manifolds

Closed (cooriented) contact (2n — 1)-manifold (Y, ) with contact
1-form o

e a" 1 Ada > 0 (compatible with chosen orientation of Y)

@ & = ker(a) hyperplane distribution
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Contact manifolds

Closed (cooriented) contact (2n — 1)-manifold (Y, ) with contact
1-form «
e a" 1 Ada > 0 (compatible with chosen orientation of Y)
@ & = ker(a) hyperplane distribution
Example. The standard contact structure on S3, (S3,&.).
ap = (xadyr — yrdx1) + (xedyz — y2dx2)
£E=TS3NJ(TS?)

plane field of complex tangencies, the J—invariant subspace.

Tian-Jun Li Geography of symplectic fillings in dimension 4



Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Liouville vector field

Symplectic 2n-manifold (X, w): w?” > 0 (compatible with chosen
orientation of X)

A vector field V on (X, w) is called a Liouville vector field if
Lyw=w.

Notice that for a Liouville vector field V, by Cartan's formula, the
1—form 8 = tyw is a primitive of w, namely, df = w.

Suppose V is defined near 0X and transversal to 90X, then

B8 = tyw defines a contact 1—form on 9X.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Liouville vector field

Symplectic 2n-manifold (X, w): w?” > 0 (compatible with chosen
orientation of X)

A vector field V on (X, w) is called a Liouville vector field if
Lyw=w.

Notice that for a Liouville vector field V, by Cartan's formula, the
1—form 8 = tyw is a primitive of w, namely, df = w.

Suppose V is defined near 0X and transversal to 90X, then

B8 = tyw defines a contact 1—form on 9X.

Cohomology invariants:

(w, B) defines a class in the relative cohomology H?(X,9X).

K. € H?(X) may not have a lift in the relative cohomology.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Contact boundary—convex and concave

(X,w) is a symplectic 2n—manifold with contact boundary (Y, ¢) if

e there is a transversal Liouville vector field V (ie. Lyw = w)
defined near 0X

e (0X,ker(ty(w))) contactomorphic to (Y, &)
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Contact boundary—convex and concave

(X,w) is a symplectic 2n—manifold with contact boundary (Y, ¢) if
e there is a transversal Liouville vector field V (ie. Lyw = w)
defined near 0X
e (0X,ker(ty(w))) contactomorphic to (Y, &)

If the Liouville vector field points outward, then (X, w) is said to
have convex boundary and is called a convex symplectic manifold.

If the Liouville vector field points inward, then (X, w) is said to
have concave boundary and is called a concave symplectic
manifold.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Contact boundary—convex and concave

(X,w) is a symplectic 2n—manifold with contact boundary (Y, ¢) if

e there is a transversal Liouville vector field V (ie. Lyw = w)
defined near 0X

e (0X,ker(ty(w))) contactomorphic to (Y, &)

If the Liouville vector field points outward, then (X, w) is said to
have convex boundary and is called a convex symplectic manifold.

If the Liouville vector field points inward, then (X, w) is said to
have concave boundary and is called a concave symplectic
manifold.

For a hypersurface of contact type in a closed manifold, one side is
convex, one side is concave.

Conversely, given a pair of convex and concave manifolds with
common boundary (Y, ), they glue together to a closed manifold.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Symplectic filling

If (X,w) has convex contact boundary (Y, &), then (X, w) is called
a symplectic filling of (Y,§).
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Symplectic filling

If (X,w) has convex contact boundary (Y, &), then (X, w) is called
a symplectic filling of (Y,§).

Many (Y, &) do not admit symplectic fillings. For instance,
overtwisted (Y, &) are not fillable.

(Y,&) is called overtwisted if there is an embedded disk D C Y
such that §, = T,D for any p € OD.

Every 3-manifold Y admits overtwisted contact structures.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Exact fillings and Stein fillings

An exact filling is a symplectic filling such that w is exact and there
is a primitive restricts to the boundary being the contact one-form.
It is equivalent that there is a global outward Liouville vector field.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Exact fillings and Stein fillings

An exact filling is a symplectic filling such that w is exact and there
is a primitive restricts to the boundary being the contact one-form.
It is equivalent that there is a global outward Liouville vector field.

