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1. Introduction

1.1. The fractional Laplacian and its obstacle problem. We de-
fine the fractional Laplacian as follows: let s ∈ (0, 1) be a fixed constant
and, for every u : Rn → R such thatˆ

Rn

|u(x)|
(1 + |x|)n+2s

dx < +∞,

we set

(−∆)sf(x) := c(n, s)PV

ˆ
Rn

f(x)− f(y)

|y|n+2s
dy

= c(n, s)PV lim
ε→0+

ˆ
Rn\Bε

f(x)− f(y)

|y|n+2s
dy, (1.1)

where the constant c(n, s) > 0 is given by

c(n, s) :=

(ˆ
Rn

1− cos(y1)

|y|n+2s
dy

)−1

.

The fractional obstacle problem is then the following: let φ : Rn → R
be a smooth function, we look at a function u : Rn → R such that{

min
{
f − φ, (−∆)sf(x)} = 0 in Rn,

lim|x|→+∞ f(x) = 0.
(1.2)

1.2. The local version: the lower dimensional obstacle problem.
Although the fractional Laplacian is a non-local operator, one can use the
so called extension method to write it a local operator in a space with one
extra variable. More precisely, let us consider the half space Rn+1

+ := {x ∈
Rn+1 : xn+1 > 0} and the (degenerate) elliptic boundary value problem{

div
(
xan+1∇u(x)

)
= 0 in Rn+1

+ ,

u(x′, 0) = f(x′) ∀ x′ ∈ Rn × {0},
(1.3)

where a := 1− 2s ∈ (−1, 1).

Lemma 1.2.1 (Caffarelli–Silvestre [5]). There exists a dimensional con-
stant C > 0 such that, for every f ∈, we have

(−∆)sf(x′) = C lim
xn+1↓0+

xan+1

∂u

∂xn+1
(x′, xn+1). (1.4)

Proof. �

Without loss of generality, we can consider the functions u extended to
the whole Rn+1 evenly:

u(x′, xn+1) = u(x′,−xn+1) ∀ x = (x′, xn+1) ∈ Rn × R.
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Eq. (1.3) is the Euler–Lagrange equation of the functionalˆ
Rn+1
+

|∇u(x)|2 xan+1 dx

In particular, the function u can be found as the the minimizer of the above
energy with constraint u(x′, 0) = f(x′).

1.3. The scalar Signorini problem. As far as the local regularity of
the solution to the fractional obstacle problem is concerned, we can look at
the function u which is a minimizer (actually the unique minimizer) with
respect to its own boundary conditions of the weighted Dirichlet energy

min

ˆ
BR

|∇u(x)|2 |xn+1|a dx : u(x′, 0) ≥ φ(x′). (1.5)

Such problem is sometimes called the lower dimensional obstacle problem,
because the constraint u(x′, 0) ≥ φ(x′) is given on a low dimensional sub-
manifold.

The above problem also arises in elasticity theory and in the case of
s = 1

2 (i.e. a = 0) it is called the scalar Signorini problem.

In this perspective, one is also led to consider the simplest version of
such a problem, namely the case of zero obstacle φ ≡ 0 and boundary value
u|∂Br = g with g ≥ 0 on ∂BR∩{xn+1 = 0}. This is the problem we consider:
given any boundary value g ∈ H1(B) even symmetric with respect to xn+1

and with g|B′1 > 0, we consider the minimization problem

min
u∈Ag

ˆ
B
|∇u(x)|2dx, (1.6)

where

Ag :=
{
v ∈ g +H1

0 (B1) : v|B′1 ≥ 0, v(x′, xn+1) = v(x′,−xn+1)
}
.

It follows from the direct method in the calculus of variations and from
the convexity of the energy that there exists a unique minimizer to the
Signorini problem (1.6) and that it is even symmetric with respect to xn+1.

The main questions concerning the solutions to the thin obstacle problem
we would like to address are those regarding the regularity. In this regard,
we need to distinguish between two kind of regularity:

(a) the regularity of the solution u itself; namely, whether for smooth
obstacles is the solutions also smooth, or if not which the best
regularity we can hope for;

(b) the regularity of the free boundary Γ(u), i.e. of the relative bound-
ary of the coincide set Λ(u):

Λ(u) :=
{
x′ ∈ B′R : u(x′, 0) = φ(x′)

}
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and

Γ(u) := ∂{xn+1=0}
{
x′ ∈ B′R : u(x′, 0) = φ(x′)

}
.

2. Optimal regularity of the solutions

In this chapter we prove the following result.

Theorem 2.0.1. Let u ∈ H1(B1) be a solution to the lower dimensional

obstacle problem. Then, u ∈ C1,1/2
loc (B+

1 ∪B′1) and

‖u‖C1,1/2(B+
1/2
∪B′1/2) ≤ C(n) ‖u‖L2(B1),

where C(n) > 0 is a dimensional constant.

In particular, this gives a precise meaning to the Signorini “ambiguous
boundary conditions”.

Corollary 2.0.2. Every solution u to the lower dimensional obstacle
problem is characterized by the following set of equalities and inequalities:{

∆u = 0 in B+
1 ,

u ≥ 0, −∂n+1u ≥ 0, u ∂n+1u = 0 on B′1,
(2.1)

where the value of ∂n+1u on B′1 is well-defined according to the regularity of
Theorem 2.0.1.

Remark 2.0.3. The regularity in Theorem 2.0.1 is optimal: in the sense
that there exists solutions u0 which are not C1,α for any α > 1

2 : e.g.,

u0(x) =

(
2x1 −

√
x2

1 + x2
n+1

)√√
x2

1 + x2
n+1 + x1.

2.1. W 2,2-theory: penalization method. We consider a smooth func-
tion β : R→ R with the following properties:

β(t) = 0 ∀ t ≥ 0, β′(t) ≥ 0 ∀ t ∈ R, β′′(t) ≤ 0 ∀ t ∈ R,
and

β(t) = 2t+ 1 ∀ t ≤ −2 and |β(t)| ≤ 2 |t| ∀t ∈ R.
We set

βε(t) := ε−1β
(
t/ε
)
.

