Geography of symplectic fillings in dimension 4

Tian-Jun Li

University of Minnesota

August 3, 2017

イロト イポト イヨト イヨト

Background

- Symplectic fillings
 - Convex and concave manifolds
 - Various types of symplectic fillings
 - Symplectic caps
- Closed symplectic 4-manifolds
 - Minimality
 - Coarse classification scheme via Kod dim
- Maximal surfaces
- 2 Maximal caps and Donaldson caps
- 3 Calabi-Yau caps, uniruled caps
 - Geography of fillings and contact Kod dim
 - Cotangent bundles

4 Remarks

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

A symplectic manifold is a manifold (M^{2n}, ω) where M is a smooth, oriented manifold, and ω is a closed 2-form such that ω^n is the volume form compatible with the given orientation, called a symplectic form.

Cohomological invariants: $[\omega] \in H^2(M; \mathbb{R})$ and $c_i(M, \omega) \in H^{2i}(M; \mathbb{Z})$

An almost complex structure J is an automorphism of TM with $J^2 = -id$. J is tamed by ω if $\omega(v, Jv) > 0$ for any nonzero v. The space \mathcal{J}_{ω} of ω -tamed J is connected. Thus we can define the symplectic Chern classes:

$$c_i(M,\omega) = c_i(TM,J)$$
 for any ω -tamed J.

 $K_{\omega} = -c_1(M, \omega)$ is called the symplectic canonical class.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Submanifolds—symplectic, Lagrangian, contact

Symplectic submanifolds

Donaldson: If M is closed and the class $[\omega]$ is closed, there are symplectic hypersurfaces Poincare dual to some high multiple of $[\omega]$.

Such a hypersurface is called a Donaldson hypersurface.

A consequence is that any closed symplectic manifold has symplectic submanifolds of arbitrary codimension.

Lagrangian submanifolds

Hypersurfaces of contact type

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Contact manifolds

Closed (cooriented) contact (2n-1)-manifold (Y,ξ) with contact 1-form α

- $\alpha^{n-1} \wedge d\alpha > 0$ (compatible with chosen orientation of Y)
- $\xi = \ker(\alpha)$ hyperplane distribution

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Contact manifolds

Closed (cooriented) contact (2n - 1)-manifold (Y, ξ) with contact 1-form α

- $\alpha^{n-1} \wedge d\alpha > 0$ (compatible with chosen orientation of Y)
- $\xi = \ker(\alpha)$ hyperplane distribution

Example. The standard contact structure on S^3 , (S^3, ξ_{std}) . $\alpha_0 = (x_1 dy_1 - y_1 dx_1) + (x_2 dy_2 - y_2 dx_2)$ $\xi = TS^3 \cap J(TS^3)$ plane field of complex tangencies, the *J*-invariant subspace.

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Liouville vector field

Symplectic 2*n*-manifold (X, ω) : $\omega^{2n} > 0$ (compatible with chosen orientation of X)

A vector field V on (X, ω) is called a Liouville vector field if $\mathcal{L}_V \omega = \omega$.

Notice that for a Liouville vector field V, by Cartan's formula, the 1-form $\beta = \iota_V \omega$ is a primitive of ω , namely, $d\beta = \omega$. Suppose V is defined near ∂X and transversal to ∂X , then $\beta = \iota_V \omega$ defines a contact 1-form on ∂X .

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Liouville vector field

Symplectic 2*n*-manifold (X, ω) : $\omega^{2n} > 0$ (compatible with chosen orientation of X)

A vector field V on (X, ω) is called a Liouville vector field if $\mathcal{L}_V \omega = \omega$.

Notice that for a Liouville vector field V, by Cartan's formula, the 1-form $\beta = \iota_V \omega$ is a primitive of ω , namely, $d\beta = \omega$. Suppose V is defined near ∂X and transversal to ∂X , then $\beta = \iota_V \omega$ defines a contact 1-form on ∂X . Cohomology invariants:

 (ω, β) defines a class in the relative cohomology $H^2(X, \partial X)$. $K_{\omega} \in H^2(X)$ may not have a lift in the relative cohomology.

소리가 소문가 소문가 소문가

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Contact boundary-convex and concave

 (X,ω) is a symplectic 2*n*-manifold with contact boundary (Y,ξ) if

- there is a transversal Liouville vector field V (ie. $\mathcal{L}_V \omega = \omega$) defined near ∂X
- $(\partial X, \ker(\iota_V(\omega)))$ contactomorphic to (Y, ξ)

イロト イポト イラト イラト 一日

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Contact boundary-convex and concave

 (X,ω) is a symplectic 2*n*-manifold with contact boundary (Y,ξ) if

- there is a transversal Liouville vector field V (ie. $\mathcal{L}_V \omega = \omega$) defined near ∂X
- $(\partial X, \ker(\iota_V(\omega)))$ contactomorphic to (Y, ξ)

If the Liouville vector field points **outward**, then (X, ω) is said to have convex boundary and is called a convex symplectic manifold.

