Inverse Spectral Results on Toric Manifolds

Zuoqin Wang [USTC]

(Based on joint works with V. Guillemin and A. Uribe)

08/04/2017@ The University of Warwick "Interactions of symplectic and algebraic geometry"

Outline

1 The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysis
- Lie group action: From smooth to symplectic
- The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results

3 Inverse Spectral Results for Toeplitz Operators

- The Berezin-Toeplitz quantization
- General theory of Toeplitz operators
- Inverse e-spectral results for Toeplitz operators

What's next 😰

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

1 The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysis
- Lie group action: From smooth to symplectic
- The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results
- Inverse Spectral Results for Toeplitz Operators
 - The Berezin-Toeplitz quantization
 - General theory of Toeplitz operators
 - Inverse e-spectral results for Toeplitz operators

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Quantization

Quantization Classical ~> Quantum

- People would like to get a correspondence symplectic manifold ~> Hilbert space (some) smooth functions ~> (some) self-adjoint operators
- In literature there are many different mathematical theories towards quantization, e.g. Weyl quantization, geometric quantization, Toeplitz quantization, deformation quantization

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

• □ ▶ • □ ▶ • □ ▶ •

Quantization

Quantization Classical ~> Quantum

- People would like to get a correspondence symplectic manifold ~> Hilbert space (some) smooth functions ~> (some) self-adjoint operators
- In literature there are many different mathematical theories towards quantization, e.g. Weyl quantization, geometric quantization, Toeplitz quantization, deformation quantization

Semi-classical analysis Quantum ~> classical

The guiding principle is

The Bohr Correspondence Principle

classical system = small \hbar limit of quantum system

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

伺 ト イ ヨ ト イ ヨ

Weyl Quantization

Weyl Quantizationfor the model
$$M = T^* \mathbb{R}^n$$
 and $\mathcal{H} = L^2(\mathbb{R}^n)$ $x_j \rightsquigarrow Q_j =$ multiplication by x_j $\xi_j \rightsquigarrow P_j = \frac{\hbar}{i} \frac{\partial}{\partial x_j}$

Heisenberg canonical commutative relation:

 $[P_j, Q_k] = \frac{\hbar}{i} \delta_{jk}.$

There is a general rule to quantize more complicated functions, and thus get a correspondence symbols \rightsquigarrow pseudodifferential operators

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Weyl Quantization

Weyl Quantizationfor the model
$$M = T^* \mathbb{R}^n$$
 and $\mathcal{H} = L^2(\mathbb{R}^n)$ $x_j \rightsquigarrow Q_j =$ multiplication by x_j $\xi_j \rightsquigarrow P_j = \frac{\hbar}{i} \frac{\partial}{\partial x_j}$

Heisenberg canonical commutative relation:

 $[P_j, Q_k] = \frac{\hbar}{i} \delta_{jk}.$

There is a general rule to quantize more complicated functions, and thus get a correspondence symbols \rightsquigarrow pseudodifferential operators

Example: the energy function \rightsquigarrow the Schrödinger operator:

$$H(x,\xi) = |\xi|^2 + V(x) \rightsquigarrow \hat{H} = -\hbar^2 \Delta + V(x)$$

Note: Make sense for Riemannian manifolds: $T^*X \rightsquigarrow L^2(X)$

The Spectrum

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

The setting: Let X be a Riemannian manifold

- (quantum) $P: C^{\infty}(X) \rightarrow C^{\infty}(X)$ a semi-classical PsDO
- (classical) $p \in C^{\infty}(T^*X)$ the symbol of P
 - assumptions: P is self-adjoint, elliptic
 - assumptions: $p \ge 0$, $\rightarrow \infty$ if X is non-compact

The Spectrum

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

イロト イポト イラト イラト

The setting: Let X be a Riemannian manifold

- (quantum) $P: C^{\infty}(X) \rightarrow C^{\infty}(X)$ a semi-classical PsDO
- (classical) $p \in C^{\infty}(T^*X)$ the symbol of P
 - assumptions: P is self-adjoint, elliptic
 - assumptions: $p \ge 0, \rightarrow \infty$ if X is non-compact

The spectrum The quantum dada are the eigenvalues of P, i.e. the λ 's such that $P\varphi = \lambda\varphi$ for some $\varphi \neq 0$. They are quantum energies. They form a real and discrete sequence

 $\lambda_1(\hbar) \leq \lambda_2(\hbar) \leq \cdots \lambda_k(\hbar) \leq \cdots \rightarrow \infty$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

The main problem

The main problem that we are interested in is

The Inverse Spectral Problem

Find the relation between the symbol function $p \in C^{\infty}(T^*X)$ and the asymptotic behavior of the spectrum $\lambda_i(\hbar)$'s. In particular: Can we determine p?

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

The main problem

The main problem that we are interested in is

The Inverse Spectral Problem

Find the relation between the symbol function $p \in C^{\infty}(T^*X)$ and the asymptotic behavior of the spectrum $\lambda_i(\hbar)$'s. In particular: Can we determine p?

An Illuminating Example: Counting Energies Let $N(c) = \#\{i \mid \lambda_i(\hbar) < c\}$. Then according to the Weyl law,

 $N(c) \stackrel{\hbar \to 0}{\sim} \frac{1}{(2\pi\hbar)^n} \operatorname{Vol}(p(x,\xi) < c)$

Note: The left hand side count the quantum energies below c, while the right hand side "count" the classical energies below c.

