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The Vafa-Witten equations

“A Strong Coupling Test of S-Duality ” (1994)

Cumrun Vafa Ed Witten

Riemannian 4-manifold M, SU(r) bundle E → M, connection A,
fields B ∈ Ω+(su(E )), Γ ∈ Ω0(su(E )),

F+
A + [B.B] + [B, Γ] = 0,

dAΓ + d∗AB = 0.
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Their prediction

VW invariants

Vafa and Witten told us to “count” (in an appropriate sense)
solutions of these VW equations.

For c2 = n, let VWn (∈ Z? ∈ Q?) denote the resulting
Vafa-Witten invariants of M.

Modular forms
“S-duality” voodoo should imply their generating series

q−
e(S)
12

∞∑
n=0

VWn(M) qn

is a modular form.

In particular, the infinite collection of numbers VWn(M) should be
determined by only finitely many of them.
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Vanishing theorems
They were able to check their conjecture in many cases when M
has positive curvature, due to a vanishing theorem B = 0 = Γ.

The equations then reduce to the anti-self-dual equations. These
have a compact moduli space Masd

n .

When there are no reducible solutions, the obstruction bundle is
T (∗)Masd

n so we should have

VWn = ±e(Masd
n ).
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Kähler case

For general M no one can yet define Vafa-Witten invariants since
the moduli space is inherently noncompact. (|B|, |Γ| can →∞.)

When M = S is a Kähler surface we can rewrite B, Γ in terms of
an End0 E -valued (2, 0)-form φ and an End0 E -valued multiple of
the Kähler form ω, giving

F 0,2
A = 0,

F 1,1
A ∧ ω +

[
φ, φ

]
= 0,

∂Aφ = 0.

So ∂A makes E into a holomorphic bundle with a holomorphic
Higgs field

φ ∈ H0(End0 E ⊗ KS)

satisfying a moment map equation F 1,1
A ∧ ω +

[
φ, φ

]
= 0.
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Hitchin-Kobayashi correspondence

At least when S is projective, Álvarez-Cónsul–Garćıa-Prada and
Tanaka have proved an infinite dimensional Kempf-Ness theorem.

Solutions (modulo unitary gauge transformations) correspond to
polystable Higgs pairs (E , φ) (modulo complex linear gauge).

Linearises the problem, and allows us to partially compactify by
allowing E to be a (torsion-free) coherent sheaf.

When KS < 0 stability forces φ = 0.
Similarly when KS ≤ 0 and stability = semistability.

Then we get the moduli space of (semi)stable sheaves E with
detE = OS on S , and VWn is some kind of Euler characteristic
thereof.
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Tanaka have proved an infinite dimensional Kempf-Ness theorem.

Solutions (modulo unitary gauge transformations) correspond to
polystable Higgs pairs (E , φ) (modulo complex linear gauge).

Linearises the problem, and allows us to partially compactify by
allowing E to be a (torsion-free) coherent sheaf.

When KS < 0 stability forces φ = 0.
Similarly when KS ≤ 0 and stability = semistability.

Then we get the moduli space of (semi)stable sheaves E with
detE = OS on S , and VWn is some kind of Euler characteristic
thereof.



Spectral construction

Put eigenspaces of φ : E → E ⊗ KS over the corresponding
eigenvalues in KS . Defines a torsion sheaf Eφ on X = KS .

   spectral Page 1    

Over a point of S we have a vector space V and a endomorphism
φ. This makes V into a finite-dimensional C[x ]-module (and so a
torsion sheaf) by letting x act through φ.
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HiggsKS
(S)←→Cohc(X )
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Globally over S , we make E into a π∗OS =
⊕

i K
−i
S -module by

E ⊗ K−iS

φi−−→ E .

Thus we get a sheaf Eφ over X := KS .