Then, one can consider the solutions of following boundary value problem
∆uε = 0 in B+

1 ,

−∂n+1uε + βε
(
uε
)

= 0 in B′1,

uε = g in (∂B1)+.

(2.2)

The weak solutions to (2.2)ˆ
B+

1

∇uε · ∇η dx = −
ˆ
B′1

βε(uε) η dx′ ∀ η ∈ H1
0 (B1) (2.3)
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are the unique minimizer of the following variational problem:

min
v∈H1(B1) v|∂B1

=g

1

2

ˆ
B+

1

|∇v(x)|2dx+

ˆ
B′1

Fε(v(x′, 0)) dx′, (2.4)

where Fε is a primitive of the function βε:

Fε(t) :=

{
0 t ≥ 0,

−
´ 0
t βε(s) ds t < 0.

Note that Fε ≥ 0 and Fε(t) ≤ Cε−1|t|2 for a dimensional constant C > 0.
It is then simple to verify that the energies in (2.4) are coercive, lower
semicontinuous and convex, and therefore there exists a unique minimizer
uε ∈ H1(B+

1 ). Without loss of generality, we can extend it to the whole B1

by even reflection.

Moreover, we have the following.

Lemma 2.1.1. Let g, u, uε be as above. Then, uε converges to u in L2(B1)
and there exists a constant C > 0 such that

‖uε‖H1(B) ≤ C ‖u‖H1(B) ∀ ε > 0. (2.5)

Proof. We start noticing that

1

2

ˆ
B+

1

|∇uε(x)|2dx ≤ 1

2

ˆ
B+

1

|∇uε(x)|2dx+

ˆ
B′
Fε(uε(x

′, 0)) dx′

≤ 1

2

ˆ
B+

1

|∇u(x)|2dx+

ˆ
B′
Fε(u(x′, 0)) dx′

=
1

2

ˆ
B+

1

|∇u(x)|2dx.

Therefore, we deduce the existence of a constant C > 0 (depending on g)
such that (2.5) holds.

We test now (2.3) with η := uε ζ
2 where ζ ∈ C1

c (B) is a cut-off function:
it follows thatˆ

B′1

βε(uε)uε ζ
2 dx′ = −

ˆ
B+

1

∇uε · ∇
(
uε ζ

2
)

dx

≤
ˆ
B+

1

(
2 |∇uε|2 ζ2 + 4u2

ε |∇ζ|2
)

dx
(2.5)

≤ C,

where the constant C > 0 depends on u and ζ. We therefore deduce that
for every δ > 0

Hn
(
{uε < −δ} ∩B′1 ∩ {ζ = 1}

)
|βε(−δ)| δ ≤ C.

Since |βε(t)| ≥ |2 ε−2|t|+ ε−1| for t < −2ε, we deduce that for 2ε < δ

Hn
(
{uε < −δ} ∩B′1 ∩ {ζ = 1}

)
≤ C ε2

δ |ε− 2 δ|
.
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In particular, any weak limit w of uε satisfies w|B′1 ≥ 0 andˆ
B+

1

|∇w(x)|2dx ≤ lim inf
ε→0+

ˆ
B+

1

|∇uε(x)|2dx ≤
ˆ
B+

1

|∇u(x)|2dx.

Since u is the unique solution to the Signorini problem, we infer that w =
u. �

Next we show that uε are actually uniformly H2
loc(B1). To this aim we

introduce the notation: for i = 1, . . . , n and h ∈ R,

τh,iu(x) :=
u(x+ h ei)− u(x)

h
.

Proposition 2.1.2. The solution to the thin obstacle problem u are
H2

loc(B
+
1 ) and there exists a dimensional constant C > 0 such that for every

ε > 0 ˆ
B+
r (x0)

|∇(∂iu)|2

|x− x0|n−1
dx ≤ C

rn+1

ˆ
B+

2r\B
+
r (x0)

|∂iu|2 dx, (2.6)

for every x0 ∈ B′1/2 and for every r ∈ (0, 1/4).

In particular, the Signorini ambiguous boundary conditions in Corol-
lary 2.0.2 are satisfied in the sense of traces.

Proof. Without loss of generality it suffices to consider the case x0 = 0.
Let ζ ∈ C1

c (B) be a test function with

ζ ≡ 1 in Br, ζ ≡ 0 in B1 \B2r and |∇ζ| ≤ C r−1,

and for a small parameter δ > 0 let

Ψ(x) := min
{
|x|1−n, δ1−n}.

We test (2.3) with η := τ−h,i
(
τh,iuεΨζ

2
)

and i = 1, . . . , n. In the following
we omit to write the index i and use the change of variables at the base of
the partial integration for the discrete derivativesˆ

(τhf) g dx =

ˆ
f (τ−hg) dx,

and the fact that τh and ∇ commute: ∇(τh)f = τh(∇f). We haveˆ
B+

1

∇uε · ∇η dx =

ˆ
B+

1

∇(τhuε) · ∇
(
(τhuε)Ψζ

2
)

dx

=

ˆ
B+

1

|∇(τhuε)|2Ψζ2 dx+ I + II, (2.7)

with

I =

ˆ
B+

1

(τhuε)ζ
2∇(τhuε) · ∇Ψ dx,

II = 2

ˆ
B+

(τhuε) Ψ ζ∇(τhuε) · ∇ζ dx.
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II can be estimated via Hölder as follows:

|II| ≤ 1

2

ˆ
B+

1

|∇(τhuε)|2Ψζ2 dx+ C

ˆ
B+

1

(τhuε)
2|∇ζ|2 Ψ dx.