What's next 😰

Lie group action: From smooth to symplectic

1 The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysis
- Lie group action: From smooth to symplectic
- The equivariant spectrum
- - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results
- - The Berezin-Toeplitz quantization
 - General theory of Toeplitz operators
 - Inverse e-spectral results for Toeplitz operators

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

From Smooth to Symplectic

Smooth theory

- X a smooth manifold
- G a compact Lie group
- $\tau: G \to Diff(X)$ a smooth action of G on X

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

From Smooth to Symplectic

Smooth theory

- X a smooth manifold
- G a compact Lie group
- $\tau: G \rightarrow Diff(X)$ a smooth action of G on X

Symplectic theory

 \rightarrow

- $M = T^*X$ a symplectic manifold
- Hamiltonian G-action on M

$$g \cdot (x,\xi) = (g \cdot x, \xi \circ d\tau_{g^{-1}}) \in T^*_{g \cdot x} X$$

whose moment map $\Phi: M \to \mathfrak{g}^*$ is given by

$$\langle \Phi(x,\xi),v\rangle = \xi(v_M(x))$$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

General Reduction Theory

Symplectic Reduction

Theorem (Marsden-Weinstein Theory)

For any coadjoint orbit \mathcal{O} of G, G acts smoothly on $\Phi^{-1}(\mathcal{O}) \subset M$, and under suitable assumptions, $\Phi^{-1}(\mathcal{O})/G$ admits a quotient symplectic structure.

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

A (1) < A (2) < A (2)</p>

General Reduction Theory

Symplectic Reduction

Theorem (Marsden-Weinstein Theory)

For any coadjoint orbit \mathcal{O} of G, G acts smoothly on $\Phi^{-1}(\mathcal{O}) \subset M$, and under suitable assumptions, $\Phi^{-1}(\mathcal{O})/G$ admits a quotient symplectic structure.

 $\begin{array}{ll} \underline{Notion} \colon & \mathcal{T} : \mbox{ Cartan subgroup of } \mathcal{G} \rightsquigarrow \mbox{ induced } \mathcal{T}\mbox{-action} \\ \mathfrak{t}^*_+ \subset \mathfrak{t} : \mbox{ positive Weyl chamber} \\ \mbox{ Assumption:} \end{array}$

• $\alpha = \mathcal{O} \cap \mathfrak{t}_+^*$ is a regular value of Φ_T

then

$$M_{\alpha} := \Phi_{T}^{-1}(\alpha)/T = \Phi^{-1}(\mathcal{O})/G$$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Reduction of Cotangent Bundle

Consider the open subset

$$X_0 = \{x \in X \mid \mathfrak{t}_x = 0\} \subset X$$

where the induced T-action is locally free. Fact 1: $\alpha \in \mathfrak{t}^*$ is a regular value $\iff \Phi_T^{-1}(\alpha) \subset T^*X_0$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

伺 ト イ ヨ ト イ ヨ

Reduction of Cotangent Bundle

Consider the open subset

$$X_0 = \{x \in X \mid \mathfrak{t}_x = 0\} \subset X$$

where the induced *T*-action is locally free. Fact 1: $\alpha \in \mathfrak{t}^*$ is a regular value $\iff \Phi_T^{-1}(\alpha) \subset T^*X_0$

For simplicity assume T acts on X_0 freely. Let $B = X_0/T$. Fact 2:

 $(T^*X)_\alpha = T^*B$

(with a slightly different symplectic form)

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

イロト イポト イラト イラ

Reduction of Cotangent Bundle

Consider the open subset

$$X_0 = \{x \in X \mid \mathfrak{t}_x = 0\} \subset X$$

where the induced *T*-action is locally free. Fact 1: $\alpha \in \mathfrak{t}^*$ is a regular value $\iff \Phi_T^{-1}(\alpha) \subset T^*X_0$

For simplicity assume T acts on X_0 freely. Let $B = X_0/T$. Fact 2:

 $(T^*X)_\alpha = T^*B$

(with a slightly different symplectic form)

Fact 3: By choosing a connection, one can identify \mathfrak{g} with the vertical tangent space of X_0 at each x

What's next 😰

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

1 The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysisLie group action: From smooth to symplectic
- The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results
- 3 Inverse Spectral Results for Toeplitz Operators
 - The Berezin-Toeplitz quantization
 - General theory of Toeplitz operators
 - Inverse e-spectral results for Toeplitz operators

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

・ 同 ト ・ ヨ ト ・ ヨ

Isometric Lie Group Action

General setting

- X = a Riemannian manifold
- G = a compact Lie group acting smoothly on X
- $P: C^\infty(X) o C^\infty(X)$ a *G*-equivariant PsDO

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Isometric Lie Group Action

General setting

- X = a Riemannian manifold
- G = a compact Lie group acting smoothly on X
- $P: C^\infty(X) o C^\infty(X)$ a *G*-equivariant PsDO

Observation: The induced linear *G*-action on $L^2(X)$ $(a \cdot f)(x) = f(a^{-1}x),$

commutes with P.

 \implies For each eigenvalue λ of ${\it P}$, the eigenspace

$$E_{\lambda} = \{ \varphi \in L^2(X) | P \varphi = \lambda \varphi \}$$

admits an induced linear action of G, i.e. each E_{λ} is a finitely dimensional representation of G.

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Decomposition of Representations

Irreducible representation Each E_{λ} can be decomposed into a direct sum of irreducible representations of G:

$$E_{\lambda} = \bigoplus_{V_{lpha} \in \hat{G}} n_{\lambda}^{lpha} V_{lpha},$$

where \hat{G} is the set of all irreducible representations of G

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

Decomposition of Representations

Irreducible representation Each E_{λ} can be decomposed into a direct sum of irreducible representations of G:

$$E_{\lambda} = \bigoplus_{V_{\alpha} \in \hat{G}} n_{\lambda}^{\alpha} V_{\alpha},$$

where \hat{G} is the set of all irreducible representations of G

Isotypical representation For each $V_{\alpha} \in \hat{G}$, we put all those subspaces that are isomorphic to V_{α} together:

 $L^2_{\alpha}(M) \simeq \bigoplus_{\lambda} n^{\alpha}_{\lambda} V_{\alpha}$

Example: If $G = \mathbb{T}^n$ is the standard torus, then

$$L^2_{\alpha}(M) = \{ f \in L^2(M) \mid \exp(v) \cdot f = e^{i\alpha(v)}f \}.$$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

The Equivariant Spectrum

New decomposition and new operators So we get

- $L^2(M) = \oplus L^2_\alpha(M)$
- $P_{\alpha} = P|_{L^2_{\alpha}(M)} : L^2_{\alpha}(M) \to L^2_{\alpha}(M)$

For each $V_{lpha}\in \hat{G}$, we thus get the equivariant spectrum

$$\operatorname{Spec}(P_{\alpha}): \underbrace{\lambda_{1}(\hbar), \cdots, \lambda_{1}(\hbar)}_{n_{\lambda_{1}}^{\alpha}}, \underbrace{\lambda_{2}(\hbar), \cdots, \lambda_{2}(\hbar)}_{n_{\lambda_{2}}^{\alpha}}, \cdots$$

Background: quantization and semiclassical analysis Lie group action: From smooth to symplectic The equivariant spectrum

< ロ > < 同 > < 回 > < 回 >

The Equivariant Spectrum

New decomposition and new operators So we get

- $L^2(M) = \oplus L^2_\alpha(M)$
- $P_{\alpha} = P|_{L^2_{\alpha}(M)} : L^2_{\alpha}(M) \to L^2_{\alpha}(M)$

For each $V_{lpha}\in \hat{G}$, we thus get the equivariant spectrum

$$\operatorname{Spec}(P_{\alpha}): \underbrace{\lambda_{1}(\hbar), \cdots, \lambda_{1}(\hbar)}_{n_{\lambda_{1}}^{\alpha}}, \underbrace{\lambda_{2}(\hbar), \cdots, \lambda_{2}(\hbar)}_{n_{\lambda_{2}}^{\alpha}}, \cdots$$

The inverse e-spectral problem

The Inverse Spectral Problem

Can we recover p from the equivariant spectrum of P? What information of p can we get?

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

▲□► ▲ □► ▲

What's next 😰

- The Spectrum and Equivariant Spectrum
 - Background: quantization and semiclassical analysis
 - Lie group action: From smooth to symplectic
 - The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results
- Inverse Spectral Results for Toeplitz Operators
 - The Berezin-Toeplitz quantization
 - General theory of Toeplitz operators
 - Inverse e-spectral results for Toeplitz operators

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Laplace-Beltrami Operator

The Laplace-Beltrami operator

- (X,g) = a Riemannian manifold without boundary
- $\Delta_g =$ the Laplace-Beltrami operator

$$\Delta_{m{g}} = -rac{1}{\sqrt{|m{g}|}}\sum_{i,j}\partial_i(\sqrt{|m{g}|}m{g}^{ij}\partial_j).$$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Laplace-Beltrami Operator

The Laplace-Beltrami operator

- (X,g) = a Riemannian manifold without boundary
- $\Delta_g =$ the Laplace-Beltrami operator

$$\Delta_{m{g}} = -rac{1}{\sqrt{|m{g}|}}\sum_{i,j}\partial_i(\sqrt{|m{g}|}m{g}^{ij}\partial_j).$$

Fact: Δ_g is a second order differential operator, elliptic and self-adjoint, and its symbol is

 $\sigma(\Delta_g) = \|\xi\|^2.$

[It is a function defined on the cotangent bundle.]

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Schrödinger Operators

The semi-classical Schrödinger operator

- \hbar : the semi-classical parameter (the Planck's constant)
- $V \in C^{\infty}(X)$: the potential function
- The Schrödinger operator

$$\widehat{H}=\hbar^2\Delta_g+V.$$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Schrödinger Operators

The semi-classical Schrödinger operator

- \hbar : the semi-classical parameter (the Planck's constant)
- $V \in C^{\infty}(X)$: the potential function
- The Schrödinger operator

$$\widehat{H}=\hbar^2\Delta_g+V.$$

Fact: \hat{H} is a zeroth order semiclassical differential operator, elliptic and self-adjoint, and its semiclassical symbol is

 $H(x,\xi) = \|\xi\|^2 + V(x) \qquad (classical \ energy).$

[It is a function on the cotangent bundle T^*X]

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The spectral problem

The spectrum We are interested the eigenvalues of \widehat{H} :

 $(\hbar^2 \Delta_g + V(x))\varphi = \lambda \varphi.$

The eigenvalue λ 's are real and depends on \hbar . [They are "energies" of quantum states.]

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The spectral problem

The spectrum We are interested the eigenvalues of \widehat{H} :

 $(\hbar^2 \Delta_g + V(x))\varphi = \lambda \varphi.$

The eigenvalue λ 's are real and depends on \hbar . [They are "energies" of quantum states.]

Discreteness of the spectrum

Assume one of the following conditions:

- X is compact, or
- $V(x) \rightarrow +\infty$ as $x \rightarrow \infty$ if X is not compact.

then one has a discrete sequence of eigenvalues:

$$\operatorname{Spec}(\hbar^2\Delta_g+V)=\{\lambda_1(\hbar)\leq\lambda_2(\hbar)\leq\cdots
ightarrow\infty\}$$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

- 4 同 ト 4 ヨ ト 4 ヨ ト

The inverse spectral problem

The inverse spectral problem

The Inverse Spectral Problem

Can we determine V(x) from $\operatorname{Spec}(\hbar^2 \Delta_g + V)$? What can we say about the map

 $\Lambda: \mathcal{V} \to \mathbb{R}^{\infty}, \quad V \mapsto \{\lambda_1(\hbar), \lambda_2(\hbar), \cdots \lambda_k(\hbar), \cdots \}?$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ロト ・同ト ・ヨト ・ヨト

The inverse spectral problem

The inverse spectral problem

The Inverse Spectral Problem

Can we determine V(x) from $\operatorname{Spec}(\hbar^2 \Delta_g + V)$? What can we say about the map