A Stein manifold is a complex manifold (X, J) with a proper
function ¢ : W — [0, 00) such that dJ(d¢) is a Kahler form. A
domain of the form W = ¢~1([0, t]) for a regular value t of ¢ is
called a Stein domain.

A Stein filling of (Y,&) is a Stein domain (W, J, ¢) which has Y
as its boundary and & as the set of complex tangencies to Y.
V¢ is a global Liouville field.

Stein fillings are ‘holomorphic’ exact fillings.
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Background

Symplectic fillings
Closed symplectic 4-manifolds
Maximal surfaces

Filling example |

(B*, wstq) is a symplectic filling of (S3, &) with radially Liouville
vector field pointing outward.
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Background

Symplectic fillings
Closed symplectic 4-manifolds
Maximal surfaces

(53, &ata): @0 = (xadyr — yrdx1) + (xadyz — yadxa)
£=TS3NJ(TS?)
plane field of complex tangencies, the J—invariant subspace.

w = dx; A dy;

V = x.-2 . 0
= Xidx +y’5}/i

LyWw = Qo

This filling is Stein (exact).
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

More Filling examples

Disk cotangent bundle (D*¥g,wcan) is a symplectic filling of the
unit cotangent bundle (5*X,, {can) with fiberwise radially outward
pointing Liouville vector field.

Locally, for q; € ¥, and (qj, pi) € D*%,
® Wean = dpj A dg;
® Qcan = pi A dg;
o V = pidp,
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Question

Question: Can one classify symplectic fillings/cappings of a
contact manifold (Y,&) ?

@ Up to homotopy type? homeomorphism? diffeomorphism?
symplectic deformation equivalence?

o Finitely many? Infinitely many?

Stein fillings C exact fillings C symplectic fillings
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Geography

Ozbagci-Stipsicz, Smith: Some (Y, £) admits infinitely many
symplectic (even Stein) fillings.

Baykur and Van Horn-Morris: There are infinite families of contact
3-manifolds, where each contact 3-manifold admits a Stein filling
whose Euler characteristic is larger and signature is smaller than
any two given numbers.

For a general contact 3-manifold, the Geography needs to be
understood first.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Theorem (L-Mak)

For any contact 3-manifold (Y, &), the set of integers
{2x(N) +30(N) € Z|(N,w) a minimal symplectic filling of (Y,&)}

is bounded from below. Moreover, the lower bound can be
explicitly calculated given a maximal symplectic cap.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Theorem (L-Mak)

For any contact 3-manifold (Y, &), the set of integers
{2x(N) +30(N) € Z|(N,w) a minimal symplectic filling of (Y,&)}

is bounded from below. Moreover, the lower bound can be
explicitly calculated given a maximal symplectic cap.

This is proved by constructing maximal symplectic caps.
The case of Stein fillings was established by Stipsicz (2002).
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Background

Symplectic fillings
Closed symplectic 4-manifolds
Maximal surfaces

Given a contact manifold (Y, &), a concave manifold with (Y, &) as
boundary is called a symplectic cap of (Y, ).

Symplectic caps and symplectic fillings of (Y, &) glue to closed
symplectic manifolds.

Eynyre-Honda: Symplectic caps always exist.
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Background

Symplectic fillings
Closed symplectic 4-manifolds
Maximal surfaces

Given a contact manifold (Y, &), a concave manifold with (Y, &) as
boundary is called a symplectic cap of (Y, ).

Symplectic caps and symplectic fillings of (Y, &) glue to closed
symplectic manifolds.

Eynyre-Honda: Symplectic caps always exist.

Identify /construct various types of caps, motivated by the theory
of closed symplectic 4-manifolds, to constrain (the geography of)
symplectic fillings:

e Maximal caps (K, - K, > 0 for k* > 0 symplectic 4-manifolds)
e Uniruled caps (Smooth classification of symplectic uniruled
4-manifolds)

e Calabi-Yau caps (Homological classification of symplectic
Calabi-Yau surfaces)
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let Epr be the set of cohomology classes whose Poincaré dual are
represented by smoothly embedded spheres of self-intersection —1.
M is said to be (smoothly) minimal if £y is the empty set.
Equivalently, M is minimal if it is not the connected sum of
another manifold with CP?.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let Epr be the set of cohomology classes whose Poincaré dual are
represented by smoothly embedded spheres of self-intersection —1.
M is said to be (smoothly) minimal if £y is the empty set.
Equivalently, M is minimal if it is not the connected sum of

another manifold with CP2.