For what concerns I, we make an integration by parts (we used ∆Ψ = 0 in
B − 1 \Bδ):

I =
1

2

ˆ
B+

1 \Bδ
ζ2∇(τhuε)

2 · ∇Ψ dx

= −
ˆ
B+

1 \Bδ
ζ (τhuε)

2∇Ψ · ∇ζ dx− 1

2

ˆ
B′1\Bδ

ζ2 (τhuε)
2∇Ψ · en dx′

− 1

2

ˆ
(∂Bδ)+

ζ2 (τhuε)
2∇Ψ · x

|x|
dHn(x)

= −
ˆ
B+

1 \Bδ
ζ (τhuε)

2∇Ψ · ∇ζ dx− (1− n)

2 δn

ˆ
(∂Bδ)+

ζ2 (τhuε)
2 dHn(x)

≥ −
ˆ
B+

1 \Bδ
ζ (τhuε)

2∇Ψ · ∇ζ dx ≥ − C

rn+1

ˆ
B+

2r\B
+
r

(τhuε)
2 dx.

Next we note that

−
ˆ
B′1

βε(uε)τ−h(τhuε)Ψζ
2 dx′ = −

ˆ
B′1

τh
(
βε(uε)

)
(τhuε)Ψζ

2 dx′

= −
ˆ
B′

βε(uε(x+ hei))− βε(uε(x))

h

uε(x+ hei)− u(x)

h
Ψζ2 dx′ ≤ 0.

In particular, we have derived that

ˆ
B+

1

|∇(τhuε)|2Ψζ2 dx = −I − II −
ˆ
B′1

βε(uε)τ−h(τhuε)Ψζ
2 dx′

≤ C

rn+1

ˆ
B+

2r\B
+
r

(τhuε)
2 dx+

1

2

ˆ
B+

1

|∇(τhuε)|2Ψζ2 dx,

from which

ˆ
B+

1

|∇(τhuε)|2Ψζ2 dx ≤ C

rn+1

ˆ
B+

2r\B
+
r

(τhuε)
2 dx.

In particular, it follows that ∂i∂juε exists in L2
loc(B

+
1 ) for every 1 = 1, . . . , n

and for every j = 1, . . . , n + 1, with uniform bounds. In particular, using
∆uε = 0 in B+

1 , we also infer ∂n+1∂n+1uε ∈ L2
loc(B

+
1 ).
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For what concerns the estimate relative to ∇(∂n+1uε), we test the equa-
tion (2.3) with η := ∂n+1

(
∂n+1uε Ψ ζ2

)
:

−
ˆ
B′1

βε(uε)∂n+1

(
∂n+1uε Ψ ζ2

)
dx′ =

ˆ
B′1

∂n+1uε ∂n+1

(
∂n+1uε Ψ ζ2

)
dx′

=

ˆ
B+

1

∇uε · ∇
(
∂n+1

(
∂n+1uε Ψ ζ2

))
dx

= −
ˆ
B+

1

∇
(
∂n+1uε

)
· ∇
(
∂n+1uε Ψ ζ2

)
dx−

ˆ
B′1

∇uε · ∇
(
∂n+1uε Ψ ζ2

)
dx′.

Therefore we deduce that (we denote with ∇′ the derivatives in the horizon-
tal directions)ˆ

B+
1

∇
(
∂n+1uε

)
· ∇
(
∂n+1uε Ψ ζ2

)
dx = −

ˆ
B′1

∇′uε · ∇′
(
∂n+1uε Ψ ζ2

)
dx′

(2.8)

= −
ˆ
B′1

∇′uε · ∇′
(
βε(uε) Ψ ζ2

)
dx′ (2.9)

= −
ˆ
B′1

|∇′uε|2 β′ε(uε) Ψ ζ2 dx′ −
ˆ
B′
βε(uε)∇′uε · ∇′(Ψ ζ2) dx′ (2.10)

≤ −
ˆ
B′
βε(uε)∇′uε · ∇′(Ψ ζ2) dx′. (2.11)

By the compact embeddings we have that βε(uε) = ∂nuε strongly converge
in L2(B′1) to ∂n+1u and ∇′uε weakly converge in L2(B′1) to ∇′u. Therefore,
from the Signorini ambiguous boundary conditions we deduce that

lim
ε→0

ˆ
B′1

βε(uε)∇′uε · ∇′(Ψ ζ2) dx′ = 0.

We can then argue as above in (2.8) and deduce thatˆ
B+

1

|∇(∂n+1u)|2Ψζ2 dx ≤ C

rn+1

ˆ
B+

2r\B
+
r

(∂n+1u)2 dx.

�

2.2. C1,α-regularity: hole-filling technique. The next step is to
show the following intermediate regularity.

Theorem 2.2.1. Let u be a solution to the Signorini problem. Then,
there exists a constant α ∈ (0, 1) such that u ∈ C1,α

loc (B+
1 ∪B′1) and

‖u‖C1,α(B+
1/2
∪B′1/2) ≤ C‖u‖L2(B+

1 ). (2.12)

Proof. We consider the following integral quantities:

I(x0, r) :=

ˆ
B+
r (x0)

n∑
i=1

|∇(∂iu)|2

|x− x0|n−1
dx,
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and

II(x0, r) :=

ˆ
B+
r (x0)

|∇(∂n+1u)|2

|x− x0|n−1
dx.

By Proposition 2.1.2 we have that

I(x0, r) ≤
C

rn+1

ˆ
B+

2r\B
+
r (x0)

|∇′u|2 dx

and

II(x0, r) ≤
C

rn+1

ˆ
B+

2r\B
+
r (x0)

|∂n+1u|2 dx.

From the Signorini boundary conditions, for every r ∈ (0, 1/4) we have to
consider two possibilities: either

Hn
(
Λ(u) ∩B′2r \B′r(x0)

)
≥
Hn
(
B′2r \B′r(x0)

)
2

,

or

Hn
(
{∂n+1u = 0} ∩B′2r \B′r(x0)

)
≥
Hn
(
B′2r \B′r(x0)

)
2

.