 $\Lambda: \mathcal{V} \to \mathbb{R}^{\infty}, \quad V \mapsto \{\lambda_1(\hbar), \lambda_2(\hbar), \cdots \lambda_k(\hbar), \cdots \}?$

Not much is known

- Weyl's asymptotic
- Gutzwiller trace formula
- (Under suitable assumptions, without semiclassical parameter ħ) isospectral compactness, spectral rigidity etc

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ 同 ト ・ ヨ ト ・ ヨ

The case of \mathbb{R}^n

Some known results (no Lie group action) for $X = \mathbb{R}^n$:

- For n = 1: one can spectrally determine even potentials
- [Datchev-Hezari-Ventura 11] One can spectrally determine potentials of the form V(x) = R(|x|), where R is increasing
- [Guillemin-Uribe-W 12] One can spectrally determine potentials of the form $V(x) = x^2 + \hbar^2 W$, where W = R(|x|).
- [Guillemin-Uribe-W 12] For n = 2, one can spectrally determine potentials of the form $V(x) = x^2 + \hbar^2 W$, where W is analytic and of the form $ax_1^2 + bx_2^2 + W_4 + W_6 + \cdots$.

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ 同 ト ・ ヨ ト ・ ヨ

The case of \mathbb{R}^n

Some known results (no Lie group action) for $X = \mathbb{R}^n$:

- For n = 1: one can spectrally determine even potentials
- [Datchev-Hezari-Ventura 11] One can spectrally determine potentials of the form V(x) = R(|x|), where R is increasing
- [Guillemin-Uribe-W 12] One can spectrally determine potentials of the form $V(x) = x^2 + \hbar^2 W$, where W = R(|x|).
- [Guillemin-Uribe-W 12] For n = 2, one can spectrally determine potentials of the form $V(x) = x^2 + \hbar^2 W$, where W is analytic and of the form $ax_1^2 + bx_2^2 + W_4 + W_6 + \cdots$.

Main idea:

Extra structure in the spectrum.

What's next 😰

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysis
- Lie group action: From smooth to symplectic
- The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results
- Inverse Spectral Results for Toeplitz Operators
 - The Berezin-Toeplitz quantization
 - General theory of Toeplitz operators
 - Inverse e-spectral results for Toeplitz operators

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Equivariant spectrum

Setting

- (X,g) Riemannian manifold
- G a compact Lie group acting on (X, g) isometrically
- $V \in C^{\infty}(M)$ is *G*-invariant
 - $V(x)
 ightarrow \infty$ as $x
 ightarrow \infty$ if X is non-compact
- \rightsquigarrow The G-equivariant spectrum of $\hat{H}=\hbar^2\Delta_g+V$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Equivariant spectrum

Setting

- (X,g) Riemannian manifold
- G a compact Lie group acting on (X, g) isometrically
- $V \in C^\infty(M)$ is *G*-invariant
 - $V(x)
 ightarrow \infty$ as $x
 ightarrow \infty$ if X is non-compact
- \rightsquigarrow The G-equivariant spectrum of $\hat{H}=\hbar^2\Delta_g+V$

New phenomena

The equivariant eigenvalues share many properties from the ordinary eigenvalues, but there are also some new phenomena. e.g.

Theorem (Abreu-Freitas)

There is no Hersch type theorem for λ_1^{inv} .

Remark: related results were proved recently [Legendre-Sena-Dias, Hall-Murphy]

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

- 4 同 1 4 日 1 4 日

Some Known Results

Known results for equivariant spectrum (with V = 0)

- [Brüning-Heintze, Donnelley] Equivariant heat trace asymptotic, equivariant Weyl's asymptotic
- [Guillemin-Uribe] Equivariant wave trace formula
- [Dryden-Guillemin-Sena-Dias] The equivariant spectrum of a generic toric orbifold (with toric Kähler metric) determine the toric orbifold
- [Dryden-Macedo-Sena-Dias] The equivariant spectrum of a S^1 -invariant metric on S^2 determines the metric if \ddot{g} is a single well

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Equivariant Spectral Measure

Semiclassical parameter For simplicity let G be a torus. Then $\alpha \in \hat{G} \Rightarrow k\alpha \in \hat{G}$. Consider \hbar of the form $\hbar = \frac{1}{N} (N \in \mathbb{N})$. Denote the spectrum of $\hat{H}_{\alpha/\hbar} : L^2(X)_{\alpha/\hbar} \to L^2(X)_{\alpha/\hbar}$ by

 $\lambda_1(\alpha,\hbar) \leq \lambda_2(\alpha,\hbar) \leq \lambda_3(\alpha,\hbar) \leq \cdots$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

イロト イポト イラト イラト

Equivariant Spectral Measure

Semiclassical parameter For simplicity let G be a torus. Then $\alpha \in \hat{G} \Rightarrow k\alpha \in \hat{G}$. Consider \hbar of the form $\hbar = \frac{1}{N} (N \in \mathbb{N})$. Denote the spectrum of $\hat{H}_{\alpha/\hbar} : L^2(X)_{\alpha/\hbar} \to L^2(X)_{\alpha/\hbar}$ by

 $\lambda_1(\alpha,\hbar) \leq \lambda_2(\alpha,\hbar) \leq \lambda_3(\alpha,\hbar) \leq \cdots$

Equivariant spectral measure

 $\mu_{\alpha,\hbar}(f) = \text{trace } f(\hat{H}|_{L^2(X)_{\alpha/\hbar}}) = \sum_i f(\lambda_i(\alpha,\hbar)), \qquad f \in C_0^\infty(\mathbb{R})$

Question: What is the asymptotic behavior of $\mu_{\alpha,\hbar}$ as $\hbar \to 0$? Do we get interesting spectral invariants?