Suppose w is a symplectic form compatible with the orientation.
(M,w) is said to be (symplectically) minimal if &, is empty, where

&, ={E € En| E is represented by an embedded w—symplectic sphere}.

We say that (N, 7) is a minimal model of (M,w) if (N, 1) is
minimal and (M,w) is a symplectic blow up of (N, ).
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let Epr be the set of cohomology classes whose Poincaré dual are
represented by smoothly embedded spheres of self-intersection —1.
M is said to be (smoothly) minimal if £y is the empty set.
Equivalently, M is minimal if it is not the connected sum of

another manifold with CP?.

Suppose w is a symplectic form compatible with the orientation.

(M,w) is said to be (symplectically) minimal if &, is empty, where

&, ={E € En| E is represented by an embedded w—symplectic sphere}.
We say that (N, 7) is a minimal model of (M,w) if (N, 1) is

minimal and (M,w) is a symplectic blow up of (N, ).

A basic fact proved using SW theory is: &, is empty if and only if

Emis empty In other words, ( ,w) is symplectically minimal if
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Kodaira dimension type invariants

Roughly speaking, a Kodaira dimension type invariant on a class of
n—dimensional manifolds
is a numerical invariant taking values in the finite set

{_00’07 L, LgJ}v

where | x| is the largest integer bounded by x.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

h

Holomorphic Kodaira dimension

Let us first recall the original Kodaira dimension in complex
geometry.

Definition

Suppose (M, J) is a complex manifold of real dimension 2m. The
holomorphic Kodaira dimension (M, J) is defined as follows:

—oo  if P(M,J)=0forall | >1,
kMM, J)=1{ 0 if P(M,J) € {0,1}, but #0 for all / > 1,
k if PI(M,J) ~ cl%; c>0.

Here P;(M, J) is the /—th plurigenus of the complex manifold
(M, J) defined by P;(M,J) = hO(IC_Q?’), with C; the canonical
bundle of (M, J).
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Definition of x° for minimal (M, w)

For a minimal symplectic 4—manifold (M*,w) with symplectic
canonical class K,,, the Kodaira dimension of (M* w) is defined in
the following way:

—oo if K, [w]<O0or K, K, <D0,
(M ) = 0 ?wa-[w]zoand K, - K, =0,
1 if K,-[w]>0and K, -K, =0,
2 ifK, [w]>0and K,-K,>0

Here K, is defined as the first Chern class of the cotangent bundle
for any almost complex structure compatible with w.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

x° well defined via Taubes symplectic SW theory

x° is well defined since there doesn't exist minimal (M, w) with
Ko [w]=0, K, -K,>0.

Properties:
@ k° is independent of w, so it is an oriented diffeomorphism
invariant of M.
o Liu: #°(M) = —oc if and only if M is CP?, 5% x S? or an
S2—bundle over a Riemann surface of positive genus.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

General (M, w)

The Kodaira dimension of a non-minimal manifold is defined to be
that of any of its minimal models. k*(M,w) is defined for any
(M, w) since

@ Minimal models always exist

@ Minimal model almost unique up to diffeomorphisms. If
(M,w) has non-diffeomorphic minimal models, then these
minimal models have k* = —o0.

@ Diffeomorphic minimal models have the same °.
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Background

Symplectic fillings
Closed symplectic 4-manifolds

Maximal surfaces

Basic property:
@ «° is an oriented diffeomorphism invariant of M.
o Dorfmeister+Zhang: x° = k" whenever both are defined, eg.
the Kodaira-Thurston manifolds.
@ k° = 2 manifolds are the symplectic 4-manifolds of general
type introduced by LeBrun.

Question (LeBrun): Yamabe invariant of M is negative
equivalent to M general type?
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Definition

Let (X,w) be a closed symplectic four manifold and D be a
(connected) smooth symplectic surface in X. Then D is called
maximal if any symplectic exceptional class in (X,w) pairs
positively with [D].