Conversely, from E over X we recover E := π∗E and then φ from
the action of η · id, where η is the tautological section of π∗KS .

detE = OS , tr φ = 0 ⇐⇒
E has centre of mass 0 on each fibre, and detπ∗E = OS .
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Virtual cycle

When stability = semistability, deformation-obstruction theory of
sheaves E on Calabi-Yau 3-fold X is perfect, symmetric:

Deformations Ext1X (E , E)

Obstructions Ext2X (E , E) ∼= Ext1X (E , E)∗

Higher obstructions Ext≥3X (E , E)0 = 0

Therefore inherits a virtual cycle of virtual dimension 0.

Noncompact, but moduli space admits C∗ action scaling KS fibres
of X

π−−→ S (equivalently, scaling Higgs field φ).

C∗-fixed locus compact, so can define an invariant by virtual
C∗-localisation. Local DT invariant.
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Better virtual cycle

But this U(r) VW invariant zero if H0,1(S) 6= 0 or H0,2(S) 6= 0.

So define SU(r) VW invariant by restricting to E with centre of
mass 0 on each fibre, and detπ∗E = OS .

Has a perfect, symmetric deformation theory governed by last term
of splitting

Ext∗X (E , E)0
∼= H∗(OS)⊕ H∗−1(KS)⊕ Ext∗X (E , E)⊥.

C∗-localisation then defines an invariant

VWn ∈ Q

when stability = semistability.
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C∗-fixed loci

Invariant computed from two types of C∗-fixed locus:

1. φ = 0. We get the moduli space Masd of stable sheaves on S .

2. φ 6= 0 nilpotent. We call this moduli space M2.

The first are supported on S , and contribute the virtual signed
Euler characteristic

(−1)vdevir(Masd) ∈ Z.

When KS ≤ 0 they give all stable terms.

Heavily studied, giving modular forms [. . . , Göttsche-Kool].

The second are supported on a scheme-theoretic thickening of
S ⊂ X . When they have rank 1 on their support, they can be
described in terms of nested Hilbert schemes of S .

Unstudied. Our (limited) computations give more modular forms
predicted by Vafa-Witten 100 years ago by “cosmic strings”.
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The Vafa-Witten prediction

For general type surfaces with a smooth connected canonical
divisor, [VW] predicts

   modular_form Page 1    

In particular, this convinces us that our virtual localisation
definition is the right one. An alternative definition via
Behrend-weighted Euler characteristic has various advantages
(integers in stable case, natural generalisation to semistable case,
natural refinement and categorification) and also gives modular
forms, but the wrong ones.
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Semistable case

Motivated by Mochizuki and Joyce-Song, we consider pairs

(E , s)

of a torsion sheaf E on X and a section s ∈ H0(E(n)), n� 0,
(E has centre of mass 0 on the fibres of X → S , and detπ∗E ∼= OS .)
(Equivalent to consider triples (E , φ, s) on S with detE ∼= OS , tr φ = 0

and s ∈ H0(E (n)).)

which are stable

I E is semistable,

I if F ( E has the same Giesker slope then s does not factor
through F .

These also admit a perfect symmetric obstruction theory governed
by

Ext∗X (I •, I •)⊥ where I • =
{
OX (−N)→ E

}
.



Semistable case

Motivated by Mochizuki and Joyce-Song, we consider pairs

(E , s)

of a torsion sheaf E on X and a section s ∈ H0(E(n)), n� 0,
(E has centre of mass 0 on the fibres of X → S , and detπ∗E ∼= OS .)
(Equivalent to consider triples (E , φ, s) on S with detE ∼= OS , tr φ = 0

and s ∈ H0(E (n)).)

which are stable

I E is semistable,

I if F ( E has the same Giesker slope then s does not factor
through F .

These also admit a perfect symmetric obstruction theory governed
by

Ext∗X (I •, I •)⊥ where I • =
{
OX (−N)→ E

}
.



Invariants in the semistable case

Again we use virtual C∗-localisation to define pairs invariants
P⊥α (n), where α = (rank(E ), c1(E ), c2(E )).

From these we define VW invariants by the conjectural formula

P⊥α (n) =
∑

`≥1, (αi=δiα)
`
i=1:∑`

i=1 δi=1

(−1)`

`!

