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A symplectic manifold is a manifold (M2n, ω) where M is a
smooth, oriented manifold, and ω is a closed 2-form such that ωn

is the volume form compatible with the given orientation, called a
symplectic form.

Cohomological invariants:
[ω] ∈ H2(M;R) and ci (M, ω) ∈ H2i (M;Z)

An almost complex structure J is an automorphism of TM with
J2 = −id . J is tamed by ω if ω(v , Jv) > 0 for any nonzero v . The
space Jω of ω−tamed J is connected. Thus we can define the
symplectic Chern classes:
ci (M, ω) = ci (TM, J) for any ω−tamed J.

Kω = −c1(M, ω) is called the symplectic canonical class.
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Submanifolds—symplectic, Lagrangian, contact

Symplectic submanifolds
Donaldson: If M is closed and the class [ω] is closed, there are
symplectic hypersurfaces Poincare dual to some high multiple of
[ω].
Such a hypersurface is called a Donaldson hypersurface.
A consequence is that any closed symplectic manifold has
symplectic submanifolds of arbitrary codimension.

Lagrangian submanifolds

Hypersurfaces of contact type

Tian-Jun Li Geography of symplectic fillings in dimension 4



Background
Maximal caps and Donaldson caps

Calabi-Yau caps, uniruled caps
Remarks

Symplectic fillings
Closed symplectic 4-manifolds
Maximal surfaces

Contact manifolds

Closed (cooriented) contact (2n − 1)-manifold (Y , ξ) with contact
1-form α

αn−1 ∧ dα > 0 (compatible with chosen orientation of Y )

ξ = ker(α) hyperplane distribution

Example. The standard contact structure on S3, (S3, ξstd).
α0 = (x1dy1 − y1dx1) + (x2dy2 − y2dx2)
ξ = TS3 ∩ J(TS3)
plane field of complex tangencies, the J−invariant subspace.
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Liouville vector field

Symplectic 2n-manifold (X , ω): ω2n > 0 (compatible with chosen
orientation of X )
A vector field V on (X , ω) is called a Liouville vector field if
LVω = ω.
Notice that for a Liouville vector field V , by Cartan’s formula, the
1−form β = ιVω is a primitive of ω, namely, dβ = ω.
Suppose V is defined near ∂X and transversal to ∂X , then
β = ιVω defines a contact 1−form on ∂X .

Cohomology invariants:
(ω, β) defines a class in the relative cohomology H2(X , ∂X ).
Kω ∈ H2(X ) may not have a lift in the relative cohomology.
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Contact boundary–convex and concave

(X , ω) is a symplectic 2n−manifold with contact boundary (Y , ξ) if

there is a transversal Liouville vector field V (ie. LVω = ω)
defined near ∂X

(∂X , ker(ιV (ω))) contactomorphic to (Y , ξ)

If the Liouville vector field points outward, then (X , ω) is said to
have convex boundary and is called a convex symplectic manifold.

If the Liouville vector field points inward, then (X , ω) is said to
have concave boundary and is called a concave symplectic
manifold.
For a hypersurface of contact type in a closed manifold, one side is
convex, one side is concave.
Conversely, given a pair of convex and concave manifolds with
common boundary (Y , ξ), they glue together to a closed manifold.
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Symplectic filling

If (X , ω) has convex contact boundary (Y , ξ), then (X , ω) is called
a symplectic filling of (Y , ξ).

Many (Y , ξ) do not admit symplectic fillings. For instance,
overtwisted (Y , ξ) are not fillable.
(Y , ξ) is called overtwisted if there is an embedded disk D ⊂ Y
such that ξp = TpD for any p ∈ ∂D.
Every 3-manifold Y admits overtwisted contact structures.
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Exact fillings and Stein fillings

An exact filling is a symplectic filling such that ω is exact and there
is a primitive restricts to the boundary being the contact one-form.
It is equivalent that there is a global outward Liouville vector field.