If the Liouville vector field points **inward**, then (X, ω) is said to have concave boundary and is called a concave symplectic manifold.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Contact boundary-convex and concave

 (X,ω) is a symplectic 2*n*-manifold with contact boundary (Y,ξ) if

- there is a transversal Liouville vector field V (ie. $\mathcal{L}_V \omega = \omega$) defined near ∂X
- $(\partial X, \ker(\iota_V(\omega)))$ contactomorphic to (Y, ξ)

If the Liouville vector field points **outward**, then (X, ω) is said to have convex boundary and is called a convex symplectic manifold.

If the Liouville vector field points **inward**, then (X, ω) is said to have concave boundary and is called a concave symplectic manifold.

For a hypersurface of contact type in a closed manifold, one side is convex, one side is concave.

Conversely, given a pair of convex and concave manifolds with common boundary (Y, ξ) , they glue together to a closed manifold.

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Symplectic filling

If (X, ω) has convex contact boundary (Y, ξ) , then (X, ω) is called a symplectic filling of (Y, ξ) .

・ロト ・回ト ・ヨト ・ ヨト

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Symplectic filling

If (X, ω) has convex contact boundary (Y, ξ) , then (X, ω) is called a symplectic filling of (Y, ξ) .

Many (Y, ξ) do not admit symplectic fillings. For instance, overtwisted (Y, ξ) are not fillable. (Y, ξ) is called overtwisted if there is an embedded disk $D \subset Y$ such that $\xi_p = T_p D$ for any $p \in \partial D$. Every 3-manifold Y admits overtwisted contact structures.

ヘロン 人間と 人間と 人間と

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Exact fillings and Stein fillings

An exact filling is a symplectic filling such that ω is exact and there is a primitive restricts to the boundary being the contact one-form. It is equivalent that there is a global outward Liouville vector field.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Exact fillings and Stein fillings

An exact filling is a symplectic filling such that ω is exact and there is a primitive restricts to the boundary being the contact one-form. It is equivalent that there is a global outward Liouville vector field.

A Stein manifold is a complex manifold (X, J) with a proper function $\phi: W \to [0, \infty)$ such that $dJ(d\phi)$ is a Kähler form. A domain of the form $W = \phi^{-1}([0, t])$ for a regular value t of ϕ is called a Stein domain.

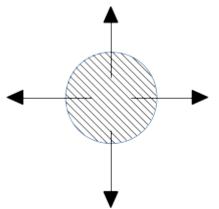
A Stein filling of (Y, ξ) is a Stein domain (W, J, ϕ) which has Y as its boundary and ξ as the set of complex tangencies to Y. $\nabla \phi$ is a global Liouville field.

Stein fillings are 'holomorphic' exact fillings.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Filling example I

 (B^4, ω_{std}) is a symplectic filling of (S^3, ξ_{std}) with radially Liouville vector field pointing outward.



イロン イヨン イヨン イヨン

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

$$\begin{array}{l} (S^3,\xi_{std}):\ \alpha_0=(x_1dy_1-y_1dx_1)+(x_2dy_2-y_2dx_2)\\ \xi=TS^3\cap J(TS^3)\\ \text{plane field of complex tangencies, the }J-\text{invariant subspace.}\\ \omega=dx_i\wedge dy_i\\ V=x_i\frac{\partial}{\partial x_i}+y_i\frac{\partial}{\partial y_i}\\ \iota_V\omega=\alpha_0\\ \text{This filling is Stein (exact).} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

More Filling examples

Disk cotangent bundle $(D^*\Sigma_g, \omega_{can})$ is a symplectic filling of the unit cotangent bundle $(S^*\Sigma_g, \xi_{can})$ with fiberwise radially outward pointing Liouville vector field.

- Locally, for $q_i \in \Sigma_g$ and $(q_i, p_i) \in D^*\Sigma_g$
 - $\omega_{can} = dp_i \wedge dq_i$
 - $\alpha_{can} = p_i \wedge dq_i$
 - $V = p_i \partial_{p_i}$

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Question

Question: Can one classify symplectic fillings/cappings of a contact manifold (Y, ξ) ?

- Up to homotopy type? homeomorphism? diffeomorphism? symplectic deformation equivalence?
- Finitely many? Infinitely many?

Stein fillings \subset exact fillings \subset symplectic fillings

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Geography

Ozbagci-Stipsicz, Smith: Some (Y, ξ) admits infinitely many symplectic (even Stein) fillings.

Baykur and Van Horn-Morris: There are infinite families of contact 3-manifolds, where each contact 3-manifold admits a Stein filling whose Euler characteristic is larger and signature is smaller than any two given numbers.