Using a Poincarè-type inequality we have in the first case

I(x0, r) ≤
C

rn+1

ˆ
B+

2r\B
+
r (x0)

|∇′u|2 dx ≤ C

rn−1

ˆ
B+

2r\B
+
r (x0)

|∇(∇′)u|2 dx

≤ C
(

I(x0, 2r)− I(x0, r)
)
.

In the second case we have that

II(x0, r) ≤
C

rn+1

ˆ
B+

2r\B
+
r (x0)

|∂nu|2 dx ≤ C

rn−1

ˆ
B+

2r\B
+
r (x0)

|∇∂nu|2 dx

≤ C
(
II(x0, 2r)− II(x0, r)

)
.

In both cases we can add CI(x0, r) or CII(x0, r) to both sides and infer that
for every r ∈ (0, 1/4)

either I(x0, r) ≤ θ I(x0, 2r) or II(x0, r) ≤ θ II(x0, 2r) (2.13)

with θ := C
C+1 ∈ (0, 1).

We claim that (2.13) leads to the following:

II(x0, r) ≤ C r2α ∀ r ∈ (0, 1/4),

for some constants C,α > 0. Indeed, consider any r ∈ (0, 1/4) and let k ∈ N
be such that r ∈ [4−k−1, 4−k). Set for convenience rl := 2−l for l = 2, . . . , 2k.
Then, there exists at least k radii rl, say {rlj}Mj=1 with M ≥ k and lj ≤ lj+1,
such that at lest one between I and II decays. In particular, we deduce that

I(x0, rlj ) ≤ θ I(x0, 2 rlj ) ≤ θ I(x0, rlj−1
)

or

II(x0, rlj ) ≤ θ II(x0, 2 rlj ) ≤ θ II(x0, rlj−1
).
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Iterating this inequality we deduce that

min

{
I(x0, r)

I(x0, 1/4)
,

II(x0, r)

II(x0, 1/4)

}
≤ θk ≤ r2α,

with α = − log θ
4 log 4 . In particular, considering that I(x0, 1/4) + II(x0, 1/4) ≤

C ‖Du‖L2(B1), we deduce that

min
{

I(x0, r), II(x0, r)
}
≤ C ‖Du‖L2(B1)r

2α.

Finally, note that since ∂n+1∂n+1u = −
∑n

i=1 ∂iiu we also deduce that

II(x0, r) ≤ (n+ 1) I(x0, r) ≤ (n+ 1) min
{

I(x0, r), II(x0, r)
}
≤ C ‖Du‖L2(B1)r

2α.

In particular, ˆ
Br(x0)+

|∇∂n+1u|2 ≤ C rn−2+2α,

and from Morrey’s inequality it follows that ∂n+1u ∈ C0,α
loc (B′1) and from

Schauder estimates u ∈ C1,α
loc (B+

1 ). �

2.3. Almgren’s frequency function. We introduce the following in-
tegral quantities: for every x0 ∈ B′1 and r ∈

(
0,dist(x0, ∂B1)

)
, we set

D(x0, r) :=

ˆ
Br(x0)

|∇u|2 dx and H(x0, r) :=

ˆ
∂Br(x0)

u2 dHn,

and, if H(x0, r) > 0 (that is always the case for the solutions to the Signorini
problem, unless u ≡ 0), we define

I(x0, r) :=
r D(x0, r)

H(x0, r)
.

The function I is called Almgren’s frequency function.

Proposition 2.3.1. Let u be a nonzero solution to the Signorini prob-
lem. Then,

I(x0, r0) ≤ I(x0, r1) ∀ x0 ∈ B′1, ∀ 0 < r0 < r1 < dist
(
x0, ∂B1

)
.

Moreover, if there exist x0 ∈ B′1, k ∈ R and 0 < r0 < r1 < dist(x0, ∂B1) such
that I(x0, r) = k for all r ∈ (r0, r1), then the solution u is k-homogeneous
around x0, i.e. there exists w : ∂B1 → R such that

u(x) = |x− x0|k w
(
x− x0

|x− x0|

)
∀ x ∈ B1.

Proof. Without loss of generality we consider x0 = 0. Note that the
functionsD(r), H(r) and I(r) are absolutely continuous and we can compute
as follows (we set ν(x) := x/|x| for the outward unit normal to Br):

H ′(r) =
n

r
H(r) + 2

ˆ
∂Br

uuνdHn, (2.14)
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(use the change of variable x = ry, y ∈ ∂B1);

D(r) =

ˆ
∂Br

uuνdHn, (2.15)

(use the identity ∆(u2) = 2|∇u|2 + 2u∆u and the Signorini boundary con-
ditions);

D′(r) =

ˆ
∂Br

|∇u|2 dx = 2 r−1

ˆ
B+
r

div
(
|∇u|2 x

)
dx

= 2 r−1

ˆ
B+
r

(
(n+ 1) |∇u|2 + 2

n∑
ij=1

∂iju∂iuxj

)
dx

= 2 r−1

ˆ
B+
r

(
(n+ 1) |∇u|2 − 2

n∑
ij=1

∂iiu∂juxj − 2δij∂iu∂ju
)

dx

+ 4 r−2
n∑

ij=1

ˆ
(∂Br)+

∂iuxi ∂juxj dHn − 4 r−1

ˆ
B′r

∂n+1u (∇u · x) dx′

=
n− 1

r

ˆ
Br

|∇u|2 dx+ 2

ˆ
∂Br

(∂νu)2 dHn,

where we used that ∆u = 0 in B+
r and by the Signorini boundary conditions

∂nu(∇u · x) = 0 on B′r. We can then derive that

I ′(r)

I(r)
=

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)

= 2

( ´
∂Br

u2
ν dHn´

∂Br
uuνdHn

−
´
∂Br

uuνdHn´
∂Br

u2 dHn

)
≥ 0,

the last inequality is due to the Cauchy–Schwarz inequality. In particular,
if I ′(r) = 0 for r ∈ (r0, r1), then there exist a function λ : (r0, r1)→ R such
that uν(x) = λ(|x|)u(x) for every x ∈ Br1 \Br0 : in particular,

k = I(r) =
rD(r)

H(r)
=
r
´
∂Br

uuνdHn´
∂Br

u2 dHn
= rλ(r) ∀ r ∈ (r0, r1).