A Stein manifold is a complex manifold (X , J) with a proper
function φ : W → [0,∞) such that dJ(dφ) is a Kähler form. A
domain of the form W = φ−1([0, t]) for a regular value t of φ is
called a Stein domain.
A Stein filling of (Y , ξ) is a Stein domain (W , J, φ) which has Y
as its boundary and ξ as the set of complex tangencies to Y .
∇φ is a global Liouville field.
Stein fillings are ‘holomorphic’ exact fillings.
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Filling example I

(B4, ωstd) is a symplectic filling of (S3, ξstd) with radially Liouville
vector field pointing outward.
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(S3, ξstd): α0 = (x1dy1 − y1dx1) + (x2dy2 − y2dx2)
ξ = TS3 ∩ J(TS3)
plane field of complex tangencies, the J−invariant subspace.
ω = dxi ∧ dyi
V = xi

∂
∂xi

+ yi
∂
∂yi

ιVω = α0

This filling is Stein (exact).
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More Filling examples

Disk cotangent bundle (D∗Σg , ωcan) is a symplectic filling of the
unit cotangent bundle (S∗Σg , ξcan) with fiberwise radially outward
pointing Liouville vector field.

Locally, for qi ∈ Σg and (qi , pi ) ∈ D∗Σg

ωcan = dpi ∧ dqi

αcan = pi ∧ dqi

V = pi∂pi
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Question

Question: Can one classify symplectic fillings/cappings of a
contact manifold (Y , ξ) ?

Up to homotopy type? homeomorphism? diffeomorphism?
symplectic deformation equivalence?

Finitely many? Infinitely many?

Stein fillings ⊂ exact fillings ⊂ symplectic fillings
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Geography

Ozbagci-Stipsicz, Smith: Some (Y , ξ) admits infinitely many
symplectic (even Stein) fillings.

Baykur and Van Horn-Morris: There are infinite families of contact
3-manifolds, where each contact 3-manifold admits a Stein filling
whose Euler characteristic is larger and signature is smaller than
any two given numbers.
For a general contact 3-manifold, the Geography needs to be
understood first.
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Theorem (L-Mak)

For any contact 3-manifold (Y , ξ), the set of integers

{2χ(N) + 3σ(N) ∈ Z|(N, ω) a minimal symplectic filling of (Y , ξ)}

is bounded from below. Moreover, the lower bound can be
explicitly calculated given a maximal symplectic cap.

This is proved by constructing maximal symplectic caps.
The case of Stein fillings was established by Stipsicz (2002).
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Given a contact manifold (Y , ξ), a concave manifold with (Y , ξ) as
boundary is called a symplectic cap of (Y , ξ).
Symplectic caps and symplectic fillings of (Y , ξ) glue to closed
symplectic manifolds.

Eynyre-Honda: Symplectic caps always exist.

Identify/construct various types of caps, motivated by the theory
of closed symplectic 4-manifolds, to constrain (the geography of)
symplectic fillings:
• Maximal caps (Kω · Kω ≥ 0 for κs ≥ 0 symplectic 4-manifolds)
• Uniruled caps (Smooth classification of symplectic uniruled
4-manifolds)
• Calabi-Yau caps (Homological classification of symplectic
Calabi-Yau surfaces)
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Minimality in dimension 4

Let M be a closed, oriented smooth 4-manifold.
Let EM be the set of cohomology classes whose Poincaré dual are
represented by smoothly embedded spheres of self-intersection −1.
M is said to be (smoothly) minimal if EM is the empty set.
Equivalently, M is minimal if it is not the connected sum of

another manifold with CP2.

Suppose ω is a symplectic form compatible with the orientation.
(M, ω) is said to be (symplectically) minimal if Eω is empty, where

Eω = {E ∈ EM | E is represented by an embedded ω−symplectic sphere}.
We say that (N, τ) is a minimal model of (M, ω) if (N, τ) is
minimal and (M, ω) is a symplectic blow up of (N, σ).
A basic fact proved using SW theory is: Eω is empty if and only if
EM is empty. In other words, (M, ω) is symplectically minimal if
and only if M is smoothly minimal.
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Kodaira dimension type invariants

Roughly speaking, a Kodaira dimension type invariant on a class of
n−dimensional manifolds
is a numerical invariant taking values in the finite set

{−∞, 0, 1, · · · , bn
2
c},

where bxc is the largest integer bounded by x .
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Holomorphic Kodaira dimension κh

Let us first recall the original Kodaira dimension in complex
geometry.