For a general contact 3-manifold, the Geography needs to be understood first.

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Theorem (L-Mak)

For any contact 3-manifold (Y, ξ) , the set of integers

 $\{2\chi(N) + 3\sigma(N) \in \mathbb{Z} | (N, \omega) \text{ a minimal symplectic filling of } (Y, \xi) \}$

is bounded from below. Moreover, the lower bound can be explicitly calculated given a maximal symplectic cap.

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Theorem (L-Mak)

For any contact 3-manifold (Y, ξ) , the set of integers

 $\{2\chi(N) + 3\sigma(N) \in \mathbb{Z} | (N, \omega) \text{ a minimal symplectic filling of } (Y, \xi) \}$

is bounded from below. Moreover, the lower bound can be explicitly calculated given a maximal symplectic cap.

This is proved by constructing maximal symplectic caps. The case of Stein fillings was established by Stipsicz (2002).

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Given a contact manifold (Y, ξ) , a concave manifold with (Y, ξ) as boundary is called a symplectic cap of (Y, ξ) . Symplectic caps and symplectic fillings of (Y, ξ) glue to closed symplectic manifolds.

Eynyre-Honda: Symplectic caps always exist.

Given a contact manifold (Y, ξ) , a concave manifold with (Y, ξ) as boundary is called a symplectic cap of (Y, ξ) . Symplectic caps and symplectic fillings of (Y, ξ) glue to closed symplectic manifolds.

Eynyre-Honda: Symplectic caps always exist.

Identify/construct various types of caps, motivated by the theory of closed symplectic 4-manifolds, to constrain (the geography of) symplectic fillings:

- Maximal caps ($K_{\omega} \cdot K_{\omega} \ge 0$ for $\kappa^s \ge 0$ symplectic 4-manifolds)
- Uniruled caps (Smooth classification of symplectic uniruled 4-manifolds)

• Calabi-Yau caps (Homological classification of symplectic Calabi-Yau surfaces)

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let \mathcal{E}_M be the set of cohomology classes whose Poincaré dual are represented by smoothly embedded spheres of self-intersection -1. M is said to be (smoothly) minimal if \mathcal{E}_M is the empty set. Equivalently, M is minimal if it is not the connected sum of another manifold with $\overline{\mathbb{CP}^2}$.

イロン イ部ン イヨン イヨン 三日

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let \mathcal{E}_M be the set of cohomology classes whose Poincaré dual are represented by smoothly embedded spheres of self-intersection -1. M is said to be (smoothly) minimal if \mathcal{E}_M is the empty set. Equivalently, M is minimal if it is not the connected sum of another manifold with $\overline{\mathbb{CP}^2}$.

Suppose ω is a symplectic form compatible with the orientation. (M, ω) is said to be (symplectically) minimal if \mathcal{E}_{ω} is empty, where

 $\mathcal{E}_{\omega} = \{ E \in \mathcal{E}_{M} | \text{ } E \text{ is represented by an embedded } \omega - \text{symplectic sphere} \}.$

We say that (N, τ) is a minimal model of (M, ω) if (N, τ) is minimal and (M, ω) is a symplectic blow up of (N, σ) .

(ロ) (同) (E) (E) (E)

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.

Let \mathcal{E}_M be the set of cohomology classes whose Poincaré dual are represented by smoothly embedded spheres of self-intersection -1. M is said to be (smoothly) minimal if \mathcal{E}_M is the empty set. Equivalently, M is minimal if it is not the connected sum of another manifold with $\overline{\mathbb{CP}^2}$.

Suppose ω is a symplectic form compatible with the orientation. (M, ω) is said to be (symplectically) minimal if \mathcal{E}_{ω} is empty, where

 $\mathcal{E}_{\omega} = \{ E \in \mathcal{E}_{M} | \ E \text{ is represented by an embedded } \omega - \text{symplectic sphere} \}.$

We say that (N, τ) is a minimal model of (M, ω) if (N, τ) is minimal and (M, ω) is a symplectic blow up of (N, σ) . A basic fact proved using SW theory is: \mathcal{E}_{ω} is empty if and only if \mathcal{E}_M is empty. In other words, (M, ω) is symplectically minimal if and only if M is smoothly minimal.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Kodaira dimension type invariants

Roughly speaking, a Kodaira dimension type invariant on a class of n-dimensional manifolds

is a numerical invariant taking values in the finite set

$$\{-\infty,0,1,\cdots,\lfloor\frac{n}{2}\rfloor\},\$$

where $\lfloor x \rfloor$ is the largest integer bounded by *x*.

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Holomorphic Kodaira dimension κ^h

Let us first recall the original Kodaira dimension in complex geometry.