L-Zhang: There is a notion of relative Kod dimension for a
maximal surface F with positive genus, by replacing K, by
K., + [F]. It is analogous to the Log Kod dim.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Constraints on the adjoint class

Lemma

Suppose F is maximal and has positive genus
If k*(M,w) >0, then

(Ko +[F]) - [w] >0, (K, +[F])®>0.
If k¥(M,w) = —oo and (K., + [F])? > 0, then (K., + [F]) - [w] > 0.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Constraints on the adjoint class

Lemma

Suppose F is maximal and has positive genus
If k*(M,w) >0, then

(Ko +[F]) - [w] >0, (K, +[F])®>0.
If k¥(M,w) = —oo and (K., + [F])? > 0, then (K., + [F]) - [w] > 0.

When k°(M,w) = —oc0, as b (M) = 1 in this case, the statement
follows from the light cone lemma and [w]? > 0.
Consequently, k(M,w, F) is well defined since it is impossible to

have
(Ko +[F])-[w] =0 and (K, +[F])*>0.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Proposition

k(M w, F) > k(M,w).

If F is not empty, then k(M,w, F) = —oc if and only if M is an
S%2—bundle and F is a section.

k(M,w, F) =0 if and only if (M) = —oo and F is an
anti-canonical surface.
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Background Symplectic fillings

Closed symplectic 4-manifolds
Maximal surfaces

Proposition

k(M w, F) > k(M,w).

If F is not empty, then k(M,w, F) = —oc if and only if M is an
S%2—bundle and F is a section.

k(M,w, F) =0 if and only if (M) = —oo and F is an
anti-canonical surface.

A maximal symplectic surface gives a explicit lower bound K, - K.
Suppose F is a maximal surface of genus g > 1. Then

—K, - [F] if k(M) >0
Ko-Ko 2 < —K,-[Fl+(2—-2g) if &(M)= —o0 and k(M,w,F) >0
8 —8g if k(M ,w,F)=—00
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Maximal caps and Donaldson caps

Maximal cap

Definition

Let (P,wp) be a concave symplectic manifold and D be a smooth
symplectic surface in P. Then D is called maximal if, for any
minimal symplectic filling (N,wy) of 9P, D is maximal in

(N Ugp P, w).

A cap is called maximal if it admits a maximal surface.
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Maximal caps and Donaldson caps

Maximal cap

Definition

Let (P,wp) be a concave symplectic manifold and D be a smooth
symplectic surface in P. Then D is called maximal if, for any
minimal symplectic filling (N,wy) of 9P, D is maximal in

(N Ugp P, w).

A cap is called maximal if it admits a maximal surface.

Proposition

Let (P,w) be a maximal cap with D as a maximal symplectic
surface with genus g > 0. Then there is a lower bound on
(2x + 30)(N) of any minimal strong symplectic filling N of
Y = OP given by

(2x+30)(N) > min{ci(P)-D+2—-2g, 8-—8g}—(2x+30)(P)
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Maximal caps and Donaldson caps

Donaldson hypersurface

The primary sources of maximal caps are Donaldson caps.

Definition

Let (P,wp,ap) be a concave symplectic pair with rational period.
A closed symplectic hypersurface D is called a Donaldson
hypersurface of (P,wp, ap) if it is Lefschetz dual to an integral
multiple of 5=[(wp, ap)]. We will often just say that D is a
Donaldson hypersurface of (P,wp).

A cap with a Donaldson hypersurface is called a Donaldson cap.
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Maximal caps and Donaldson caps

Donaldson hypersurface

The primary sources of maximal caps are Donaldson caps.

Definition

Let (P,wp,ap) be a concave symplectic pair with rational period.
A closed symplectic hypersurface D is called a Donaldson
hypersurface of (P,wp, ap) if it is Lefschetz dual to an integral
multiple of 5=[(wp, ap)]. We will often just say that D is a
Donaldson hypersurface of (P,wp).

A cap with a Donaldson hypersurface is called a Donaldson cap.

A concave symplectic pair is (P,wp, ap) where (P,wp) is a
concave symplectic manifold and ap is a contact one form on OP
induced by an inward pointing Liouville vector field. Such a pair is
called of rational period if %[(wp,ap)] € H?(P,0P; Q).
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Maximal caps and Donaldson caps

Donaldson cap

Does every rational concave manifold have a Donaldson
hypersurface?
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Maximal caps and Donaldson caps

Donaldson cap

Does every rational concave manifold have a Donaldson
hypersurface?

