Vafa-Witten invariants of projective surfaces

Joint with Yuuji Tanaka

The Vafa-Witten equations

"A Strong Coupling Test of S-Duality" (1994)

Cumrun Vafa

Ed Witten

The Vafa-Witten equations

"A Strong Coupling Test of S-Duality" (1994)

Cumrun Vafa

Ed Witten

Riemannian 4-manifold M, SU(r) bundle $E \to M$, connection A, fields $B \in \Omega^+(\mathfrak{su}(E))$, $\Gamma \in \Omega^0(\mathfrak{su}(E))$,

$$F_A^+ + [B.B] + [B, \Gamma] = 0,$$

 $d_A \Gamma + d_A^* B = 0.$

Their prediction

VW invariants

Vafa and Witten told us to "count" (in an appropriate sense) solutions of these VW equations.

For $c_2 = n$, let VW_n ($\in \mathbb{Z}$? $\in \mathbb{Q}$?) denote the resulting Vafa-Witten invariants of M.

Their prediction

VW invariants

Vafa and Witten told us to "count" (in an appropriate sense) solutions of these VW equations.

For $c_2 = n$, let VW_n ($\in \mathbb{Z}$? $\in \mathbb{Q}$?) denote the resulting Vafa-Witten invariants of M.

Modular forms

"S-duality" voodoo should imply their generating series

$$q^{-\frac{e(S)}{12}} \sum_{n=0}^{\infty} VW_n(M) q^n$$

is a modular form.

Their prediction

VW invariants

Vafa and Witten told us to "count" (in an appropriate sense) solutions of these VW equations.

For $c_2 = n$, let VW_n ($\in \mathbb{Z}$? $\in \mathbb{Q}$?) denote the resulting Vafa-Witten invariants of M.

Modular forms

"S-duality" voodoo should imply their generating series

$$q^{-\frac{e(S)}{12}} \sum_{n=0}^{\infty} VW_n(M) q^n$$

is a modular form.

In particular, the infinite collection of numbers $VW_n(M)$ should be determined by only finitely many of them.

Vanishing theorems

They were able to check their conjecture in many cases when M has positive curvature, due to a vanishing theorem $B=0=\Gamma$.

Vanishing theorems

They were able to check their conjecture in many cases when M has positive curvature, due to a vanishing theorem $B=0=\Gamma$.

Vanishing theorems

They were able to check their conjecture in many cases when M has positive curvature, due to a vanishing theorem $B = 0 = \Gamma$.

The equations then reduce to the anti-self-dual equations. These have a compact moduli space $\mathcal{M}_n^{\mathrm{asd}}$.

When there are *no reducible solutions*, the obstruction bundle is $T^{(*)}\mathcal{M}_n^{\mathrm{asd}}$ so we should have

$$VW_n = \pm e(\mathcal{M}_n^{\mathrm{asd}}).$$

Kähler case

For general M no one can yet define Vafa-Witten invariants since the moduli space is inherently noncompact. $(|B|, |\Gamma| \text{ can } \to \infty.)$

Kähler case

For general M no one can yet define Vafa-Witten invariants since the moduli space is inherently noncompact. (|B|, $|\Gamma|$ can $\to \infty$.)

When M=S is a Kähler surface we can rewrite B, Γ in terms of an End₀ E-valued (2,0)-form ϕ and an End₀ E-valued multiple of the Kähler form ω , giving

$$F_A^{0,2} = 0,$$

$$F_A^{1,1} \wedge \omega + \left[\phi, \overline{\phi}\right] = 0,$$

$$\overline{\partial}_A \phi = 0.$$

Kähler case

For general M no one can yet define Vafa-Witten invariants since the moduli space is inherently noncompact. (|B|, $|\Gamma|$ can $\to \infty$.)