Definition

Suppose (M, J) is a complex manifold of real dimension 2m. The holomorphic Kodaira dimension $\kappa^h(M, J)$ is defined as follows:

$$\kappa^{h}(M,J) = \begin{cases} -\infty & \text{if } P_{l}(M,J) = 0 \text{ for all } l \geq 1, \\ 0 & \text{if } P_{l}(M,J) \in \{0,1\}, \text{ but } \neq 0 \text{ for all } l \geq 1, \\ k & \text{if } P_{l}(M,J) \sim cl^{k}; \ c > 0. \end{cases}$$

Here $P_I(M, J)$ is the *I*-th plurigenus of the complex manifold (M, J) defined by $P_I(M, J) = h^0(\mathcal{K}_J^{\otimes I})$, with \mathcal{K}_J the canonical bundle of (M, J).

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Definition of κ^s for minimal (M, ω)

For a minimal symplectic 4-manifold (M^4, ω) with symplectic canonical class K_{ω} , the Kodaira dimension of (M^4, ω) is defined in the following way:

$$\kappa^{s}(M^{4},\omega) = \begin{cases} -\infty & \text{if } K_{\omega} \cdot [\omega] < 0 \text{ or } K_{\omega} \cdot K_{\omega} < 0, \\ 0 & \text{if } K_{\omega} \cdot [\omega] = 0 \text{ and } K_{\omega} \cdot K_{\omega} = 0, \\ 1 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } K_{\omega} \cdot K_{\omega} = 0, \\ 2 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } K_{\omega} \cdot K_{\omega} > 0. \end{cases}$$

Here K_{ω} is defined as the first Chern class of the cotangent bundle for any almost complex structure compatible with ω .

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

 κ^s well defined via Taubes symplectic SW theory

 κ^{s} is well defined since there doesn't exist minimal (M, ω) with

$$K_{\omega} \cdot [\omega] = 0, \quad K_{\omega} \cdot K_{\omega} > 0.$$

Properties:

- κ^s is independent of ω, so it is an oriented diffeomorphism invariant of M.
- Liu: $\kappa^{s}(M) = -\infty$ if and only if M is \mathbb{CP}^{2} , $S^{2} \times S^{2}$ or an S^{2} -bundle over a Riemann surface of positive genus.

Remarks

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

The Kodaira dimension of a non-minimal manifold is defined to be that of any of its minimal models. $\kappa^{s}(M,\omega)$ is defined for any (M,ω) since

- Minimal models always exist
- Minimal model almost unique up to diffeomorphisms. If
 (M,ω) has non-diffeomorphic minimal models, then these
 minimal models have κ^s = -∞.
- Diffeomorphic minimal models have the same κ^s .

・ロト ・回ト ・ヨト ・ヨト

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Basic property:

- κ^{s} is an oriented diffeomorphism invariant of M.
- Dorfmeister+Zhang: κ^s = κ^h whenever both are defined, eg. the Kodaira-Thurston manifolds.
- κ^s = 2 manifolds are the symplectic 4-manifolds of general type introduced by LeBrun.
 Question (LeBrun): Yamabe invariant of M is negative equivalent to M general type?

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Definition

Let (X, ω) be a closed symplectic four manifold and D be a (connected) smooth symplectic surface in X. Then D is called **maximal** if any symplectic exceptional class in (X, ω) pairs positively with [D].

L-Zhang: There is a notion of relative Kod dimension for a maximal surface F with positive genus, by replacing K_{ω} by $K_{\omega} + [F]$. It is analogous to the Log Kod dim.

・ロト ・回ト ・ヨト ・ヨト

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Constraints on the adjoint class

Lemma

Suppose F is maximal and has positive genus If $\kappa^{s}(M, \omega) \geq 0$, then

$$(K_{\omega} + [F]) \cdot [\omega] > 0, \quad (K_{\omega} + [F])^2 \ge 0.$$

If $\kappa^s(M, \omega) = -\infty$ and $(K_{\omega} + [F])^2 > 0$, then $(K_{\omega} + [F]) \cdot [\omega] > 0.$

<ロ> (日) (日) (日) (日) (日)

Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Constraints on the adjoint class

Lemma

Suppose F is maximal and has positive genus If $\kappa^{s}(M, \omega) \geq 0$, then

$$(\mathcal{K}_\omega+[\mathcal{F}])\cdot[\omega]>0, \quad (\mathcal{K}_\omega+[\mathcal{F}])^2\geq 0.$$

If $\kappa^{s}(M,\omega) = -\infty$ and $(K_{\omega} + [F])^{2} > 0$, then $(K_{\omega} + [F]) \cdot [\omega] > 0$.