∏̀
i=1

(−1)χ(αi (n))χ(αi (n))VWαi (S)

when H0,1(S) = 0 = H0,2(S). If either is 6= 0 we instead use only
the first term

P⊥α (n) = (−1)χ(α(n))χ(α(n))VWα(S).
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Results

I When stability = semistability for the sheaves E , then our pairs
conjecture holds and the invariants equal the invariants we
defined directly earlier.

I When degKS < 0 the same is true. (Here we prove the pairs
moduli space is smooth, and the invariants equal those
defined by (Behrend-weighted) Euler characteristic. To these
we can apply Joyce-Song’s work.)

I When S is a K3 surface the same is true. (Joint work with
Davesh Maulik. We work on compact S × E , where
Behrend-weighted Euler characteristic invariants equal virtual
invariants. We then degenerate E to a nodal rational curve to
access S × C. This introduces an exponential, which accounts
for the difference between our simplified pairs formula and
Joyce-Song’s.)
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Refinement

(Behrend-weighted) Euler characteristics e have natural
refinements H∗ (of the perverse sheaf of vanishing cycles).

For invariants defined by virtual localisation we need to do
something different. Maulik proposes taking the virtual K-theoretic
invariant (in the stable = semistable case)

χ
((

K vir
MVW

) 1
2

)
defined by K-theoretic localisation, and refining it to a polynomial
in t1/2 by using the C∗ action.
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Refinement
By (virtual) Riemann-Roch this amounts to replacing the virtual
localisation definition

VW =

∫[
MC∗

VW

]vir 1

e(Nvir)

by ∫
[MC∗

VW ]

ch
(
(K vir
MVW

)
1
2

)
Td
(
T vir
MVW

)
e(Nvir)

.

Both are integrals in equivariant cohomology taking values in

H∗(BC∗) ∼= Z[t] (localised and extended to Q[t±
1
2 ]). The first is a

constant, whereas the second can be a more general Laurent
polynomial in t1/2.

On the component Masd this recovers the χ−y refinement of

(−1)vdevir studied by Göttsche-Kool.

On M2 computations are work in progress, trying K-theoretic
cosection localisation, and refined Carlsson-Okounkov operators.
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On the component Masd this recovers the χ−y refinement of

(−1)vdevir studied by Göttsche-Kool.

On M2 computations are work in progress, trying K-theoretic
cosection localisation, and refined Carlsson-Okounkov operators.
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Nested Hilbert schemes

The simplest nontrivial C∗-fixed component in M2 is when
rank(E ) = 2.

Then we get sheaves supported on the doubling 2S of S ⊂ X .

Up to ⊗L they are ideal sheaves of C∗-fixed subschemes of 2S .

Back on S they can be interpreted as nested subschemes Z1 ⊇ Z2

in S . The simplest case is when both are 0-dimensional.

We get the nested Hilbert scheme

S [n1,n2] =
{
I1 ⊆ I2 ⊂ OS : length(OS/Ii ) = ni

}
embedded in S [n1] × S [n2] as the locus of ideals (I1, I2) where

HomS(I1, I2) 6= 0.
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Carlsson-Okounkov operators

In this way we can see S [n1,n2]
ι

↪−→ S [n1] × S [n2] as the degeneracy
locus of the complex of vector bundles RHomπ(I1, I2).

(We have to modify this complex in a clever way when
H0,1(S) 6= 0 or H0,2(S) 6= 0.)

With Gholampour and Sheshmani we show such degeneracy loci
carry natural perfect obstruction theories, and that in this case it
reproduces the one from VW theory.

By the Thom-Porteous formula for the degeneracy locus, this gives

ι∗
[
S [n1,n2]

]vir
= cn1+n2

(
RHomπ(I1, I2)[1]

)
on S [n1] × S [n2]. The latter has been computed by Carlsson-
Okounkov in terms of Grojnowski-Nakajima operators on H∗(S [∗]).
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