When M=S is a Kähler surface we can rewrite B, Γ in terms of an End₀ E-valued (2,0)-form ϕ and an End₀ E-valued multiple of the Kähler form ω , giving

$$F_A^{0,2} = 0,$$

$$F_A^{1,1} \wedge \omega + \left[\phi, \overline{\phi}\right] = 0,$$

$$\overline{\partial}_A \phi = 0.$$

So $\overline{\partial}_A$ makes E into a holomorphic bundle with a holomorphic Higgs field

$$\phi \in H^0(\operatorname{End}_0 E \otimes K_S)$$

satisfying a moment map equation $F_A^{1,1} \wedge \omega + \left[\phi, \overline{\phi}\right] = 0$.

Hitchin-Kobayashi correspondence

At least when S is projective, Álvarez-Cónsul–García-Prada and Tanaka have proved an infinite dimensional Kempf-Ness theorem.

Solutions (modulo unitary gauge transformations) correspond to polystable Higgs pairs (E, ϕ) (modulo complex linear gauge).

Hitchin-Kobayashi correspondence

At least when S is projective, Álvarez-Cónsul–García-Prada and Tanaka have proved an infinite dimensional Kempf-Ness theorem.

Solutions (modulo unitary gauge transformations) correspond to polystable Higgs pairs (E, ϕ) (modulo complex linear gauge).

Linearises the problem, and allows us to partially compactify by allowing E to be a (torsion-free) coherent sheaf.

Hitchin-Kobayashi correspondence

At least when S is projective, Álvarez-Cónsul–García-Prada and Tanaka have proved an infinite dimensional Kempf-Ness theorem.

Solutions (modulo unitary gauge transformations) correspond to polystable Higgs pairs (E, ϕ) (modulo complex linear gauge).

Linearises the problem, and allows us to partially compactify by allowing E to be a (torsion-free) coherent sheaf.

When $K_S < 0$ stability forces $\phi = 0$. Similarly when $K_S \le 0$ and stability = semistability.

Then we get the moduli space of (semi)stable sheaves E with $\det E = \mathcal{O}_S$ on S, and VW_n is some kind of Euler characteristic thereof.

Spectral construction

Put eigenspaces of $\phi: E \to E \otimes K_S$ over the corresponding eigenvalues in K_S . Defines a torsion sheaf \mathcal{E}_{ϕ} on $X = K_S$.

Spectral construction

Put eigenspaces of $\phi: E \to E \otimes K_S$ over the corresponding eigenvalues in K_S . Defines a torsion sheaf \mathcal{E}_{ϕ} on $X = K_S$.

Over a point of S we have a vector space V and a endomorphism ϕ . This makes V into a finite-dimensional $\mathbb{C}[x]$ -module (and so a torsion sheaf) by letting x act through ϕ .

$\operatorname{Higgs}_{K_S}(S) \longleftrightarrow \operatorname{Coh}_c(X)$

Globally over S, we make E into a $\pi_* \mathcal{O}_S = \bigoplus_i K_S^{-i}$ -module by

$$E \otimes K_S^{-i} \xrightarrow{\phi^i} E.$$

Thus we get a sheaf \mathcal{E}_{ϕ} over $X:=K_{\mathcal{S}}$.

 $\operatorname{Higgs}_{K_S}(S) \longleftrightarrow \operatorname{Coh}_c(X)$

Globally over S, we make E into a $\pi_* \mathcal{O}_S = \bigoplus_i K_S^{-i}$ -module by

$$E \otimes K_{S}^{-i} \xrightarrow{\phi^{i}} E.$$

Thus we get a sheaf \mathcal{E}_{ϕ} over $X := K_{S}$.

Conversely, from \mathcal{E} over X we recover $E := \pi_* \mathcal{E}$ and then ϕ from the action of $\eta \cdot \mathrm{id}$, where η is the tautological section of $\pi^* K_{\mathcal{S}}$.

 $\operatorname{Higgs}_{K_S}(S) \longleftrightarrow \operatorname{Coh}_c(X)$

Globally over S, we make E into a $\pi_*\mathcal{O}_S = \bigoplus_i K_S^{-i}$ -module by

$$E \otimes K_{S}^{-i} \xrightarrow{\phi^{i}} E.$$

Thus we get a sheaf \mathcal{E}_{ϕ} over $X := K_{\mathcal{S}}$.