Definition

Suppose (M, J) is a complex manifold of real dimension 2m. The
holomorphic Kodaira dimension κh(M, J) is defined as follows:

κh(M, J) =


−∞ if Pl(M, J) = 0 for all l ≥ 1,
0 if Pl(M, J) ∈ {0, 1}, but 6≡ 0 for all l ≥ 1,
k if Pl(M, J) ∼ clk ; c > 0.

Here Pl(M, J) is the l−th plurigenus of the complex manifold
(M, J) defined by Pl(M, J) = h0(K⊗lJ ), with KJ the canonical
bundle of (M, J).
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Definition of κs for minimal (M , ω)

For a minimal symplectic 4−manifold (M4, ω) with symplectic
canonical class Kω, the Kodaira dimension of (M4, ω) is defined in
the following way:

κs(M4, ω) =


−∞ if Kω · [ω] < 0 or Kω · Kω < 0,

0 if Kω · [ω] = 0 and Kω · Kω = 0,

1 if Kω · [ω] > 0 and Kω · Kω = 0,

2 if Kω · [ω] > 0 and Kω · Kω > 0.

Here Kω is defined as the first Chern class of the cotangent bundle
for any almost complex structure compatible with ω.
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κs well defined via Taubes symplectic SW theory

κs is well defined since there doesn’t exist minimal (M, ω) with

Kω · [ω] = 0, Kω · Kω > 0.

Properties:

κs is independent of ω, so it is an oriented diffeomorphism
invariant of M.

Liu: κs(M) = −∞ if and only if M is CP2,S2 × S2 or an
S2−bundle over a Riemann surface of positive genus.
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General (M , ω)

The Kodaira dimension of a non-minimal manifold is defined to be
that of any of its minimal models. κs(M, ω) is defined for any
(M, ω) since

Minimal models always exist

Minimal model almost unique up to diffeomorphisms. If
(M, ω) has non-diffeomorphic minimal models, then these
minimal models have κs = −∞.

Diffeomorphic minimal models have the same κs .
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Basic property:

κs is an oriented diffeomorphism invariant of M.

Dorfmeister+Zhang: κs = κh whenever both are defined, eg.
the Kodaira-Thurston manifolds.

κs = 2 manifolds are the symplectic 4-manifolds of general
type introduced by LeBrun.
Question (LeBrun): Yamabe invariant of M is negative
equivalent to M general type?
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Definition

Let (X , ω) be a closed symplectic four manifold and D be a
(connected) smooth symplectic surface in X . Then D is called
maximal if any symplectic exceptional class in (X , ω) pairs
positively with [D].

L-Zhang: There is a notion of relative Kod dimension for a
maximal surface F with positive genus, by replacing Kω by
Kω + [F ]. It is analogous to the Log Kod dim.
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Constraints on the adjoint class

Lemma

Suppose F is maximal and has positive genus
If κs(M, ω) ≥ 0, then

(Kω + [F ]) · [ω] > 0, (Kω + [F ])2 ≥ 0.

If κs(M, ω) = −∞ and (Kω + [F ])2 > 0, then (Kω + [F ]) · [ω] > 0.

When κs(M, ω) = −∞, as b+(M) = 1 in this case, the statement
follows from the light cone lemma and [ω]2 ≥ 0.
Consequently, κ(M, ω,F ) is well defined since it is impossible to
have

(Kω + [F ]) · [ω] = 0 and (Kω + [F ])2 > 0.
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Proposition

κ(M, ω,F ) ≥ κ(M, ω).
If F is not empty, then κ(M, ω,F ) = −∞ if and only if M is an
S2−bundle and F is a section.
κ(M, ω,F ) = 0 if and only if κ(M) = −∞ and F is an
anti-canonical surface.