This is a subtle question.

Tian-Jun Li Geography of symplectic fillings in dimension 4



Maximal caps and Donaldson caps

Donaldson cap

Does every rational concave manifold have a Donaldson
hypersurface?

This is a subtle question.

Observation: Any contact 3-manifold admits a Donaldson cap.
Furthermore we can assume the Donaldson cap to have arbitrarily
large bT.
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Maximal caps and Donaldson caps

Sketch of proof

By Etnyre-Honda, there exists a Stein fillable contact 3-manifold
(Y2,&2) such that (Y, €) is exact (Stein) cobordant to (Y2, &2).
Denote the exact cobordism by (SC, 7).

Let (N,wp) be a Stein filling of (Y2,£2). By Lisca-Matic, (N,wy)
embeds into a minimal surface X of general type. In fact,
inspecting their argument, we see that there is an affine surface A
in X such that N C A and X is the projective compactification of
A. The divisor D := X\ A is ample, and by Hironaka's resolution of
singularities we can assume that it is a simple normal crossing
divisor.

In particular, we can smooth D out to a smooth symplectic
Donaldson hypersurface in P := X\N. By gluing P with (SC, 1),
we get a Donaldson cap of (Y, ¢).
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Maximal caps and Donaldson caps

A Donaldson hypersurface for (P,wp) is a maximal surface, and
hence a Donaldson cap is a maximal cap.
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Maximal caps and Donaldson caps

A Donaldson hypersurface for (P,wp) is a maximal surface, and
hence a Donaldson cap is a maximal cap.

It follows directly from definitions and

Let (P,wp,ap) be a concave symplectic pair and (N,wy) a
symplectic filling of (Y,£). Then any symplectic exceptional class
in (N Uy P,w) which admits no embedded symplectic
representative in (N,wy) pairs positively with PD[(wp, ap)]
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Maximal caps and Donaldson caps

A Donaldson hypersurface for (P,wp) is a maximal surface, and
hence a Donaldson cap is a maximal cap.

It follows directly from definitions and

Lemma

Let (P,wp,ap) be a concave symplectic pair and (N,wy) a
symplectic filling of (Y,£). Then any symplectic exceptional class
in (N Uy P,w) which admits no embedded symplectic
representative in (N,wy) pairs positively with PD[(wp, ap)]

Corollary

Any contact 3-manifold admits a maximal cap, which can be
assumed to have arbitrarily large b™.
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Maximal caps and Donaldson caps

The bound of 2x + 3¢ for arbitrary (Y, ¢)

Corollary

For any contact 3-manifold (Y ,£), the set of integers
{2x(N) +30(N) € Z|(N,w) a minimal symplectic filling of (Y,&)}

is bounded from below. Moreover, the lower bound can be
explicitly calculated given a maximal cap.
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Maximal caps and Donaldson caps

‘Minimal’ maximal cap

For any co-oriented contact 3-manifold (Y, &), there exists a
symplectic cap (P,wp) of (Y, &) such that for any minimal strong
symplectic filling (N,wy) of (Y, &), the glued symplectic manifold
(NUP,w) is minimal. In particular, any minimal convex symplectic
4-manifold embeds into a minimal closed symplectic 4-manifold.

Proof: Let (P,wp) be a maximal cap of (Y, &) with a genus g > 1
maximal surface D. Denote the self-intersection number of D as s.
We consider a symplectic four tours (T4, w) with product
symplectic form. One can easily find a symplectic surface D’ of
genus g in (T*,w). By adjunction, [D']> > 0.
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Maximal caps and Donaldson caps

We can perform [D]? + s symplectic blow-ups along D’ to get a
symplectic surface D" of genus g and self-intersection —s in
(X’,w’). Notice that D" is maximal in (X', w’).

We now perform Gompf's symplectic sum surgery between (P,wp)
and (X’,«w') along D and D", which results in another symplectic
cap (P',wp) of (Y,¢§).

Now, for any minimal symplectic filling (N,wy) of (Y,¢&), the
glued symplectic manifold N U P’ can also be obtained as
performing symplectic sum surgery between N U P and X’.