Conversely, from \mathcal{E} over X we recover $E := \pi_* \mathcal{E}$ and then ϕ from the action of $\eta \cdot \mathrm{id}$, where η is the tautological section of $\pi^* K_{\mathcal{S}}$.

$$\det E = \mathcal{O}_S, \ \operatorname{tr} \phi = 0 \iff \mathcal{E} \ \text{has centre of mass 0 on each fibre, and } \det \pi_* \mathcal{E} = \mathcal{O}_S.$$

When stability = semistability, deformation-obstruction theory of sheaves \mathcal{E} on Calabi-Yau 3-fold X is perfect, symmetric:

Deformations
$$\operatorname{Ext}_X^1(\mathcal{E}, \mathcal{E})$$

Obstructions $\operatorname{Ext}_X^2(\mathcal{E}, \mathcal{E}) \cong$

Obstructions
$$\operatorname{Ext}_X^2(\mathcal{E},\mathcal{E})\cong\operatorname{Ext}_X^1(\mathcal{E},\mathcal{E})^*$$

Higher obstructions $\operatorname{Ext}_X^{\geq 3}(\mathcal{E},\mathcal{E})_0 = 0$

When stability = semistability, deformation-obstruction theory of sheaves \mathcal{E} on Calabi-Yau 3-fold X is perfect, symmetric:

$$\begin{array}{ll} \text{Deformations} & \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E}) \\ \text{Obstructions} & \operatorname{Ext}^2_X(\mathcal{E},\mathcal{E}) \cong \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E})^* \\ \text{Higher obstructions} & \operatorname{Ext}^{\geq 3}_X(\mathcal{E},\mathcal{E})_0 = 0 \end{array}$$

Therefore inherits a virtual cycle of virtual dimension 0.

When stability = semistability, deformation-obstruction theory of sheaves \mathcal{E} on Calabi-Yau 3-fold X is perfect, symmetric:

$$\begin{array}{ll} \text{Deformations} & \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E}) \\ \text{Obstructions} & \operatorname{Ext}^2_X(\mathcal{E},\mathcal{E}) \cong \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E})^* \\ \text{Higher obstructions} & \operatorname{Ext}^{\geq 3}_X(\mathcal{E},\mathcal{E})_0 = 0 \end{array}$$

Therefore inherits a virtual cycle of virtual dimension 0.

Noncompact, but moduli space admits \mathbb{C}^* action scaling K_S fibres of $X \xrightarrow{\pi} S$ (equivalently, scaling Higgs field ϕ).

When stability = semistability, deformation-obstruction theory of sheaves \mathcal{E} on Calabi-Yau 3-fold X is perfect, symmetric:

$$\begin{array}{ll} \text{Deformations} & \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E}) \\ \text{Obstructions} & \operatorname{Ext}^2_X(\mathcal{E},\mathcal{E}) \cong \operatorname{Ext}^1_X(\mathcal{E},\mathcal{E})^* \\ \text{Higher obstructions} & \operatorname{Ext}^{\geq 3}_X(\mathcal{E},\mathcal{E})_0 = 0 \end{array}$$

Therefore inherits a virtual cycle of virtual dimension 0.

Noncompact, but moduli space admits \mathbb{C}^* action scaling K_S fibres of $X \xrightarrow{\pi} S$ (equivalently, scaling Higgs field ϕ).

 \mathbb{C}^* -fixed locus compact, so can define an invariant by virtual \mathbb{C}^* -localisation. Local DT invariant.

But this U(r) VW invariant zero if $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.

But this U(r) VW invariant zero if $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.

So define SU(r) VW invariant by restricting to \mathcal{E} with centre of mass 0 on each fibre, and det $\pi_*\mathcal{E}=\mathcal{O}_S$.

But this U(r) VW invariant zero if $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.

So define SU(r) VW invariant by restricting to $\mathcal E$ with centre of mass 0 on each fibre, and det $\pi_*\mathcal E=\mathcal O_S$.