We then deduce that ∇u(x) · x = ku(x) for every x ∈ Br1 \ Br0 : by the
Euler formula we get u(x) = |x|kw(x/|x|) for some function w : ∂B1 → R
and by unique continuation for harmonic functions we conclude that this
representation holds in all of B1. �

A first consequence is the existence of homogeneous blowups at every
free boundary point.

Corollary 2.3.2. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem and let x0 ∈ Γ(u). Then, for every infinitesimal sequence of decreas-
ing radii (ri)i∈N with r0 ≤ d0 := dist(x0, ∂B1), there exists a subsequence
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(rik)k∈N, such that the rescaled functions ux0,rik : B d0
rik

→ R defined by

ux0,rik (y) :=
r
n/2
ik
u(x0 + riky)´

∂Bik (x0) u
2 dHn

converge C1
loc(Rn+1) to a homogeneous function.

Proof. It is immediate to verify that the functions ux0,ri are solutions
to the Signorini problem. Therefore, from Theorem 2.2.1 we have that the
functions ux0,ri are uniformly bounded in C1,α for some α > 0, from which
the convergence up to subsequences follows.

In order to deduce the homogeneity of the limiting points ux0 , we notice
that

Iux0 (r) = lim
k→+∞

Iux0,rik
(r) = lim

k→+∞
Iu(x0, rikr) = Iu(x0, 0

+) ∀ r > 0.

In particular, Iux0 (r) turns out to be constant and by Proposition 2.3.1
we deduce that ux0 is homogeneous with respect to the origin and with
homogeneity exponent Iu(x0, 0

+). �

Similarly, the following corollary will be useful later.

Corollary 2.3.3. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem and let x0 ∈ Γ(u) ∩B1/2 and λ = I(x0, 0

+). Then,

r−n−2λH(x0, r) ≤ s−n−2λH(x0, s) (2.16)

for all 0 < r < s < 1/2. In particular, there exists a dimensional constant
C > 0 such thatˆ

Br(x0)
u2 dx ≤ C ‖u‖L2(B1) r

n+1+2λ ∀ r ∈ (0, 1/2). (2.17)

Proof. Assume without loss of generality x0 = 0. Using r D(r) ≥
λH(r) and (2.14), we integrate the differential inequality

H ′(r) =
n

r
H(r) + 2 D(r) ≥ n

r
H(r) +

λ

r

to obtain (2.16). Eq. (2.17) follows from (2.16), Theorem 2.0.1 and an
integration in polar co-ordinates. �

2.4. Alt-Caffarelli-Friedman’s monotonicity formula. Given any
open set S ⊂ Sd−1, let λ(S) and vλ be the first eigenvalue and the corre-
sponding eigenfunction of the spherical Laplacian in S with Dirichlet bound-
ary conditions:

λ(S) := inf
v∈H1

0 (S),v 6=0

´
S |∇τv|

2 dHd−1´
S v

2 dHd−1
=

´
S |∇τvλ|

2 dHd−1´
S v

2
λ dHd−1

,
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where ∇τv denotes the (covariant) tangential derivative of v : Sd−1 → R.
Corresponding to the eigenvalue λ(S), one defines the characteristic constant
α(S) given by the positive root of

α2 + α (d− 2)− λ = 0.

Note that α(S) is the homogeneity exponent of the harmonic extension of
vλ: writing in polar co-ordinates u(r, θ) := rαvλ(θ) we have that

∆u =
d2

dr2
u+

d− 1

r

d

dr
u+

1

r2
∆Sd−1u

=
(
α (α− 1) + (d− 1)α− λ

)
rα−2vλ(θ) = 0.

We need the following result by Friedland and Hayman ([11]).

Theorem 2.4.1. Let S1, S2 ∈ Sd−1 be two disjoint open sets. Then,

α(S1) + α(S2) ≥ 2, (2.18)

with equality if and only if S1 and S2 are two disjoint hemispheres.

The following is the monotonicity formula discovered by Alt, Caffarelli
and Friedman [1].

Theorem 2.4.2. Let u1, u2 be nonnegative continuous subharmonic func-
tions in B1 ⊂ Rd. Assume that u1 u2 ≡ 0 and u1(0) = u1(0) = 0. Then, the
function

J(r) :=
1

r4

ˆ
Br

|∇u1(x)|2

|x|d−2
dx

ˆ
Br

|∇u2(x)|2

|x|d−2
dx

is monotone nondecreasing for r ∈ (0, 1) with

J(r) ≤ C(n) ‖u1‖2L2(B1) ‖u2‖2L2(B1) ∀ r ∈ (0, 1/2).

Proof. We start establishing the following two inequalities: for v = u1

or v = u2, we have v ∈ H1
loc(B1) and for a.e. r ∈ (0, 1)ˆ

Br

|∇v|2

|x|d−2
dx ≤ C

rd

ˆ
B2r\Br

v2. (2.19)

andˆ
Br

|∇v|2

|x|d−2
dx ≤ d− 2

2rd−1

ˆ
∂Br

v2 dHd−1 +
1

rd−2

ˆ
∂Br

v∂νv dHd−1, (2.20)

where ν(x) := x
|x| is the outer unit normal and C > 0 is a dimensional

constant. To this aim, we consider a regularization of v by convolution
vε := ϕε ? v, where ϕε is a standard convolution kernel; and for every
δ ∈ (0, r) we set

gδ = min
{
|x|2−d, δ2−d}.