When $\kappa^{s}(M, \omega) = -\infty$, as $b^{+}(M) = 1$ in this case, the statement follows from the light cone lemma and $[\omega]^{2} \ge 0$. Consequently, $\kappa(M, \omega, F)$ is well defined since it is impossible to have

$$(\mathcal{K}_\omega + [\mathcal{F}]) \cdot [\omega] = 0$$
 and $(\mathcal{K}_\omega + [\mathcal{F}])^2 > 0.$

Background

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Proposition

 $\kappa(M, \omega, F) \ge \kappa(M, \omega).$ If F is not empty, then $\kappa(M, \omega, F) = -\infty$ if and only if M is an S^2 -bundle and F is a section. $\kappa(M, \omega, F) = 0$ if and only if $\kappa(M) = -\infty$ and F is an anti-canonical surface.

イロン イヨン イヨン イヨン

3

Background

Maximal caps and Donaldson caps Calabi-Yau caps, uniruled caps Remarks Symplectic fillings Closed symplectic 4-manifolds Maximal surfaces

Proposition

 $\kappa(M, \omega, F) \ge \kappa(M, \omega).$ If F is not empty, then $\kappa(M, \omega, F) = -\infty$ if and only if M is an S^2 -bundle and F is a section. $\kappa(M, \omega, F) = 0$ if and only if $\kappa(M) = -\infty$ and F is an anti-canonical surface.

A maximal symplectic surface gives a explicit lower bound $K_{\omega} \cdot K_{\omega}$. Suppose F is a maximal surface of genus $g \ge 1$. Then

$$\mathcal{K}_{\omega} \cdot \mathcal{K}_{\omega} \geq \begin{cases} -\mathcal{K}_{\omega} \cdot [F] & \text{if } \kappa(M) \geq 0\\ -\mathcal{K}_{\omega} \cdot [F] + (2 - 2g) & \text{if } \kappa(M) = -\infty \text{ and } \kappa(M, \omega, F) \geq 0\\ 8 - 8g & \text{if } \kappa(M, \omega, F) = -\infty \end{cases}$$

Maximal cap

Definition

Let (P, ω_P) be a concave symplectic manifold and D be a smooth symplectic surface in P. Then D is called **maximal** if, for any minimal symplectic filling (N, ω_N) of ∂P , D is maximal in $(N \cup_{\partial P} P, \omega)$. A cap is called maximal if it admits a maximal surface.

イロン イヨン イヨン イヨン

Maximal cap

Definition

Let (P, ω_P) be a concave symplectic manifold and D be a smooth symplectic surface in P. Then D is called **maximal** if, for any minimal symplectic filling (N, ω_N) of ∂P , D is maximal in $(N \cup_{\partial P} P, \omega)$. A cap is called maximal if it admits a maximal surface.

Proposition

Let (P, ω) be a maximal cap with D as a maximal symplectic surface with genus g > 0. Then there is a lower bound on $(2\chi + 3\sigma)(N)$ of any minimal strong symplectic filling N of $Y = \partial P$ given by

$$(2\chi+3\sigma)(N) \geq \min\{c_1(P) \cdot D + 2 - 2g, 8 - 8g\} - (2\chi+3\sigma)(P) \int_{\Omega \setminus \Omega} dx$$

Donaldson hypersurface

The primary sources of maximal caps are Donaldson caps.

Definition

Let (P, ω_P, α_P) be a concave symplectic pair with rational period. A **closed** symplectic hypersurface *D* is called a Donaldson hypersurface of (P, ω_P, α_P) if it is Lefschetz dual to an integral multiple of $\frac{1}{2\pi}[(\omega_P, \alpha_P)]$. We will often just say that *D* is a Donaldson hypersurface of (P, ω_P) . A cap with a Donaldson hypersurface is called a Donaldson cap.

- 4 同 6 4 日 6 4 日 6

Donaldson hypersurface

The primary sources of maximal caps are Donaldson caps.

Definition

Let (P, ω_P, α_P) be a concave symplectic pair with rational period. A **closed** symplectic hypersurface *D* is called a Donaldson hypersurface of (P, ω_P, α_P) if it is Lefschetz dual to an integral multiple of $\frac{1}{2\pi}[(\omega_P, \alpha_P)]$. We will often just say that *D* is a Donaldson hypersurface of (P, ω_P) .

A cap with a Donaldson hypersurface is called a Donaldson cap.

A concave symplectic pair is (P, ω_P, α_P) where (P, ω_P) is a concave symplectic manifold and α_P is a contact one form on ∂P induced by an inward pointing Liouville vector field. Such a pair is called of rational period if $\frac{1}{2\pi}[(\omega_P, \alpha_P)] \in H^2(P, \partial P; \mathbb{Q})$.

◆厚♪ ◆屋♪ 三屋

Donaldson cap

Question

Does every rational concave manifold have a Donaldson hypersurface?

イロン イヨン イヨン イヨン

æ

Donaldson cap

Question

Does every rational concave manifold have a Donaldson hypersurface?

This is a subtle question.

Donaldson cap

Question

Does every rational concave manifold have a Donaldson hypersurface?

This is a subtle question.