Has a perfect, symmetric deformation theory governed by last term of splitting

$$\operatorname{Ext}_X^*(\mathcal{E},\mathcal{E})_0 \cong H^*(\mathcal{O}_S) \oplus H^{*-1}(K_S) \oplus \operatorname{Ext}_X^*(\mathcal{E},\mathcal{E})_{\perp}.$$

But this U(r) VW invariant zero if $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.

So define SU(r) VW invariant by restricting to \mathcal{E} with centre of mass 0 on each fibre, and det $\pi_*\mathcal{E}=\mathcal{O}_S$.

Has a perfect, symmetric deformation theory governed by last term of splitting

$$\operatorname{Ext}_X^*(\mathcal{E},\mathcal{E})_0 \cong H^*(\mathcal{O}_S) \oplus H^{*-1}(K_S) \oplus \operatorname{Ext}_X^*(\mathcal{E},\mathcal{E})_{\perp}.$$

 \mathbb{C}^* -localisation then defines an invariant

$$VW_n \in \mathbb{Q}$$

when stability = semistability.

Invariant computed from two types of \mathbb{C}^* -fixed locus:

- 1. $\phi = 0$. We get the moduli space \mathcal{M}^{asd} of stable sheaves on S.
- 2. $\phi \neq 0$ nilpotent. We call this moduli space \mathcal{M}_2 .

Invariant computed from two types of \mathbb{C}^* -fixed locus:

- 1. $\phi = 0$. We get the moduli space \mathcal{M}^{asd} of stable sheaves on S.
- 2. $\phi \neq 0$ nilpotent. We call this moduli space \mathcal{M}_2 .

The **first** are supported on S, and contribute the virtual signed Euler characteristic

$$(-1)^{\mathsf{vd}} e^{\mathsf{vir}}(\mathcal{M}^{\mathsf{asd}}) \in \mathbb{Z}.$$

When $K_S \leq 0$ they give *all* stable terms.

Invariant computed from two types of \mathbb{C}^* -fixed locus:

- 1. $\phi = 0$. We get the moduli space \mathcal{M}^{asd} of stable sheaves on S.
- 2. $\phi \neq 0$ nilpotent. We call this moduli space \mathcal{M}_2 .

The **first** are supported on S, and contribute the virtual signed Euler characteristic

$$(-1)^{\mathsf{vd}} e^{\mathsf{vir}}(\mathcal{M}^{\mathsf{asd}}) \ \in \ \mathbb{Z}.$$

When $K_S \leq 0$ they give *all* stable terms.

Heavily studied, giving modular forms [..., Göttsche-Kool].

Invariant computed from two types of \mathbb{C}^* -fixed locus:

- 1. $\phi = 0$. We get the moduli space \mathcal{M}^{asd} of stable sheaves on S.
- 2. $\phi \neq 0$ nilpotent. We call this moduli space \mathcal{M}_2 .

The **first** are supported on S, and contribute the virtual signed Euler characteristic

$$(-1)^{\mathsf{vd}} e^{\mathsf{vir}}(\mathcal{M}^{\mathsf{asd}}) \ \in \ \mathbb{Z}.$$

When $K_S \leq 0$ they give *all* stable terms.

Heavily studied, giving modular forms [..., Göttsche-Kool].

The **second** are supported on a scheme-theoretic thickening of $S \subset X$. When they have rank 1 on their support, they can be described in terms of nested Hilbert schemes of S.

Invariant computed from two types of \mathbb{C}^* -fixed locus:

- 1. $\phi = 0$. We get the moduli space \mathcal{M}^{asd} of stable sheaves on S.
- 2. $\phi \neq 0$ nilpotent. We call this moduli space \mathcal{M}_2 .

The **first** are supported on S, and contribute the virtual signed Euler characteristic

$$(-1)^{\mathsf{vd}} e^{\mathsf{vir}}(\mathcal{M}^{\mathsf{asd}}) \ \in \ \mathbb{Z}.$$

When $K_S \leq 0$ they give *all* stable terms.

Heavily studied, giving modular forms [..., Göttsche-Kool].

The **second** are supported on a scheme-theoretic thickening of $S \subset X$. When they have rank 1 on their support, they can be described in terms of nested Hilbert schemes of S.