From the subharmonicity and the positivity of v we get that

∆v2
ε = 2 |∇vε|2 + 2 vε ∆vε ≥ 2 |∇vε|2.
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In particular, if ψ ∈ C∞c (B2r) is such that

ψ ≡ 1 on Br and r |Dψ|+ r2 |D2ψ| ≤ C,

then we have that

2

ˆ
B2r

ψ gδ|∇vε|2 ≤
ˆ
B2r

ψ gδ ∆v2
ε

=

ˆ
B2r\Bδ

∆(ψ gδ)v
2
ε dx+

ˆ
∂Bδ

ψ ∂νgδ v
2
ε dHd−1

≤ C

rd

ˆ
B2r\Br

v2
ε dx+

d− 2

rd−1

ˆ
∂Bδ

v2
ε dHd−1,

where we used that ∆gδ(x) = 0 for |x| > δ. Sending δ to zero, we infer that

ˆ
Br

|∇vε|2

|x|d−2
dx ≤ C

rd

ˆ
B2r\Br

v2
ε dx+ C vε(0)2.

In particular, the functions vε are uniformly in H1(Br); and taking now
the limit ε → 0 (recall that vε converges to v uniformly and v(0) = 0), we
conclude (2.19).

Similarly, for (2.20), we proceed as follows:

2

ˆ
Br

gδ|∇vε|2 dx ≤
ˆ
Br

∆v2
ε gδ dx

=

ˆ
Br\Bδ

∆gδ v
2
ε dx+ 2

ˆ
∂Br

vε∇νvε gδ dHd−1

−
ˆ
∂Br

∂νgδ v
2
ε dHd−1 +

d− 2

rd−1

ˆ
∂Bδ

v2
ε dHd−1.

Considering that ∆gδ = 0, we can take the limits δ → 0 and ε → 0 in this
order to infer (2.20).

Computing the derivative of J we have that

d

dr

ˆ
Br

|∇ui|2

|x|d−2
dx = r2−d

ˆ
∂Br

|∇ui|2 dHd−1 for a.e. r ∈ (0, 1)

and therefore

J ′(r)

J(r)
= r2−d

´
∂Br
|∇u1|2 dHd−1

´
Br

|∇u1|2
|x|d−2 dx

+ r2−d
´
∂Br
|∇u2|2 dHd−1

´
Br

|∇u2|2
|x|d−2 dx

− 4

r
.
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We can then estimate as follows for i = 1, 2:ˆ
∂Br

|∇ui|2 dHd−1 ≥
ˆ
∂Br

(
|∂νui|2 + |∇τui|2

)
dHd−1

≥
ˆ
∂Br

(
|∂νui|2 + λi r

−2u2
i

)
dHd−1

≥ 2αi r
−1

(ˆ
∂Br

(∂νui)
2 dHd−1

)1/2(ˆ
∂B1

u2
i dHd−1

)1/2

+ (λi − α2
i )r
−2

ˆ
∂Br

u2
i dHd−1

where λi denotes the lowest eigenvalue of the spherical Laplacian with
Dirichlet boundary conditions in Si :=

(
{ui > 0} ∩ ∂Br

)
/r ⊂ Sn, and αi is the

corresponding characteristic number: in particular, αi (d− 2) = λ− α2
i and´

∂Br
|∇ui|2 dHd−1

´
Br

|∇ui|2
|x|d−2 dx

(2.20)

≥ 2
αi
r
.

thus leading to
J ′(r)

J(r)
≥ 2

r
(α1 + α2)− 4

r

(2.18)

≥ 0.

The last conclusion of the theorem follows from (2.19). �

A consequence of the ACF-monotonicity formula is the following iden-
tification of the least possible frequency at free boundary points.

Corollary 2.4.3. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then,

Iu(x0, 0
+) ∈ {3/2} ∪ [2,+∞) ∀ x0 ∈ Γ(u).

Proof. From Corollary 2.3.2 it is not restrictive to assume that u is a
homogeneous solution in Rn+1 with exponent λ = Iu(x0, 0

+). From the C1,α

regularity of u and the fact that ∇u(x0) = 0 for a free boundary point x0,
we deduce that λ > 1. Moreover, we can consider the horizontal derivatives
∂eu ∈ Cα(B+) for every e ∈ Sn, with e · en+1 = 0.

It is easy to verify that (∂eu)± are subharmonic functions with disjoint
supports and (∂eu)±(0) = 0 (see Exercise 2.6.1). Therefore, we can apply
Theorem 2.4.2 to infer that for all r ∈ (0, 1]

J(r) =
1

r4

ˆ
Br

|∇(∂eu)+(x)|2

|x|n−1
dx

ˆ
Br

|∇(∂eu)−(x)|2

|x|n−1
dx < C < +∞.

Considering that ∇(∂eu)± is (λ− 2)-homogeneous, we deduce that

J(r) = r4λ−8J(1).

Therefore, either λ ≥ 2 or we must have J(1) = 0. Note that this is possible
if and only if at least one between (∂eu)+ and (∂eu)− is constantly zero. In
particular, for every e ∈ Sn with e · en+1 = 0, we have that u is monotone
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in the direction e, which is equivalent to say that u is a function of a two
variables (see Exercise 2.6.2):

u(x) = v(x · ē, xn+1) for some ē ∈ Sn, ē · en+1 = 0,

and v : R2 → R is a solution to the Signorini problem, which can be easily
classified (see Exercise 2.6.3). By direct inspection the only frequency λ ∈
(1, 2) is given by the value 3

2 . �

2.5. Optimal regularity: C1,1/2.

Theorem 2.5.1. Let u ∈ H1(B1) be a solution to the Signorini problem.

Then, u ∈ C1,1/2(B+
1 ∪B′1) with

‖u‖C1,1/2(B+
1/2
∪B′1/2) ≤ C(K)‖u‖L2(B+).

Proof. For every x ∈ B+
1/2 ∪ B

′
1/2 we denote by d(x) the distance from

the free boundary:

d(x) := dist
(
x,Γ(u)

)
.