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Asymptotics of the Equivariant Spectral Measure

Theorem

As $\hbar
ightarrow$ 0, the measure $\mu_{\alpha,\hbar}$ admits an asymptotic expansion

$$\mu_{\alpha,\hbar} \sim (2\pi\hbar)^{-\dim B} \sum_{i=0}^{\infty} \hbar^{i} \nu_{i,\alpha},$$

where $\nu_{i,\alpha}$'s are measures on \mathbb{R} supported on the image $[c_{\alpha}, +\infty)$ of the reduced Hamiltonian

$H_{\alpha}(y,\eta) = \langle \eta,\eta\rangle_{B}^{*}(y) + \langle \alpha,\alpha\rangle_{X}^{*}(x) + V(x).$

In particular, the equivariant spectrum determines $c_{\alpha} = \min_{T^*B} H_{\alpha}$

- For $G = \{1\}$, see Guillemin-W 2012
- For G = T, see Dryden-Guillemin-Sena Dias, 2014
- For general G and P, see Guillemin-Sternberg

What's next 😰

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

The Spectrum and Equivariant Spectrum

- Background: quantization and semiclassical analysis
- Lie group action: From smooth to symplectic
- The equivariant spectrum

2 Inverse Spectral Results for Schrodinger operators

- The Schrödinger spectrum for Riemannian m anifolds
- Asymptotic equivariant spectral invariants
- Inverse e-spectral results

Inverse Spectral Results for Toeplitz Operators

- The Berezin-Toeplitz quantization
- General theory of Toeplitz operators
- Inverse e-spectral results for Toeplitz operators

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ 同 ト ・ ヨ ト ・ ヨ

Lagrangian Submanifolds

Basic Setting

- $\mathcal{U}_1, \mathcal{U}_2$ be open subsets of \mathbb{R}^n
- $\gamma: T^*\mathcal{U}_1 \to T^*\mathcal{U}_2$ a symplectomorphism
- Λ_1 a Lagrangian submanifold of $\mathcal{T}^*\mathcal{U}_1$
 - $\Rightarrow \Lambda_2 = \gamma(\Lambda_1) \text{ is a Lagrangian submanifold of } T^*\mathcal{U}_2$ $\Rightarrow \Gamma = \{(x, y, -\xi, \eta) | (y, \eta) = \gamma(x, \xi)\} \text{ is a Lagrangian submanifold of } T^*(\mathcal{U}_1 \times \mathcal{U}_2)$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lagrangian Submanifolds

Basic Setting

- $\mathcal{U}_1, \mathcal{U}_2$ be open subsets of \mathbb{R}^n
- $\gamma: T^*\mathcal{U}_1 \to T^*\mathcal{U}_2$ a symplectomorphism
- Λ_1 a Lagrangian submanifold of $\mathcal{T}^*\mathcal{U}_1$
 - $\Rightarrow \Lambda_2 = \gamma(\Lambda_1) \text{ is a Lagrangian submanifold of } T^*\mathcal{U}_2$ $\Rightarrow \Gamma = \{(x, y, -\xi, \eta) | (y, \eta) = \gamma(x, \xi)\} \text{ is a Lagrangian submanifold of } T^*(\mathcal{U}_1 \times \mathcal{U}_2)$

Assumptions

- These Lagrangians are horizontal associated to *F* ∈ C[∞](U₁), *G* ∈ C[∞](U₂) and *W* ∈ C[∞](U₁ × U₂)

 i.e. (x, ξ) ∈ Λ₁ ⇔ ξ = ∂F/∂x etc.
- For all y, the function x → F(x) + W(x, y) has a unique critical point which is a global minimum.

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

- 4 同 🕨 - 4 目 🕨 - 4 目

Generalized Legendre Transform

Theorem (Guillmin-W 16)

Under these assumptions,

$$G(y) = \min_{x}(F(x) + W(x, y))$$

Note:

- The classical Legendre transform inversion formula is a special case of this theorem with $W(x, y) = -x \cdot y$.
- If we know W (thus γ), then from G (i.e. Λ₂) one can determine F (via Λ₁ = γ⁻¹(Λ₂)).

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

- 4 回 ト 4 ヨト 4 ヨト

Generalized Legendre Transform

Theorem (Guillmin-W 16)

Under these assumptions,

$$G(y) = \min_{x}(F(x) + W(x, y))$$

Note:

- The classical Legendre transform inversion formula is a special case of this theorem with $W(x, y) = -x \cdot y$.
- If we know W (thus γ), then from G (i.e. Λ₂) one can determine F (via Λ₁ = γ⁻¹(Λ₂)).

Simple consequences

- Inverse result for \mathbb{C}^n : generalize Dryden-Guillemin-Sena Dias
- Get inverse results on $\mathbb{CP}^1 \times \cdots \times \mathbb{CP}^1$.

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ 同 ト ・ ヨ ト ・ ヨ

Case of Symplectic Toric Manifolds

Guillemin potential Now suppose X is a symplectic toric manifold. Then $B = X_0/T$ is the Delzant polytope, which is of the form

$$I_i(y) = \sum I_i^j y_j + I_i^0 \ge 0, \quad 1 \le i \le d.$$

Moreover,

Theorem (Guillemin)

The induced Riemannian metric on B is $\frac{1}{2} \sum_{i=1}^{d} \frac{(d_i)^2}{l_i(y)}$

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Case of Symplectic Toric Manifolds

Guillemin potential Now suppose X is a symplectic toric manifold. Then $B = X_0/T$ is the Delzant polytope, which is of the form

$$I_i(y) = \sum I_i^j y_j + I_i^0 \ge 0, \quad 1 \le i \le d.$$

Moreover,

Theorem (Guillemin)

The induced Riemannian metric on B is $\frac{1}{2} \sum_{i=1}^{d} \frac{(d_i)^2}{l_i(y)}$

Inverse results

Apply the generalized Legendre transform to

$$W(x,y) = \sum \frac{(dl_i(x))^2}{l_i(y)} = \sum \frac{(\sum_k l_i^k x_k)^2}{\sum_k l_i^k y_k + l_i^0}.$$

 \rightsquigarrow global/local inverse spectral results on general toric varieties.