Unstudied. Our (limited) computations give more modular forms predicted by Vafa-Witten 100 years ago by "cosmic strings".

The Vafa-Witten prediction

For general type surfaces with a smooth connected canonical divisor, [VW] predicts

The formula we propose is then
$$Z_{x} = \left(\frac{1}{4}G(q^{2})\right)^{\nu/2} \left(\delta_{x,0}(-1)^{\nu} \left(\frac{\theta_{0}}{\eta^{2}}\right)^{1-g} + \delta_{x,x_{0}} \left(\frac{\theta_{1}}{\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} \left(\frac{1}{4}G(q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}+\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}-\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

The Vafa-Witten prediction

For general type surfaces with a smooth connected canonical divisor, [VW] predicts

The formula we propose is then
$$Z_{x} = \left(\frac{1}{4}G(q^{2})\right)^{\nu/2} \left(\delta_{x,0}(-1)^{\nu} \left(\frac{\theta_{0}}{\eta^{2}}\right)^{1-g} + \delta_{x,x_{0}} \left(\frac{\theta_{1}}{\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} \left(\frac{1}{4}G(q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}+\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}-\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

In particular, this convinces us that our virtual localisation definition is the right one.

The Vafa-Witten prediction

For general type surfaces with a smooth connected canonical divisor, [VW] predicts

The formula we propose is then
$$Z_{x} = \left(\frac{1}{4}G(q^{2})\right)^{\nu/2} \left(\delta_{x,0}(-1)^{\nu} \left(\frac{\theta_{0}}{\eta^{2}}\right)^{1-g} + \delta_{x,x_{0}} \left(\frac{\theta_{1}}{\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} \left(\frac{1}{4}G(q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}+\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}-\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$+ 2^{1-b_{1}} i^{-x^{2}} \left(\frac{1}{4}G(-q^{1/2})\right)^{\nu/2} \left(\left(\frac{\theta_{0}-i\theta_{1}}{2\eta^{2}}\right)^{1-g} + (-1)^{\nu+x\cdot x_{0}} \left(\frac{\theta_{0}+i\theta_{1}}{2\eta^{2}}\right)^{1-g}\right)$$

$$= (5.38)$$

In particular, this convinces us that our virtual localisation definition is the right one. An alternative definition via Behrend-weighted Euler characteristic has various advantages (integers in stable case, natural generalisation to semistable case, natural refinement and categorification) and also gives modular forms, but the wrong ones.

Semistable case

Motivated by Mochizuki and Joyce-Song, we consider pairs

$$(\mathcal{E},s)$$

of a torsion sheaf \mathcal{E} on X and a section $s \in H^0(\mathcal{E}(n))$, $n \gg 0$, $(\mathcal{E}$ has centre of mass 0 on the fibres of $X \to S$, and $\det \pi_* \mathcal{E} \cong \mathcal{O}_S$.) (Equivalent to consider triples (E, ϕ, s) on S with $\det E \cong \mathcal{O}_S$, $\operatorname{tr} \phi = 0$ and $s \in H^0(E(n))$.)

Semistable case

Motivated by Mochizuki and Joyce-Song, we consider pairs

$$(\mathcal{E},s)$$

of a torsion sheaf \mathcal{E} on X and a section $s \in H^0(\mathcal{E}(n)), n \gg 0$, $(\mathcal{E}$ has centre of mass 0 on the fibres of $X \to S$, and $\det \pi_* \mathcal{E} \cong \mathcal{O}_S$.) (Equivalent to consider triples (E, ϕ, s) on S with $\det E \cong \mathcal{O}_S$, $\operatorname{tr} \phi = 0$ and $s \in H^0(E(n))$.)

which are stable

- E is semistable,
- ▶ if $\mathcal{F} \subsetneq \mathcal{E}$ has the same Giesker slope then s does not factor through \mathcal{F} .