Note that either Bd(x)(x) ∩ B′1 ⊂ Λ(u) or Bd(x)(x) ∩ B′1 ⊂ B′1 \ Λ(u): in
particular, in the first case the odd reflection of u, in the second one the
even reflection of u, are harmonic functions. We denote such harmonic
functions (in both cases) with U .

In order to prove the theorem, it is enough to show that

|∇u(x1)−∇(x2)| ≤ C ‖u‖L2(B) |x1 − x2|
1/2

for all x1, x2 ∈ B+
1/2 ∪B

′
1/2 with |x1 − x2| < 1/8. We consider three cases.

Case 1: d(x1) ≥ 1/4. In this case, x2 ∈ Bd(x1)/2(x1) and by the interior
estimates for the harmonic function U we have that

|∇u(x1)−∇u(x2)| ≤ C
‖U‖L2(Bd(x1)(x1))

d(x1)2+n+1
2

|x1 − x2|

≤ C ‖u‖L2(B+
1 ) |x1 − x2|

1/2.

Case 2: d(x2) ≤ d(x1) < 1/4 and |x1−x2| ≥ d(x1)/2. From Corollary 2.3.3
and Corollary 2.4.3 we have that

‖U‖L2(Bd(x1)(x1)) ≤ C ‖u‖L2(B+) d(x1)
n/2+4.

In particular, considering that U is harmonic, we have that

‖U‖L∞(Bd(x1)/2(x1)) ≤ C
‖U‖L2(Bd(x1)(x1))

d(x1)
n+1
2

≤ C
‖u‖L2(B+

1 ) d(x1)
n+4
2

d(x1)
n+1
2

= ‖u‖L2(B+
1 ) d(x1)

3
2
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Since the same can be done for x2, we get

|∇u(x1)−∇u(x2)| ≤ |∇u(x1)|+ |∇u(x2)|
≤ C ‖u‖L2(B+) d(x1)

1/2 ≤ C ‖u‖L2(B+
1 ) |x1 − x2|

1/2.

Case 3: d(x2) ≤ d(x1) < 1/4 and |x1 − x2| < d(x1)/2. Arguing as before
via interior estimates for harmonic functions and Corollary 2.3.3, we have

‖D2U‖L∞(Bd(x1)/2(x1)) ≤ C
‖U‖L2(Bd(x1)(x1))

d(x1)
n+5
2

≤ ‖u‖L2(B+) d(x1)−
1/2.

Therefore

|∇u(x1)−∇(x2)| ≤ ‖D2u‖L∞(Bd(x1)/2(x1))|x1 − x2|

≤ C ‖u‖L2(B) d(x1)−
1/2|x1 − x2|

≤ C ‖u‖L2(B) |x1 − x2|
1/2.

�

2.6. Exercises.

Exercise 2.6.1. Let u ∈ H1(B1) be a solution to the Signorini problem.
Show that, for every e ∈ Sn with e · en+1 = 0, the functions (∂eu)± are
subharmonic.

Hint. Consider the approximations v+
δ := φδ(∂eu) with φδ a regulariza-

tion of t+ and φδ(0) = 0. Similarly, consider v−δ := φδ(−∂eu). Note that

v±δ are zero in a neighborhood of Λ(u).

Exercise 2.6.2. Let v ∈ C1(B1), B1 ⊂ Rd, be monotone in each di-
rection e ∈ Sd−1. Show that v is a functions of a single variable: i.e. there
exists φ : R→ R and ē ∈ Sd−1 such that v(x) = φ(ē · x).

Exercise 2.6.3. Show that the only homogeneous solutions to the Sig-
norini problem in R2 (i.e. n = 1) are given by the following formulas:

u2m(x1, x2) = C Re(x1 + i|x2|)2m, m ∈ N \ {0}, C ≥ 0

u2m−1/2(x1, x2) = C Re(x1 + i|x2|)2m−1/2, m ∈ N \ {0}, C ≥ 0

u2m+1(x1, x2) = C Im(x1 + i|x2|)2m+1, m ∈ N, C ≥ 0,

where the determination of the square root for u2m−1/2 is chosen in such a
way that the u2m−1/2(x1, 0) ≥ 0.

Hint. Use polar co-ordinates.
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3. The free boundary: the regular points

We start now the study of the regularity points of the free boundary. To
this aim, it can be useful to recall the definitions of contact set Λ(u) and of
free boundary Γ(u) of a solution u to the Signorini problem:

Λ(u) :=
{

(x′, 0) ∈ B′1 : u(x′, 0) = 0
}

and Γ(u) := ∂B′1Λ(u),

where ∂B′1 denotes the boundary in the (relative) topology of B′1.

3.1. The regular part of the free boundary. In this chapter we
consider the so called regular part Γ3/2(u) of the free boundary, defined as
the set with least frequency:

Γ3/2(u) :=
{
x ∈ Γ(u) : Iu(x, 0+) = 3/2

}
.

The reason why this subsets of the free boundary is called regular has mostly
to do with the results we are going to discuss next.

Theorem 3.1.1. Let u ∈ H1(B1) be a solution to the Signorini problem.
Then, Γ3/2(u) is a relatively open subset of Γ(u) and is an analytic (n− 1)-

dimensional submanifold of Rn+1.

Comments 3.1.2. (i) Γ3/2(u) ⊂ Γ(u) open is easily seen as follows: from
Almgren’s monotonicity formula in Proposition 2.3.1

Iu(x, 0+) = lim
r→0+

Iu(x, r) = inf
r>0

Iu(x, r)

is an upper semicontinuous function (greatest lower bound of continuous
functions x 7→ Iu(x, r)), and therefore taking into account Corollary 2.4.3
we infer that

Γ3/2(u) :=
{
x ∈ Γ(u) : Iu(x, 0+) < 2

}
⊂ Γ(u) is relatively open.