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ 同 ト ・ ヨ ト ・ ヨ

Inverse Results on \mathbb{CP}^n

Consider the inverse problem for $\hat{H} = \hbar^2 \Delta + V$ on \mathbb{CP}^n . Since V is \mathbb{T}^n -invariant, it defines a function V on P. Assume (1) V is strictly convex in P

(2)
$$\frac{\partial V}{\partial y_i} < 0$$
 on $y_1 + \cdots + y_n = \frac{1}{2}$.

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

・ロト ・ 同ト ・ ヨト ・ ヨ

Inverse Results on \mathbb{CP}^n

Consider the inverse problem for $\hat{H} = \hbar^2 \Delta + V$ on \mathbb{CP}^n . Since V is \mathbb{T}^n -invariant, it defines a function V on P. Assume (1) V is strictly convex in P

(2)
$$\frac{\partial V}{\partial y_i} < 0$$
 on $y_1 + \cdots + y_n = \frac{1}{2}$.

Theorem (Guillemin-W 16)

Under these assumptions, one can determine V on the region R

 $R: y_1 > 0, \cdots, y_n > 0, \frac{1}{2} < 1 - \sum y_i < 1.$

from the semi-classical equivariant spectrum of \hat{H} .

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

イロト イポト イラト イラト

Inverse Results on \mathbb{CP}^n

Consider the inverse problem for $\hat{H} = \hbar^2 \Delta + V$ on \mathbb{CP}^n . Since V is \mathbb{T}^n -invariant, it defines a function V on P. Assume (1) V is strictly convex in P • $\Rightarrow V(y) + W(x, y)$ admits a unique minimum (2) $\frac{\partial V}{\partial y_i} < 0$ on $y_1 + \dots + y_n = \frac{1}{2}$. • \Rightarrow The minimum is in R

Theorem (Guillemin-W 16)

Under these assumptions, one can determine V on the region R

$$R: y_1 > 0, \cdots, y_n > 0, \frac{1}{2} < 1 - \sum y_i < 1.$$

from the semi-classical equivariant spectrum of \hat{H} .

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Non-abelian Case

Multiplicity-free spaces We say (X, ω) is multiplicity free if for each α , the reduced spaces $\Phi_T^{-1}(\alpha)/T$'s is a point.

- These spaces are non-abelian versions of toric manifolds.
- e.g. generic SU(n + 1)-coadjoint orbits as U(n)-manifolds

The Schrödinger spectrum for Riemannian m anifolds Asymptotic equivariant spectral invariants Inverse e-spectral results

Non-abelian Case

Multiplicity-free spaces We say (X, ω) is multiplicity free if for each α , the reduced spaces $\Phi_T^{-1}(\alpha)/T$'s is a point.

- These spaces are non-abelian versions of toric manifolds.
- e.g. generic SU(n+1)-coadjoint orbits as U(n)-manifolds

Spectral results In this case we can still do (with modifications):

- Decomposition into irreducibles
- Spectral measure asymptotics
- Generalized Legendre transform

and thus (on going project) should get various inverse results.

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

What's next 😰

- The Spectrum and Equivariant Spectrum
 - Background: quantization and semiclassical analysis
 - Lie group action: From smooth to symplectic
 - The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results

3 Inverse Spectral Results for Toeplitz Operators

- The Berezin-Toeplitz quantization
- General theory of Toeplitz operators
- Inverse e-spectral results for Toeplitz operators

▲□► ▲ □► ▲

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

The Berezin-Toeplitz quantization

$\mathsf{Symplectic} \rightsquigarrow \mathsf{Hilbert}$

- Classical phase space: (M, ω) = a compact Kähler manifold
 Quantization condition: ω is integral
- (L, ∇, h) a holomorphic Hermitian line bundle over M
 curv(∇) = -2πiω.
- Quantum phase space: $\mathcal{H} = H^0(M, L)$

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

The Berezin-Toeplitz quantization

$\mathsf{Symplectic} \rightsquigarrow \mathsf{Hilbert}$

- Classical phase space: (M, ω) = a compact Kähler manifold
 Quantization condition: ω is integral
- (L, ∇, h) a holomorphic Hermitian line bundle over M
 curv(∇) = -2πiω.
- Quantum phase space: $\mathcal{H} = H^0(M, L)$

Functions ~> Operators:

• $\pi: L^2(M, L) \to H^0(M, L)$ the orthogonal projection

• $f \in C^{\infty}(M) \rightsquigarrow T_f : \mathcal{H} \to \mathcal{H}, s \mapsto \pi(fs)$

<u>Problem</u>: The space \mathcal{H} is not large enough!

イロト イポト イラト イラ

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Semi-classical parameter

Introducing semi-classical parameter

- The semi-classical parameter $\hbar = 1/N$, where $N \in \mathbb{N}$ is large
- The quantum phase space $\mathcal{H}_N = H^0(M, L^{\otimes N})$
- The orthogonal projection $\pi_N: L^2(M, L^{\otimes N}) \to H^0(M, L^{\otimes N})$
- The Toeplitz operator $T_f^N : \mathcal{H}_N o \mathcal{H}_N$, $s \mapsto \pi_N(fs)$

The Berezin-Toeplitz quantization:

 $f \mapsto (T_f^N)_{N \in \mathbb{N}} : \bigoplus_N \mathcal{H}_N \to \bigoplus_N \mathcal{H}_N$