A maximal symplectic surface gives a explicit lower bound Kω · Kω.
Suppose F is a maximal surface of genus g ≥ 1. Then

Kω·Kω ≥


−Kω · [F ] if κ(M) ≥ 0

−Kω · [F ] + (2− 2g) if κ(M) = −∞ and κ(M, ω,F ) ≥ 0

8− 8g if κ(M, ω,F ) = −∞
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κ(M, ω,F ) = 0 if and only if κ(M) = −∞ and F is an
anti-canonical surface.

A maximal symplectic surface gives a explicit lower bound Kω · Kω.
Suppose F is a maximal surface of genus g ≥ 1. Then

Kω·Kω ≥


−Kω · [F ] if κ(M) ≥ 0

−Kω · [F ] + (2− 2g) if κ(M) = −∞ and κ(M, ω,F ) ≥ 0

8− 8g if κ(M, ω,F ) = −∞
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Maximal cap

Definition

Let (P, ωP) be a concave symplectic manifold and D be a smooth
symplectic surface in P. Then D is called maximal if, for any
minimal symplectic filling (N, ωN) of ∂P, D is maximal in
(N ∪∂P P, ω).
A cap is called maximal if it admits a maximal surface.

Proposition

Let (P, ω) be a maximal cap with D as a maximal symplectic
surface with genus g > 0. Then there is a lower bound on
(2χ+ 3σ)(N) of any minimal strong symplectic filling N of
Y = ∂P given by

(2χ+ 3σ)(N) ≥ min{c1(P) ·D + 2− 2g , 8− 8g}− (2χ+ 3σ)(P)

Tian-Jun Li Geography of symplectic fillings in dimension 4



Background
Maximal caps and Donaldson caps

Calabi-Yau caps, uniruled caps
Remarks

Maximal cap

Definition

Let (P, ωP) be a concave symplectic manifold and D be a smooth
symplectic surface in P. Then D is called maximal if, for any
minimal symplectic filling (N, ωN) of ∂P, D is maximal in
(N ∪∂P P, ω).
A cap is called maximal if it admits a maximal surface.

Proposition

Let (P, ω) be a maximal cap with D as a maximal symplectic
surface with genus g > 0. Then there is a lower bound on
(2χ+ 3σ)(N) of any minimal strong symplectic filling N of
Y = ∂P given by

(2χ+ 3σ)(N) ≥ min{c1(P) ·D + 2− 2g , 8− 8g}− (2χ+ 3σ)(P)
Tian-Jun Li Geography of symplectic fillings in dimension 4



Background
Maximal caps and Donaldson caps

Calabi-Yau caps, uniruled caps
Remarks

Donaldson hypersurface

The primary sources of maximal caps are Donaldson caps.

Definition

Let (P, ωP , αP) be a concave symplectic pair with rational period.
A closed symplectic hypersurface D is called a Donaldson
hypersurface of (P, ωP , αP) if it is Lefschetz dual to an integral
multiple of 1

2π [(ωP , αP)]. We will often just say that D is a
Donaldson hypersurface of (P, ωP).
A cap with a Donaldson hypersurface is called a Donaldson cap.

A concave symplectic pair is (P, ωP , αP) where (P, ωP) is a
concave symplectic manifold and αP is a contact one form on ∂P
induced by an inward pointing Liouville vector field. Such a pair is
called of rational period if 1

2π [(ωP , αP)] ∈ H2(P, ∂P;Q).
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Donaldson cap

Question

Does every rational concave manifold have a Donaldson
hypersurface?

This is a subtle question.