These also admit a perfect symmetric obstruction theory governed by

$$\operatorname{Ext}_X^*(I^{\bullet},I^{\bullet})_{\perp}$$
 where $I^{\bullet}=\big\{\mathcal{O}_X(-N)\to\mathcal{E}\big\}.$

Invariants in the semistable case

Again we use virtual \mathbb{C}^* -localisation to define pairs invariants $P_{\alpha}^{\perp}(n)$, where $\alpha = (\operatorname{rank}(E), c_1(E), c_2(E))$.

Invariants in the semistable case

Again we use virtual \mathbb{C}^* -localisation to define pairs invariants $P_{\alpha}^{\perp}(n)$, where $\alpha=(\operatorname{rank}(E),c_1(E),c_2(E))$.

From these we define VW invariants by the conjectural formula

$$P_{\alpha}^{\perp}(n) = \sum_{\substack{\ell \geq 1, (\alpha_{i} = \delta_{i}\alpha)_{i=1}^{\ell} : \\ \sum_{i=1}^{\ell} \delta_{i} = 1}} \frac{(-1)^{\ell}}{\ell!} \prod_{i=1}^{\ell} (-1)^{\chi(\alpha_{i}(n))} \chi(\alpha_{i}(n)) VW_{\alpha_{i}}(S)$$

when $H^{0,1}(S) = 0 = H^{0,2}(S)$. If either is $\neq 0$ we instead use only the first term

$$P_{\alpha}^{\perp}(n) = (-1)^{\chi(\alpha(n))} \chi(\alpha(n)) VW_{\alpha}(S).$$

Results

• When stability = semistability for the sheaves \mathcal{E} , then our pairs conjecture holds and the invariants equal the invariants we defined directly earlier.

Results

- When stability = semistability for the sheaves £, then our pairs conjecture holds and the invariants equal the invariants we defined directly earlier.
- ▶ When deg K_S < 0 the same is true. (Here we prove the pairs moduli space is smooth, and the invariants equal those defined by (Behrend-weighted) Euler characteristic. To these we can apply Joyce-Song's work.)

Results

- When stability = semistability for the sheaves £, then our pairs conjecture holds and the invariants equal the invariants we defined directly earlier.
- ▶ When deg K_S < 0 the same is true. (Here we prove the pairs moduli space is smooth, and the invariants equal those defined by (Behrend-weighted) Euler characteristic. To these we can apply Joyce-Song's work.)
- ▶ When S is a K3 surface the same is true. (Joint work with Davesh Maulik. We work on compact $S \times E$, where Behrend-weighted Euler characteristic invariants equal virtual invariants. We then degenerate E to a nodal rational curve to access $S \times \mathbb{C}$. This introduces an exponential, which accounts for the difference between our simplified pairs formula and Joyce-Song's.)

(Behrend-weighted) Euler characteristics e have natural refinements H^* (of the perverse sheaf of vanishing cycles).

(Behrend-weighted) Euler characteristics e have natural refinements H^* (of the perverse sheaf of vanishing cycles).

For invariants defined by virtual localisation we need to do something different. Maulik proposes taking the virtual K-theoretic invariant (in the stable = semistable case)

$$\chi\Big(\big(\mathit{K}_{\mathcal{M}_{\mathit{VW}}}^{\mathsf{vir}}\big)^{\frac{1}{2}}\Big)$$

defined by K-theoretic localisation, and refining it to a polynomial in $t^{1/2}$ by using the \mathbb{C}^* action.

(Behrend-weighted) Euler characteristics e have natural refinements H^* (of the perverse sheaf of vanishing cycles).

For invariants defined by virtual localisation we need to do something different. Maulik proposes taking the virtual K-theoretic invariant (in the stable = semistable case)

$$\chi\Big(\big(\mathit{K}_{\mathcal{M}_{\mathit{VW}}}^{\mathsf{vir}}\big)^{\frac{1}{2}}\Big)$$

defined by K-theoretic localisation, and refining it to a polynomial in $t^{1/2}$ by using the \mathbb{C}^* action.