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Semi-classical parameter

Introducing semi-classical parameter

- The semi-classical parameter $\hbar = 1/N$, where $N \in \mathbb{N}$ is large
- The quantum phase space $\mathcal{H}_N = H^0(M, L^{\otimes N})$
- The orthogonal projection $\pi_N: L^2(M, L^{\otimes N}) \to H^0(M, L^{\otimes N})$
- The Toeplitz operator $T_f^N : \mathcal{H}_N o \mathcal{H}_N$, $s \mapsto \pi_N(fs)$

The Berezin-Toeplitz quantization:

 $f \mapsto (T_f^N)_{N \in \mathbb{N}} : \bigoplus_N \mathcal{H}_N \to \bigoplus_N \mathcal{H}_N$

Semi-classical behavior As $N \to \infty$, one has

•
$$||T_{f}^{N}|| \to ||f||_{\infty}$$
 and $\operatorname{Tr}(T_{f}^{N}) = N^{n} \int_{M} f \frac{\omega^{n}}{n!} + O(N^{n-1})$
• $||Ni[T_{f}^{N}, T_{g}^{N}] - T_{\{f,g\}}^{N}|| = O(1/N)$

伺下 イヨト イヨ

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operator

What's next 😰

- The Spectrum and Equivariant Spectrum
 - Background: quantization and semiclassical analysis
 - Lie group action: From smooth to symplectic
 - The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results

3 Inverse Spectral Results for Toeplitz Operators

- The Berezin-Toeplitz quantization
- General theory of Toeplitz operators
- Inverse e-spectral results for Toeplitz operators

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

The Szegö projector

The Hardy space :

- Ω=a strictly pseudoconvex domain in a complex manifold
 i.e. (∑∂_i∂
 _jρ) > 0, where ρ is a defining function of Ω
- $X = \partial \Omega$ the boundary (Denote the inclusion $j : \partial \Omega \hookrightarrow \overline{\Omega}$)
 - It is a contact manifold with contact form $\alpha = j^* \text{Im}(\bar{\partial}\rho)$
- $\Sigma = \{(x,\xi) \mid x \in X, \xi = r\alpha_x, r > 0\}$ (a symplectic cone)
 - It is the characteristic variety of the C-R operator $\bar{\partial}_b$
- The Hardy space

 $H^2(X) = L^2$ -closure of $f|_X$, where f is holomorphic in Ω

・ 同 ト ・ ヨ ト ・ ヨ

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

The Szegö projector

The Hardy space :

- Ω=a strictly pseudoconvex domain in a complex manifold
 i.e. (∑∂_i∂
 _jρ) > 0, where ρ is a defining function of Ω
- $X = \partial \Omega$ the boundary (Denote the inclusion $j : \partial \Omega \hookrightarrow \overline{\Omega}$)
 - It is a contact manifold with contact form $\alpha = j^* \text{Im}(\bar{\partial}\rho)$
- $\Sigma = \{(x,\xi) \mid x \in X, \xi = r\alpha_x, r > 0\}$ (a symplectic cone)
 - It is the characteristic variety of the C-R operator $\bar{\partial}_b$
- The Hardy space

 $H^2(X) = L^2$ -closure of $f|_X$, where f is holomorphic in Ω

The Szegö projector

• The Szegö proj. = the orth. proj. $\Pi: L^2(X) \to H^2(X)$

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Toeplitz operators a la Boutet de Monvel-Guillemin

The generalized Toeplitz operator

Toeplitz operator (Boutet de Monvel-Guillemin)

A Toeplitz operator is an operator of the form

 $Q=\Pi P\Pi,$

where P is a classical pseudo-differential operator of order d on X (which can be chosen to commute with Π)

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Toeplitz operators a la Boutet de Monvel-Guillemin

The generalized Toeplitz operator

Toeplitz operator (Boutet de Monvel-Guillemin)

A Toeplitz operator is an operator of the form

 $Q=\Pi P\Pi,$

where P is a classical pseudo-differential operator of order d on X (which can be chosen to commute with Π)

The classical Toeplitz operator

• $\Omega =$ the unit disk in $\mathbb C$

•
$$H^2(X) = \operatorname{span} \{ e^{i\theta} \mid i \in \mathbb{N}_{\geq 0} \}.$$

• $T = T_f = \prod M_f \prod$, where $M_f =$ "multiplication by f"

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Relation to Berezin-Toeplitz quantization

Dual circle bundle

- (L, h) the quantum line bundle of (M, ω)
- L^* the dual line bundle of L
- $\mathcal D$ the unit disk bundle in L^*
 - (Grauert): $\mathcal D$ is strictly pseudoconvex
- \rightsquigarrow Can study Toeplitz operators on $X = \partial D$.

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Relation to Berezin-Toeplitz quantization

Dual circle bundle

- (L, h) the quantum line bundle of (M, ω)
- L^* the dual line bundle of L
- $\mathcal D$ the unit disk bundle in L^*
 - (Grauert): $\mathcal D$ is strictly pseudoconvex

• \rightsquigarrow Can study Toeplitz operators on $X = \partial \mathcal{D}$.

Relation

There is a canonical S^1 -action on X, which preserves $H^2(X)$ and thus gives us a decomposition $H^2(X) = \bigoplus_N \mathcal{H}_N$, where

$$\mathcal{H}_N = \{ f \in H^2(X) \mid f(e^{i\theta} \cdot x) = e^{iN\theta}f(x) \}$$

Fact:
$$\mathcal{H}_N \simeq H^0(M, L^{\otimes N})$$

 $\rightsquigarrow H^2(X) \simeq \bigoplus_N H^0(M, L^{\otimes N})$ and $T_f \leftrightarrow (T_f^N)$

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Symbol calculus for Toeplitz operators

Symbol of Toeplitz operator $Q = \Pi P \Pi$

The symbol of Q is the restriction

 $\sigma(Q) := \sigma(P)|_{\Sigma}.$

・ 同 ト ・ ヨ ト ・ ヨ

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Symbol calculus for Toeplitz operators

Symbol of Toeplitz operator $Q = \Pi P \Pi$

The symbol of Q is the restriction

 $\sigma(Q) := \sigma(P)|_{\Sigma}.$

Fact: The symbol is independent of the choices of P, and satisfies all nice properties that a symbol should have, e.g.