Observation: Any contact 3-manifold admits a Donaldson cap.
Furthermore we can assume the Donaldson cap to have arbitrarily
large b+.
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Sketch of proof

By Etnyre-Honda, there exists a Stein fillable contact 3-manifold
(Y2, ξ2) such that (Y , ξ) is exact (Stein) cobordant to (Y2, ξ2).
Denote the exact cobordism by (SC , τ).
Let (N, ωN) be a Stein filling of (Y2, ξ2). By Lisca-Matic, (N, ωN)
embeds into a minimal surface X of general type. In fact,
inspecting their argument, we see that there is an affine surface A
in X such that N ⊂ A and X is the projective compactification of
A. The divisor D := X\A is ample, and by Hironaka’s resolution of
singularities we can assume that it is a simple normal crossing
divisor.
In particular, we can smooth D out to a smooth symplectic
Donaldson hypersurface in P := X\N. By gluing P with (SC , τ),
we get a Donaldson cap of (Y , ξ).
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Lemma

A Donaldson hypersurface for (P, ωP) is a maximal surface, and
hence a Donaldson cap is a maximal cap.

It follows directly from definitions and

Lemma

Let (P, ωP , αP) be a concave symplectic pair and (N, ωN) a
symplectic filling of (Y , ξ). Then any symplectic exceptional class
in (N ∪Y P, ω) which admits no embedded symplectic
representative in (N, ωN) pairs positively with PD[(ωP , αP)]

Corollary

Any contact 3-manifold admits a maximal cap, which can be
assumed to have arbitrarily large b+.
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The bound of 2χ + 3σ for arbitrary (Y , ξ)

Corollary

For any contact 3-manifold (Y , ξ), the set of integers

{2χ(N) + 3σ(N) ∈ Z|(N, ω) a minimal symplectic filling of (Y , ξ)}

is bounded from below. Moreover, the lower bound can be
explicitly calculated given a maximal cap.
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‘Minimal’ maximal cap

Corollary

For any co-oriented contact 3-manifold (Y , ξ), there exists a
symplectic cap (P, ωP) of (Y , ξ) such that for any minimal strong
symplectic filling (N, ωN) of (Y , ξ), the glued symplectic manifold
(N ∪P, ω) is minimal. In particular, any minimal convex symplectic
4-manifold embeds into a minimal closed symplectic 4-manifold.

Proof: Let (P, ωP) be a maximal cap of (Y , ξ) with a genus g ≥ 1
maximal surface D. Denote the self-intersection number of D as s.
We consider a symplectic four tours (T 4, ω) with product
symplectic form. One can easily find a symplectic surface D ′ of
genus g in (T 4, ω). By adjunction, [D ′]2 ≥ 0.
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We can perform [D ′]2 + s symplectic blow-ups along D ′ to get a
symplectic surface D” of genus g and self-intersection −s in
(X ′, ω′). Notice that D” is maximal in (X ′, ω′).

We now perform Gompf’s symplectic sum surgery between (P, ωP)
and (X ′, ω′) along D and D”, which results in another symplectic
cap (P ′, ω′P) of (Y , ξ).

Now, for any minimal symplectic filling (N, ωN) of (Y , ξ), the
glued symplectic manifold N ∪ P ′ can also be obtained as
performing symplectic sum surgery between N ∪ P and X ′.

Since D and D” are maximal in N ∪ P and X ′, respectively. The
minimality theorem of Usher implies that N ∪ P ′ is minimal.
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Uniruled/Calabi-Yau concave manifolds

For a concave manifold (P, ωP) with contact boundary
(∂P, ker(αP)), we say that (P, ωP , αP) is

Uniruled if c1(P, ωP) · [(ωP , αP)] > 0

CY if c1(P, ωP) is torsion

• If a Uniruled concave manifold embed in a closed manifold, then
the closed manifold has κs = −∞
• If a Calabi-Yau concave manifold embeds in a closed manifold
with exact complement, then the closed manifold has κs = −∞ or
0
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Examples

Any planar contact 3-manifold admits a uniruled cap but not
vice-versa [This is the main class of contact 3-manifolds that
good obstructions (homological) to fillings are known]

all known contact manifolds that admit finitely many filling up
to diffeomorphism admit uniruled caps (eg. includes S∗S2 and
S∗T 2)

Ohta-Ono: Some singularities admit CY caps
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Rigidity from uniruled caps

Theorem (L-Mak-Yasui)

If (Y , ξ) admits a uniruled cap P, then there are uniform bounds
(only depends on P) on the Betti numbers of all the minimal
strong fillings of (Y , ξ).