By (virtual) Riemann-Roch this amounts to replacing the virtual localisation definition

$$VW = \int_{\left[\mathcal{M}_{VW}^{\mathbb{C}^*}\right]^{\text{vir}}} \frac{1}{e(N^{\text{vir}})}$$

by

$$\int_{[\mathcal{M}_{VW}^{\mathbb{C}^*}]} \frac{\operatorname{ch} \left((\mathcal{K}_{\mathcal{M}_{VW}}^{\operatorname{vir}})^{\frac{1}{2}} \right) \operatorname{Td} \left(\mathcal{T}_{\mathcal{M}_{VW}}^{\operatorname{vir}} \right)}{e(\mathit{N}^{\operatorname{vir}})} \, .$$

By (virtual) Riemann-Roch this amounts to replacing the virtual localisation definition

$$VW = \int_{\left[\mathcal{M}_{VW}^{\mathbb{C}^*}\right]^{\text{vir}}} \frac{1}{e(N^{\text{vir}})}$$

by

$$\int_{[\mathcal{M}_{VW}^{\mathbb{C}^*}]} \frac{\operatorname{ch} \left((K_{\mathcal{M}_{VW}}^{\mathsf{vir}})^{\frac{1}{2}} \right) \operatorname{\mathsf{Td}} \left(T_{\mathcal{M}_{VW}}^{\mathsf{vir}} \right)}{e(N^{\mathsf{vir}})} \, .$$

Both are integrals in equivariant cohomology taking values in $H^*(\mathcal{BC}^*)\cong \mathbb{Z}[t]$ (localised and extended to $\mathbb{Q}[t^{\pm\frac{1}{2}}]$). The first is a constant, whereas the second can be a more general Laurent polynomial in $t^{1/2}$.

By (virtual) Riemann-Roch this amounts to replacing the virtual localisation definition

$$VW = \int_{\left[\mathcal{M}_{VW}^{\mathbb{C}^*}\right]^{\text{vir}}} \frac{1}{e(N^{\text{vir}})}$$

by

$$\int_{[\mathcal{M}_{VW}^{\mathbb{C}^*}]} \frac{\operatorname{ch} \left((K_{\mathcal{M}_{VW}}^{\mathsf{vir}})^{\frac{1}{2}} \right) \operatorname{\mathsf{Td}} \left(T_{\mathcal{M}_{VW}}^{\mathsf{vir}} \right)}{e(N^{\mathsf{vir}})} \, .$$

Both are integrals in equivariant cohomology taking values in $H^*(B\mathbb{C}^*)\cong \mathbb{Z}[t]$ (localised and extended to $\mathbb{Q}[t^{\pm\frac{1}{2}}]$). The first is a constant, whereas the second can be a more general Laurent polynomial in $t^{1/2}$.

On the component \mathcal{M}_{asd} this recovers the χ_{-y} refinement of $(-1)^{\text{vd}}e^{\text{vir}}$ studied by Göttsche-Kool.

By (virtual) Riemann-Roch this amounts to replacing the virtual localisation definition

$$VW = \int_{\left[\mathcal{M}_{VW}^{\mathbb{C}^*}\right]^{\text{vir}}} \frac{1}{e(N^{\text{vir}})}$$

by

$$\int_{[\mathcal{M}_{vw}^{\mathbb{C}^*}]} \frac{\operatorname{ch}\left((\mathcal{K}_{\mathcal{M}_{VW}}^{\mathsf{vir}})^{\frac{1}{2}}\right) \operatorname{\mathsf{Td}}\left(\mathcal{T}_{\mathcal{M}_{VW}}^{\mathsf{vir}}\right)}{e(\mathcal{N}^{\mathsf{vir}})} \ .$$

Both are integrals in equivariant cohomology taking values in $H^*(B\mathbb{C}^*)\cong \mathbb{Z}[t]$ (localised and extended to $\mathbb{Q}[t^{\pm\frac{1}{2}}]$). The first is a constant, whereas the second can be a more general Laurent polynomial in $t^{1/2}$.

On the component \mathcal{M}_{asd} this recovers the χ_{-y} refinement of $(-1)^{\mathrm{vd}}e^{\mathrm{vir}}$ studied by Göttsche-Kool.