•
$$\sigma([Q_1, Q_2]) = \{\sigma(Q_1), \sigma(Q_2)\}$$

• If Q is of order k and $\sigma(Q) = 0$, then Q is of order k - 1.

and as like PsDO's, spectral behavior of Q is closely related to its symbol (assuming P is self-adjoint, elliptic, with positive leading symbol p so that one has discrete spectrum)

・ロト ・同ト ・ヨト ・ヨト

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

What's next 😰

- The Spectrum and Equivariant Spectrum
 - Background: quantization and semiclassical analysis
 - Lie group action: From smooth to symplectic
 - The equivariant spectrum
- 2 Inverse Spectral Results for Schrodinger operators
 - The Schrödinger spectrum for Riemannian m anifolds
 - Asymptotic equivariant spectral invariants
 - Inverse e-spectral results

Inverse Spectral Results for Toeplitz Operators

- The Berezin-Toeplitz quantization
- General theory of Toeplitz operators
- Inverse e-spectral results for Toeplitz operators

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Semi-classical theory via torus action

Decomposition via torus action

- Suppose X admits a \mathbb{T}^m -action which commutes with Π
- α an element of the weight lattice of \mathbb{T}^m , consider

 $H^2_{\alpha}(X) = L^2_{\alpha}(X) \cap H^2(X)$

Let $P_{N\alpha}$ be the restriction of P on $H^2_{N\alpha}(X)$. Want: to study the asymptotic of the spectral measure associated to the Toeplitz operators $\prod P_{N\alpha} \prod$.

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Semi-classical theory via torus action

Decomposition via torus action

- Suppose X admits a \mathbb{T}^m -action which commutes with Π
- α an element of the weight lattice of \mathbb{T}^m , consider

 $H^2_{\alpha}(X) = L^2_{\alpha}(X) \cap H^2(X)$

Let $P_{N\alpha}$ be the restriction of P on $H^2_{N\alpha}(X)$. Want: to study the asymptotic of the spectral measure associated to the Toeplitz operators $\prod P_{N\alpha} \prod$.

Fact : The \mathbb{T}^m -action induces a Hamiltonian \mathbb{T}^m -action on Σ .

- Denote the moment map by $\phi: \Sigma \to \mathfrak{t}^*.$
- Assumption: α is a regular value of ϕ , and \mathbb{T}^m acts freely on $\phi^{-1}(\alpha) \rightsquigarrow$ symplectic quotient $\Sigma_{\alpha} = \phi^{-1}(\alpha)/\mathbb{T}^m$.

イロト イポト イラト イラト

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Spectral measure asymptotics for Toeplitz operators

Theorem (Guillemin-Uribe-W 17)

The spectral measure of $\Pi P_{N\alpha}\Pi$ admits an asymptotic expansion

 $(2\pi\hbar)^{-r}\sum_{i=0}^{\infty}\mu_{\alpha,i}\hbar^{i}$

as
$$\hbar = 1/N \to 0$$
, where $r = \frac{1}{2} \dim \Sigma_{\alpha}$ and
 $\mu_{\alpha,0}(f) = \int_{\Sigma_{\alpha}} p_{\alpha}^* f d\sigma$,

 σ being the symplectic volume form on Σ_{α} and p_{α} the "reduced" semi-classical symbol of P, i.e. the map $p_{\alpha} : \Sigma_{\alpha} \to \mathbb{R}$ is defined by

$$\pi^* p_\alpha = p|_{\phi^{-1}(\alpha)},$$

where π is the projection of $\phi^{-1}(\alpha)$ onto Σ_{α} .

・ロト ・同ト ・ヨト ・ヨト

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Application to toric case

Toric varieties as symplectic quotients :

Any toric variety is the reduction of \mathbb{C}^m by a subtorus $G \subset \mathbb{T}^m$:

 $M = \mathbb{C}^m /\!\!/_{\alpha} G \qquad (\text{with } K = \mathbb{T}^m / G \text{-action})$

□ > < = > <

The Berezin-Toeplitz quantization General theory of Toeplitz operators Inverse e-spectral results for Toeplitz operators

Application to toric case

Toric varieties as symplectic quotients :

Any toric variety is the reduction of $\mathbb{C}^{\overline{m}}$ by a subtorus $G \subset \mathbb{T}^{m}$:

 $M = \mathbb{C}^m /\!\!/_{\alpha} G \qquad (\text{with } K = \mathbb{T}^m / G \text{-action})$

Fact: Let $G_{\alpha} \subset G$ be the Lie subgroup with $\mathfrak{g}_{\alpha} = ann(\alpha) \subset \mathfrak{g}$. Then • $T^*S^{2m-1}/\!\!/G_{\alpha} = T^*Y$ with $Y = S^{2m-1}/G_{\alpha}$.

• Let $H^2(Y)$ be the G_{α} -invariant elements in $H^2(S^{2m-1})$. Then the $S^1 = G/G_{\alpha}$ -action on Y induces $H^2(Y) = \bigoplus_N H^2(Y)_N$.

• $H^2(Y)_N$: "quantization" of $(M, N\omega)$

Theorem (Guillemin-Uribe-W 17)

Let $P : C^{\infty}(Y) \to C^{\infty}(Y)$ a K-invariant zeroth order pseudodifferential operator. Then the symbol of $Q = \prod P \prod$ is e-spectrally determined.

The Spectrum and Equivariant Spectrum	The Berezin-Toeplitz quantization
Inverse Spectral Results for Schrodinger operators	
Inverse Spectral Results for Toeplitz Operators	Inverse e-spectral results for Toeplitz operators

Thank you for your time!