Since D and D" are maximal in N U P and X’, respectively. The
minimality theorem of Usher implies that N U P’ is minimal.
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Calabi-Yau caps, uniruled caps

Uniruled/Calabi-Yau concave manifolds

For a concave manifold (P,wp) with contact boundary
(0P, ker(ap)), we say that (P,wp,ap) is

@ Uniruled if ¢1(P,wp) - [(wp,ap)] >0
o CY if c1(P,wp) is torsion

e If a Uniruled concave manifold embed in a closed manifold, then

the closed manifold has k°* = —co

e If a Calabi-Yau concave manifold embeds in a closed manifold
with exact complement, then the closed manifold has k* = —oo or
0
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SETIES

@ Any planar contact 3-manifold admits a uniruled cap but not
vice-versa [This is the main class of contact 3-manifolds that
good obstructions (homological) to fillings are known]

@ all known contact manifolds that admit finitely many filling up
to diffeomorphism admit uniruled caps (eg. includes $*S? and
S* T2)

@ Ohta-Ono: Some singularities admit CY caps
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Rigidity from uniruled caps

Theorem (L-Mak-Yasui)

If (Y,€&) admits a uniruled cap P, then there are uniform bounds
(only depends on P) on the Betti numbers of all the minimal
strong fillings of (Y,£).

The uniform bounds can be made explicit for a large class of
contact manifolds and recover several known results from the
literature, for example,

Wand: For a planar contact manifold (Y,&), e(N) + o(N) is
constant for any minimal strong filling N of (Y, ¢).

Tian-Jun Li Geography of symplectic fillings in dimension 4



Calabi-Yau caps, uniruled caps

Rigidity from CY caps

Theorem (L-Mak-Yasui)

If (Y,&) admits a Calabi-Yau cap P, then there are uniform
bounds (only depends on P) on the Betti numbers of all the exact
fillings of (Y,£).

Recall: an exact filling is a symplectic filling such that w is exact
and there is a primitive restricting to the boundary being the
contact one-form.

This result relies on the homology classification of kK = 0 manifolds.
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k = 0 — —Betti number bounds

Theorem (L, Bauer)

bt (M) <3 if k(M,w) =0

Consequently,

e (M) <4
@ Euler number > 0

@ Symplectic Noether type inequality
b+ < 3+ |comp(K.)|

holds when Kk =0

o vbi(M) < 4, where vby (M) is the supremum of bi(M) among
all finite covers M.
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k = 0 — —Homology types

@ If M is minimal, then it has the same Q—cohomology ring as
K3, Enriques surface or a T?>—bundle over T2

In fact, Z—homology K3, Z—homology Enriques

The following table list possible homological invariants of kK = 0

manifolds:
bi | bo | bT | x | o known manifolds
0 22| 3 |24]-16 K3
0|10 1 |12 | -8 Enriques surface
4 1 6 3 0 0 4-torus
3| 4 2 0 0 | T?—bundles over T2
2 | 2 1 0 0 | T?—bundles over T2

Smith-Thomas-Yau: simply connected non-Kahler CY 3-fold
Fine-Panov: flexible in higher dimension
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Sketch of proof

(N,wp) filling; (P,wp), uniruled/CY cap;
(X,wx),glued closed symplectic manifold

QO a(X) - [wx] = a(N) - [(wn, an)] + c(P) - [(wp, ap)]

@ when we do the gluing, there is a choice to shrink
c1(N) - [(wn, an)] to be arbitrarily small; blow-down increases
c - [w]
Hence X is uniruled if P is. X is minimal SCY or non-minimal
uniruled when P is CY and N is exact
If X is minimal SCY, the the bounds follow from the
homology classification of SCY.
If X is uniruled, bound base genus from P [explained in the
following slides]
bound the number of exceptional spheres from P [explained in
the following slides]

© 06 6 o
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Bounding base genus

(1] [(c.up,a,?)]2 = [pwp — [;pwp A ap > 0 because Stoke's
orientation is different from contact orientation!

@ there is a closed surface ¥ C P with [£]?> >0

© the base genus of X is bounded by the genus of ¥ and hence
this bound only depends on P
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Bounding exceptional spheres

o

By slightly perturbing [(wp, ap)], we can assume X is
Lefschetz dual to c[(wp, ap)] for some ¢ > 0

we can also assume [¥]2 > g(X) — 1 by taking a even larger ¢

(2]
© any exceptional spheres in X has non-zero GW invariants
@ neck-stretch along Y

o

in neck-stretch limit, we have

[uso] - [(wp, ap)] = fzuOo Ut wp — fazm u* ap because uy
asymptotic to Reeb orbits along dP, where [us] is the relative
homology of top building.