The uniform bounds can be made explicit for a large class of
contact manifolds and recover several known results from the
literature, for example,
Wand: For a planar contact manifold (Y , ξ), e(N) + σ(N) is
constant for any minimal strong filling N of (Y , ξ).
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Rigidity from CY caps

Theorem (L-Mak-Yasui)

If (Y , ξ) admits a Calabi-Yau cap P, then there are uniform
bounds (only depends on P) on the Betti numbers of all the exact
fillings of (Y , ξ).

Recall: an exact filling is a symplectic filling such that ω is exact
and there is a primitive restricting to the boundary being the
contact one-form.
This result relies on the homology classification of κ = 0 manifolds.

Tian-Jun Li Geography of symplectic fillings in dimension 4



Background
Maximal caps and Donaldson caps

Calabi-Yau caps, uniruled caps
Remarks

κ = 0−−Betti number bounds

Theorem (L, Bauer)

b+(M) ≤ 3 if κ(M, ω) = 0

Consequently,

b1(M) ≤ 4

Euler number ≥ 0

Symplectic Noether type inequality

b+ ≤ 3 + |comp(Kω)|

holds when κ = 0

vb1(M) ≤ 4, where vb1(M) is the supremum of b1(M̃) among
all finite covers M̃.
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κ = 0−−Homology types

If M is minimal, then it has the same Q−cohomology ring as
K3, Enriques surface or a T 2−bundle over T 2

In fact, Z−homology K3, Z−homology Enriques

The following table list possible homological invariants of κ = 0
manifolds:

b1 b2 b+ χ σ known manifolds

0 22 3 24 -16 K3

0 10 1 12 -8 Enriques surface

4 6 3 0 0 4-torus

3 4 2 0 0 T 2−bundles over T 2

2 2 1 0 0 T 2−bundles over T 2

Smith-Thomas-Yau: simply connected non-Kahler CY 3-fold
Fine-Panov: flexible in higher dimension
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Sketch of proof

(N, ωN),filling; (P, ωP), uniruled/CY cap;
(X , ωX ),glued closed symplectic manifold

1 c1(X ) · [ωX ] = c1(N) · [(ωN , αN)] + c1(P) · [(ωP , αP)]
2 when we do the gluing, there is a choice to shrink

c1(N) · [(ωN , αN)] to be arbitrarily small; blow-down increases
c1 · [ω]

3 Hence X is uniruled if P is. X is minimal SCY or non-minimal
uniruled when P is CY and N is exact

4 If X is minimal SCY, the the bounds follow from the
homology classification of SCY.

5 If X is uniruled, bound base genus from P [explained in the
following slides]

6 bound the number of exceptional spheres from P [explained in
the following slides]
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Bounding base genus

1 [(ωP , αP)]2 =
∫
P ω

2
P −

∫
∂P ωP ∧ αP > 0 because Stoke’s

orientation is different from contact orientation!

2 there is a closed surface Σ ⊂ P with [Σ]2 > 0

3 the base genus of X is bounded by the genus of Σ and hence
this bound only depends on P
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Bounding exceptional spheres

1 By slightly perturbing [(ωP , αP)], we can assume Σ is
Lefschetz dual to c[(ωP , αP)] for some c > 0

2 we can also assume [Σ]2 ≥ g(Σ)− 1 by taking a even larger c

3 any exceptional spheres in X has non-zero GW invariants

4 neck-stretch along Y

5 in neck-stretch limit, we have
[u∞] · [(ωP , αP)] =

∫
Σu∞

u∗∞ωP −
∫
∂Σu∞

u∗∞αP because u∞
asymptotic to Reeb orbits along ∂P, where [u∞] is the relative
homology of top building.

Hence, any excpetional curves pairs [Σ] positively in X .
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Bounding exceptional spheres II

1 Based on SW theory, BH Li-L showed [Σ]2 ≥ g(Σ)− 1 implies
that [Σ] has a closed embedded symplectic representative
Σsymp in X .