Observation: Any contact 3-manifold admits a Donaldson cap. Furthermore we can assume the Donaldson cap to have arbitrarily large b^+ .

・ロト ・回ト ・ヨト

Sketch of proof

By Etnyre-Honda, there exists a Stein fillable contact 3-manifold (Y_2, ξ_2) such that (Y, ξ) is exact (Stein) cobordant to (Y_2, ξ_2) . Denote the exact cobordism by (SC, τ) . Let (N, ω_N) be a Stein filling of (Y_2, ξ_2) . By Lisca-Matic, (N, ω_N) embeds into a minimal surface X of general type. In fact, inspecting their argument, we see that there is an affine surface A in X such that $N \subset A$ and X is the projective compactification of A. The divisor $D := X \setminus A$ is ample, and by Hironaka's resolution of singularities we can assume that it is a simple normal crossing divisor.

In particular, we can smooth D out to a smooth symplectic Donaldson hypersurface in $P := X \setminus N$. By gluing P with (SC, τ) , we get a Donaldson cap of (Y, ξ) .

Lemma

A Donaldson hypersurface for (P, ω_P) is a maximal surface, and hence a Donaldson cap is a maximal cap.

・ロト ・回ト ・ヨト ・ヨト

æ

Lemma

A Donaldson hypersurface for (P, ω_P) is a maximal surface, and hence a Donaldson cap is a maximal cap.

It follows directly from definitions and

Lemma

Let (P, ω_P, α_P) be a concave symplectic pair and (N, ω_N) a symplectic filling of (Y, ξ) . Then any symplectic exceptional class in $(N \cup_Y P, \omega)$ which admits no embedded symplectic representative in (N, ω_N) pairs positively with $PD[(\omega_P, \alpha_P)]$

Lemma

A Donaldson hypersurface for (P, ω_P) is a maximal surface, and hence a Donaldson cap is a maximal cap.

It follows directly from definitions and

Lemma

Let (P, ω_P, α_P) be a concave symplectic pair and (N, ω_N) a symplectic filling of (Y, ξ) . Then any symplectic exceptional class in $(N \cup_Y P, \omega)$ which admits no embedded symplectic representative in (N, ω_N) pairs positively with $PD[(\omega_P, \alpha_P)]$

Corollary

Any contact 3-manifold admits a maximal cap, which can be assumed to have arbitrarily large b^+ .

The bound of $2\chi + 3\sigma$ for arbitrary (Y, ξ)

Corollary

For any contact 3-manifold (Y, ξ) , the set of integers

 $\{2\chi(N) + 3\sigma(N) \in \mathbb{Z} | (N, \omega) \text{ a minimal symplectic filling of } (Y, \xi) \}$

is bounded from below. Moreover, the lower bound can be explicitly calculated given a maximal cap.

'Minimal' maximal cap

Corollary

For any co-oriented contact 3-manifold (Y,ξ) , there exists a symplectic cap (P, ω_P) of (Y,ξ) such that for any minimal strong symplectic filling (N, ω_N) of (Y,ξ) , the glued symplectic manifold $(N \cup P, \omega)$ is minimal. In particular, any minimal convex symplectic 4-manifold embeds into a minimal closed symplectic 4-manifold.

Proof: Let (P, ω_P) be a maximal cap of (Y, ξ) with a genus $g \ge 1$ maximal surface D. Denote the self-intersection number of D as s. We consider a symplectic four tours (T^4, ω) with product symplectic form. One can easily find a symplectic surface D' of genus g in (T^4, ω) . By adjunction, $[D']^2 \ge 0$.

・ロン ・回と ・ヨン ・ヨン

We can perform $[D']^2 + s$ symplectic blow-ups along D' to get a symplectic surface D'' of genus g and self-intersection -s in (X', ω') . Notice that D'' is maximal in (X', ω') .

We now perform Gompf's symplectic sum surgery between (P, ω_P) and (X', ω') along D and D'', which results in another symplectic cap (P', ω'_P) of (Y, ξ) .

Now, for any minimal symplectic filling (N, ω_N) of (Y, ξ) , the glued symplectic manifold $N \cup P'$ can also be obtained as performing symplectic sum surgery between $N \cup P$ and X'.

Since D and D" are maximal in $N \cup P$ and X', respectively. The minimality theorem of Usher implies that $N \cup P'$ is minimal.