Hence, any excpetional curves pairs [X] positively in X.
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Bounding exceptional spheres ||

© ©6 o o

Based on SW theory, BH Li-L showed [£]? > g(X) — 1 implies
that [X] has a closed embedded symplectic representative
Ysymp in X.

Since any exceptional curve intersect ¥gmp, Xsymp is called
maximal

In this case, a result of L-Zhang reads

(—c1(X,wx) + [Zsymp])? > 0

By adjunction, the genus and self-intersection of ¥, gives
a lower bound on ¢1(X,wx)?

since symplectic representative minimize genus in this case,
the genus and self-intersection of ¥ gives a lower bound on
C1(X,Wx)2

lower bound of ¢;(X,wx)? together with base genus bound
on (X,wx) bounds the number of exceptional curves.
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Contact Kod dim

Since every contact 3-manifold admits a symplectic cap, we can
introduce the Kodaira dimension for any contact 3-manifold (Y, &)
as follows.

—oo if it admits a uniruled cap
Kod(Y,§)=<¢ 0 if it admits a CY cap but no uniruled cap
1 if it does not admit CY cap or uniruled cap

A comprehensive geography picture for various fillings.

Arbitrary (Y,£): a lower bound on 2y + 30 for symplectic fillings.
(Y, &) with Kod = 0: bounds on the Betti numbers for exact
fillings.

(Y, &) with Kod = —oo: bounds on the Betti numbers for
symplectic fillings.
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Cotangent bundles

Any exact symplectic filling of S*X 4 is diffeomorphic to D*¥,.

The conjecture true for g = 0,1 by McDuff and Wendl.
Theorem (L-Mak-Yasui)

Any exact symplectic filling of S*¥; has the same integral
homology and intersection form as D*Y .. Moreover, it has
vanishing first Chern class.

VH Morris-Sivek: all Stein fillings are simple homotopic to D*¥ .
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Sketch of proof

O there is a K3 admiting a fibration with Lagrangian torus fibers

2]
o
o

and a (—2)-Lagranian section

By resolving a ‘comb configuration’, we have Lagrangian X,
Complement of Weinstein nhbd is a CY cap P

Intersection form of P is given by

—2Eg®2H @ (2 —2g) & (0)%

after gluing any exact filling N, we get an integral homology
K3

by homology LES and intersection form argument, Ha(N) = Z
and the intersection form of N is (k?(2g — 2)) for some k

by more homological argument, k = 1 and H;(N) = Z?¢
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Proposition

A convex symplectic 4-manifold (N,wy) is symplectically minimal
if and only if it is smoothly minimal.

Let (N,wpn) be a convex symplectic manifold. If there is a smooth
—1 sphere in N, there is a symplectic —1 sphere homologous to it
up to sign. Moreover, the classes of symplectic —1 spheres are
pairwise orthogonal.

Unknown whether the Proposition is true for concave symplectic
4-manifolds.

Removing a ball in a rational 4-manifold with more than two
blow-ups gives a counterexample of the Corollary for concave
symplectic 4-manifolds.
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Symplectic cobordisms

Using the corollary we obtain a restriction for exact self cobordisms
of fillable contact 3-manifolds.

Corollary

Suppose (Y, &) is a strongly fillable contact 3-manifold. Then the
set

{2x(W) 4+ 30(W) € Z|(W,w) is a self exact cobordism of (Y,&)}

is bounded below by 0. In particular, if it is also bounded above,
then the set is {0}.
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Future programs on concave manifolds

In contrast, concave symplectic manifolds receive relatively little
attention. We propose that they deserve more serious study.
Observation : Concave symplectic manifolds seem to resemble
closed symplectic manifolds.

Concave symplectic 4-manifold with (53, &) canonically
corresponds to closed symplectic 4-manifolds

@ Gromov-Witten invariants, Seiberg-Witten invariants

e Donaldson hypersurfaces should exist in (most) concave
symplectic 4-manifolds.

@ Kodaira dim

@ At least, systematic investigation of concave manifolds lead to
deeper understanding of symplectic fillings.
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