2 Since any exceptional curve intersect Σsymp, Σsymp is called
maximal

3 In this case, a result of L-Zhang reads
(−c1(X , ωX ) + [Σsymp])2 > 0

4 By adjunction, the genus and self-intersection of Σsymp gives
a lower bound on c1(X , ωX )2

5 since symplectic representative minimize genus in this case,
the genus and self-intersection of Σ gives a lower bound on
c1(X , ωX )2

6 lower bound of c1(X , ωX )2 together with base genus bound
on (X , ωX ) bounds the number of exceptional curves.
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Contact Kod dim

Since every contact 3-manifold admits a symplectic cap, we can
introduce the Kodaira dimension for any contact 3-manifold (Y , ξ)
as follows.

Kod(Y , ξ) =


−∞ if it admits a uniruled cap
0 if it admits a CY cap but no uniruled cap
1 if it does not admit CY cap or uniruled cap

A comprehensive geography picture for various fillings.
Arbitrary (Y , ξ): a lower bound on 2χ+ 3σ for symplectic fillings.
(Y , ξ) with Kod = 0: bounds on the Betti numbers for exact
fillings.
(Y , ξ) with Kod = −∞: bounds on the Betti numbers for
symplectic fillings.
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Cotangent bundles

Conjecture

Any exact symplectic filling of S∗Σg is diffeomorphic to D∗Σg .

The conjecture true for g = 0, 1 by McDuff and Wendl.

Theorem (L-Mak-Yasui)

Any exact symplectic filling of S∗Σg has the same integral
homology and intersection form as D∗Σg . Moreover, it has
vanishing first Chern class.

VH Morris-Sivek: all Stein fillings are simple homotopic to D∗Σg .
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Sketch of proof

1 there is a K3 admiting a fibration with Lagrangian torus fibers
and a (−2)-Lagranian section

2 By resolving a ‘comb configuration’, we have Lagrangian Σg

3 Complement of Weinstein nhbd is a CY cap P

4 Intersection form of P is given by
−2E8 ⊕ 2H ⊕ (2− 2g)⊕ (0)2g

5 after gluing any exact filling N, we get an integral homology
K3

6 by homology LES and intersection form argument, H2(N) = Z
and the intersection form of N is (k2(2g − 2)) for some k

7 by more homological argument, k = 1 and H1(N) = Z2g
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Proposition

A convex symplectic 4-manifold (N, ωN) is symplectically minimal
if and only if it is smoothly minimal.

Corollary

Let (N, ωN) be a convex symplectic manifold. If there is a smooth
−1 sphere in N, there is a symplectic −1 sphere homologous to it
up to sign. Moreover, the classes of symplectic −1 spheres are
pairwise orthogonal.

Unknown whether the Proposition is true for concave symplectic
4-manifolds.
Removing a ball in a rational 4-manifold with more than two
blow-ups gives a counterexample of the Corollary for concave
symplectic 4-manifolds.
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Symplectic cobordisms

Using the corollary we obtain a restriction for exact self cobordisms
of fillable contact 3-manifolds.

Corollary

Suppose (Y , ξ) is a strongly fillable contact 3-manifold. Then the
set

{2χ(W ) + 3σ(W ) ∈ Z|(W , ω) is a self exact cobordism of (Y , ξ)}

is bounded below by 0. In particular, if it is also bounded above,
then the set is {0}.
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Future programs on concave manifolds

In contrast, concave symplectic manifolds receive relatively little
attention. We propose that they deserve more serious study.
Observation : Concave symplectic manifolds seem to resemble
closed symplectic manifolds.
Concave symplectic 4-manifold with (S3, ξstd) canonically
corresponds to closed symplectic 4-manifolds

Gromov-Witten invariants, Seiberg-Witten invariants

Donaldson hypersurfaces should exist in (most) concave
symplectic 4-manifolds.

Kodaira dim

At least, systematic investigation of concave manifolds lead to
deeper understanding of symplectic fillings.
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