On \mathcal{M}_2 computations are work in progress, trying K-theoretic cosection localisation, and refined Carlsson-Okounkov operators.

Nested Hilbert schemes

The simplest nontrivial \mathbb{C}^* -fixed component in \mathcal{M}_2 is when $\operatorname{rank}(E)=2$.

Then we get sheaves supported on the doubling 2S of $S \subset X$.

Nested Hilbert schemes

The simplest nontrivial \mathbb{C}^* -fixed component in \mathcal{M}_2 is when $\operatorname{rank}(E)=2$.

Then we get sheaves supported on the doubling 2S of $S \subset X$.

Up to $\otimes L$ they are ideal sheaves of \mathbb{C}^* -fixed subschemes of 2S.

Back on S they can be interpreted as nested subschemes $Z_1 \supseteq Z_2$ in S. The simplest case is when both are 0-dimensional.

Nested Hilbert schemes

The simplest nontrivial \mathbb{C}^* -fixed component in \mathcal{M}_2 is when $\operatorname{rank}(E)=2$.

Then we get sheaves supported on the doubling 2S of $S \subset X$.

Up to $\otimes L$ they are ideal sheaves of \mathbb{C}^* -fixed subschemes of 2S.

Back on S they can be interpreted as nested subschemes $Z_1 \supseteq Z_2$ in S. The simplest case is when both are 0-dimensional.

We get the nested Hilbert scheme

$$S^{[n_1,n_2]} = \{\mathcal{I}_1 \subseteq \mathcal{I}_2 \subset \mathcal{O}_S \colon \operatorname{length}(\mathcal{O}_S/\mathcal{I}_i) = n_i\}$$

embedded in $S^{[n_1]} imes S^{[n_2]}$ as the locus of ideals $(\mathcal{I}_1, \mathcal{I}_2)$ where

$$\mathsf{Hom}_{\mathcal{S}}(\mathcal{I}_1,\mathcal{I}_2) \neq 0.$$

Carlsson-Okounkov operators

In this way we can see $S^{[n_1,n_2]} \stackrel{\iota}{\longleftrightarrow} S^{[n_1]} \times S^{[n_2]}$ as the degeneracy locus of the complex of vector bundles $R\mathscr{H}om_{\pi}(\mathcal{I}_1,\mathcal{I}_2)$.

(We have to modify this complex in a clever way when $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.)

Carlsson-Okounkov operators

In this way we can see $S^{[n_1,n_2]} \stackrel{\iota}{\longleftrightarrow} S^{[n_1]} \times S^{[n_2]}$ as the degeneracy locus of the complex of vector bundles $R\mathscr{H}om_{\pi}(\mathcal{I}_1,\mathcal{I}_2)$.

(We have to modify this complex in a clever way when $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.)

With Gholampour and Sheshmani we show such degeneracy loci carry natural perfect obstruction theories, and that in this case it reproduces the one from VW theory.

Carlsson-Okounkov operators

In this way we can see $S^{[n_1,n_2]} \stackrel{\iota}{\longleftrightarrow} S^{[n_1]} \times S^{[n_2]}$ as the degeneracy locus of the complex of vector bundles $R\mathscr{H}om_{\pi}(\mathcal{I}_1,\mathcal{I}_2)$.

(We have to modify this complex in a clever way when $H^{0,1}(S) \neq 0$ or $H^{0,2}(S) \neq 0$.)

With Gholampour and Sheshmani we show such degeneracy loci carry natural perfect obstruction theories, and that in this case it reproduces the one from VW theory.

By the Thom-Porteous formula for the degeneracy locus, this gives

$$\iota_* \left[S^{[n_1,n_2]} \right]^{\mathsf{vir}} = c_{n_1+n_2} \left(R \mathscr{H}om_{\pi}(\mathcal{I}_1,\mathcal{I}_2)[1] \right)$$

on $S^{[n_1]} \times S^{[n_2]}$. The latter has been computed by Carlsson-Okounkov in terms of Grojnowski-Nakajima operators on $H^*(S^{[*]})$.