Uniruled/Calabi-Yau concave manifolds

For a concave manifold (P, ω_P) with contact boundary $(\partial P, \ker(\alpha_P))$, we say that (P, ω_P, α_P) is

- Uniruled if $c_1(P, \omega_P) \cdot [(\omega_P, \alpha_P)] > 0$
- CY if $c_1(P, \omega_P)$ is torsion
- \bullet If a Uniruled concave manifold embed in a closed manifold, then the closed manifold has $\kappa^{\rm s}=-\infty$
- If a Calabi-Yau concave manifold embeds in a closed manifold with exact complement, then the closed manifold has $\kappa^s=-\infty$ or 0

イロト イポト イラト イラト 一日

Examples

- Any planar contact 3-manifold admits a uniruled cap but not vice-versa [This is the main class of contact 3-manifolds that good obstructions (homological) to fillings are known]
- all known contact manifolds that admit finitely many filling up to diffeomorphism admit uniruled caps (eg. includes S^*S^2 and S^*T^2)
- Ohta-Ono: Some singularities admit CY caps

- 4 回 5 - 4 回 5 - 4 回 5

Rigidity from uniruled caps

Theorem (L-Mak-Yasui)

If (Y, ξ) admits a uniruled cap P, then there are uniform bounds (only depends on P) on the Betti numbers of all the minimal strong fillings of (Y, ξ) .

The uniform bounds can be made explicit for a large class of contact manifolds and recover several known results from the literature, for example,

Wand: For a planar contact manifold (Y,ξ) , $e(N) + \sigma(N)$ is constant for any minimal strong filling N of (Y,ξ) .

Rigidity from CY caps

Theorem (L-Mak-Yasui)

If (Y,ξ) admits a Calabi-Yau cap P, then there are uniform bounds (only depends on P) on the Betti numbers of all the **exact** fillings of (Y,ξ) .

Recall: an exact filling is a symplectic filling such that ω is exact and there is a primitive restricting to the boundary being the contact one-form.

This result relies on the homology classification of $\kappa = 0$ manifolds.

$\kappa = 0 - -$ Betti number bounds

Theorem (L, Bauer)

 $b^+(M) \leq 3$ if $\kappa(M,\omega) = 0$

Consequently,

- $b_1(M) \le 4$
- Euler number \geq 0
- Symplectic Noether type inequality

$$b^+ \leq 3 + |comp(K_\omega)|$$

holds when $\kappa = 0$

• $vb_1(M) \leq 4$, where $vb_1(M)$ is the supremum of $b_1(\tilde{M})$ among all finite covers \tilde{M} .

 $\kappa = 0 - -$ Homology types

If *M* is minimal, then it has the same Q-cohomology ring as K3, Enriques surface or a T²-bundle over T²

In fact, \mathbb{Z} -homology K3, \mathbb{Z} -homology Enriques

The following table list possible homological invariants of $\kappa = 0$ manifolds:

b_1	<i>b</i> ₂	b ⁺	χ	σ	known manifolds
0	22	3	24	-16	K3
0	10	1	12	-8	Enriques surface
4	6	3	0	0	4-torus
3	4	2	0	0	T^2 -bundles over T^2
2	2	1	0	0	T^2 -bundles over T^2

Smith-Thomas-Yau: simply connected non-Kahler CY 3-fold Fine-Panov: flexible in higher dimension

Sketch of proof

 (N, ω_N) ,filling; (P, ω_P) , uniruled/CY cap; (X, ω_X) ,glued closed symplectic manifold

- $c_1(X) \cdot [\omega_X] = c_1(N) \cdot [(\omega_N, \alpha_N)] + c_1(P) \cdot [(\omega_P, \alpha_P)]$
- ② when we do the gluing, there is a choice to shrink $c_1(N) \cdot [(\omega_N, \alpha_N)]$ to be arbitrarily small; blow-down increases $c_1 \cdot [\omega]$
- Hence X is uniruled if P is. X is minimal SCY or non-minimal uniruled when P is CY and N is exact
- If X is minimal SCY, the the bounds follow from the homology classification of SCY.
- If X is uniruled, bound base genus from P [explained in the following slides]
- bound the number of exceptional spheres from P [explained in the following slides]

Bounding base genus

- $[(\omega_P, \alpha_P)]^2 = \int_P \omega_P^2 \int_{\partial P} \omega_P \wedge \alpha_P > 0$ because Stoke's orientation is different from contact orientation!
- 2 there is a closed surface $\Sigma \subset P$ with $[\Sigma]^2 > 0$
- the base genus of X is bounded by the genus of Σ and hence this bound only depends on P

Bounding exceptional spheres

- By slightly perturbing [(ω_P, α_P)], we can assume Σ is Lefschetz dual to c[(ω_P, α_P)] for some c > 0
- 2 we can also assume $[\Sigma]^2 \ge g(\Sigma) 1$ by taking a even larger c
- \bigcirc any exceptional spheres in X has non-zero GW invariants
- \bigcirc neck-stretch along Y
- S in neck-stretch limit, we have $[u_{\infty}] \cdot [(ω_P, α_P)] = \int_{Σ_{u_{\infty}}} u_{\infty}^* ω_P \int_{∂Σ_{u_{\infty}}} u_{\infty}^* α_P \text{ because } u_{\infty}$ asymptotic to Reeb orbits along ∂P, where [u_∞] is the relative homology of top building.

Hence, any excpetional curves pairs $[\Sigma]$ positively in X.

Bounding exceptional spheres II

- Based on SW theory, BH Li-L showed [Σ]² ≥ g(Σ) − 1 implies that [Σ] has a closed embedded symplectic representative Σ_{symp} in X.
- 2 Since any exceptional curve intersect Σ_{symp} , Σ_{symp} is called maximal
- In this case, a result of L-Zhang reads (−c₁(X, ω_X) + [Σ_{symp}])² > 0
- By adjunction, the genus and self-intersection of Σ_{symp} gives a lower bound on $c_1(X, \omega_X)^2$
- since symplectic representative minimize genus in this case, the genus and self-intersection of Σ gives a lower bound on c₁(X, ω_X)²
- lower bound of $c_1(X, \omega_X)^2$ together with base genus bound on (X, ω_X) bounds the number of exceptional curves.

Contact Kod dim

Since every contact 3-manifold admits a symplectic cap, we can introduce the Kodaira dimension for any contact 3-manifold (Y, ξ) as follows.

$$Kod(Y,\xi) = \begin{cases} -\infty & \text{if it admits a uniruled cap} \\ 0 & \text{if it admits a CY cap but no uniruled cap} \\ 1 & \text{if it does not admit CY cap or uniruled cap} \end{cases}$$

A comprehensive geography picture for various fillings. Arbitrary (Y, ξ) : a lower bound on $2\chi + 3\sigma$ for symplectic fillings. (Y, ξ) with Kod = 0: bounds on the Betti numbers for exact fillings.

 (Y, ξ) with $Kod = -\infty$: bounds on the Betti numbers for symplectic fillings.

Cotangent bundles

Conjecture

Any exact symplectic filling of $S^*\Sigma_g$ is diffeomorphic to $D^*\Sigma_g$.

The conjecture true for g = 0, 1 by McDuff and Wendl.

Theorem (L-Mak-Yasui)

Any exact symplectic filling of $S^*\Sigma_g$ has the same integral homology and intersection form as $D^*\Sigma_g$. Moreover, it has vanishing first Chern class.

VH Morris-Sivek: all Stein fillings are simple homotopic to $D^*\Sigma_g$.

イロン イヨン イヨン イヨン

Sketch of proof

- there is a K3 admiting a fibration with Lagrangian torus fibers and a (-2)-Lagranian section
- ⁽²⁾ By resolving a 'comb configuration', we have Lagrangian Σ_g
- **③** Complement of Weinstein nhbd is a CY cap P
- Intersection form of P is given by $-2E_8 \oplus 2H \oplus (2-2g) \oplus (0)^{2g}$
- **5** after gluing any exact filling N, we get an integral homology K3
- by homology LES and intersection form argument, $H_2(N) = \mathbb{Z}$ and the intersection form of N is $(k^2(2g - 2))$ for some k

 ${old O}$ by more homological argument, k=1 and $H_1(N)=\mathbb{Z}^{2g}$

Proposition

A convex symplectic 4-manifold (N, ω_N) is symplectically minimal if and only if it is smoothly minimal.

Corollary

Let (N, ω_N) be a convex symplectic manifold. If there is a smooth -1 sphere in N, there is a symplectic -1 sphere homologous to it up to sign. Moreover, the classes of symplectic -1 spheres are pairwise orthogonal.

Unknown whether the Proposition is true for concave symplectic 4-manifolds.

Removing a ball in a rational 4-manifold with more than two blow-ups gives a counterexample of the Corollary for concave symplectic 4-manifolds.

Symplectic cobordisms

Using the corollary we obtain a restriction for exact self cobordisms of fillable contact 3-manifolds.

Corollary

Suppose (Y, ξ) is a strongly fillable contact 3-manifold. Then the set

 $\{2\chi(W) + 3\sigma(W) \in \mathbb{Z} | (W, \omega) \text{ is a self exact cobordism of } (Y, \xi) \}$

is bounded below by 0. In particular, if it is also bounded above, then the set is $\{0\}$.

イロト イヨト イヨト イヨト

3

Future programs on concave manifolds

In contrast, concave symplectic manifolds receive relatively little attention. We propose that they deserve more serious study. Observation : Concave symplectic manifolds seem to resemble closed symplectic manifolds.

Concave symplectic 4-manifold with (S^3, ξ_{std}) canonically corresponds to closed symplectic 4-manifolds

- Gromov-Witten invariants, Seiberg-Witten invariants
- Donaldson hypersurfaces should exist in (most) concave symplectic 4-manifolds.
- Kodaira dim
- At least, systematic investigation of concave manifolds lead to deeper understanding of symplectic fillings.

ヘロン 人間 とくほど くほとう

3