(ii) The main breakthrough is due to Athanasopoulos, Caffarelli and Salsa [3]
(see Caffarelli, Salsa and Silvestre [6] for the case of the fractional Laplacian),
where the authors prove the C1,α regularity of Γ3/2(u).

(iii) The higher regularity has been recently obtained in [7, 16] via bootstrap
methods and hodograph transformation.

Here we present a proof of the C1,α regularity of Γ3/2(u) as a consequence
of the epiperimetric inequality established by Focardi and Spadaro [8].

3.2. The epiperimetric inequality. We introduce a family of bound-
ary adjusted energies: namely, for every u ∈ H1(B1) even symmetric with
respect to xn+1, for every x0 ∈ Γ3/2(u) and for every r ∈ (0, 1− |x0|), we set

Wx0(r, u) :=
1

rn+2

ˆ
Br(x0)

|∇u|2 dx− 3

2 rn+3

ˆ
∂Br(x0)

u2 dHn.

We omit to write the point x0 if it is the origin.
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Remark 3.2.1. The introduction of the boundary adjusted energies goes
back to the work by Weiss for the classical obstacle problem [21] and has
been generalized to the Signorini problem by Garofalo and Petrosyan [12].

The main result is now the following

Theorem 3.2.2 (Epiperimetric inequality Focardi-S. [8]). There exists a
dimensional constant κ ∈ (0, 1) such that if c ∈ H1(B1) is a 3/2-homogeneous
function with c ≥ 0 on B′, then

inf
v∈Ac

W (1, v) ≤ (1− κ)W (1, c). (3.1)

Recall the definition

Ac :=
{
v ∈ c+H1

0 (B1) : v|B′1 ≥ 0, v(x′, xn+1) = v(x′,−xn+1)
}
.

Remark 3.2.3. A similar inequality has also been proved by Garofalo,
Petrosyan and Smit Vega [?].

3.2.4. Decay of the boundary adjusted energy. The main consequence of
the epiperimetric inequality in Theorem 3.2.2 is the decay of the boundary
adjusted energy.

Proposition 3.2.5. There exists a dimensional constant γ > 0 with this
property. For every x0 ∈ Γ3/2(u) there exists a constant C > 0 such that

0 ≤Wx0(r, u) ≤ C rγ ∀ 0 < r < 1− |x0|. (3.2)

Proof. Without loss of generality, we consider x0 = 0. We start com-
puting:

d

dr
W(r, u) = −n+ 2

rn+3
D(r) +

D′(r)

rn+3
− 3

2 rn+3
H ′(r) +

3(n+ 3)

2 rn+4
H(r)

= −n+ 2

r
W(r, u)− 3(n+ 2)

2 rn+4
H(r)

+
D′(r)

rn+3
+

9

2rn+4
H(r)− 3

D(r)

rn+3︸ ︷︷ ︸
=:I

. (3.3)

where we used the formula (2.14)

H ′(r) =
n

r
H(r) + 2D(r).

In order to treat the terms in I, we introduce the rescaled functions

ur(x) :=
u(rx)

r3/2
(3.4)

and deduce by simple computations that

I =
1

r

ˆ
∂B1

(
|∇ur|2 − 3ur∇ur · ν +

9

2
u2
r

)
dHn

=
1

r

ˆ
∂B1

[(
∇ur · ν −

3

2
ur

)2

+ |∇τur|2 +
9

4
u2
r

]
dHn, (3.5)
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where we denoted by ∇τur the (covariant) derivative of ur in the directions
tangent to ∂B1. Let cr be the 3/2-homogeneous extension of ur|∂B1 , i.e.

cr(x) := |x|3/2ur
(
x/|x|

)
.

It is simple to verify thatˆ
∂B1

(
|∇τur|2 +

9

4
u2
r

)
= (n+ 2)

ˆ
B1

|∇cr|2 dx.

We then conclude that

d

dr
W (r, u) =

n+ 2

r

(
W3/2(1, cr)−W3/2(1, ur)

)
+

1

r

ˆ
∂B1

(
∇ur · ν −

3

2
ur

)2

dHn. (3.6)

By the epiperimetric inequality in Theorem 3.2.2

d

dr
W(r, u) ≥ 2

n+ 2

r

κ

1− κ
W(1, ur) = 2

n+ 2

r

κ

1− κ
W(r, u) ∀ 0 < r < r0.

Integrating this inequality we get

W (r, u) ≤W (1, u) rγ ∀ 0 < r < r0,

with γ := 2(n+ 1)κ/(1− κ). �

3.3. Regularity of the free boundary. In this section we show how
to derive the regularity of the free boundary around points of least fre-
quency as a simple consequence of the epiperimetric inequality. We divide
the argument in different steps.

3.3.1. Rescaled profiles. Assume that 0 ∈ Γ3/2(u) and set

ur(x) :=
u(rx)

r3/2
. (3.7)

A first consequence of Corollary 2.3.3 of Chapter 2 is that the rescaled
profiles ur have equi-bounded Dirichlet energies:

ˆ
B1

|∇ur|2 dx =

´
Br
|∇u|2 dx
rn+2

=
r
´
Br
|∇u|2 dx´

∂Br
u2 dHn

´
∂Br

u2 dHn

rn+3

Ch.2 (2.16)

≤ Iu(r)Hu(1) ≤ Iu(1)H1(1). (3.8)

Therefore, for every infinitesimal sequence of radii rk ↓ 0 there exists a
subsequence rk′ ↓ 0 such that urk′ → u0 in L2(B1). Note however that this
does not allow to deduce that there exists a limiting function u0 which is
not identically 0. As an application of the epiperimetric inequality and the
related decay of the energy in Proposition 3.2.5 we can deduce that this is
actually the case for every such limiting profiles u0.
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Proposition 3.3.2 (Nondegeneracy). Let u ∈ H1(B1) be a solution to
the Signorini problem and assume that 0 ∈ Γ3/2(u). Then there exists a
constant H0 > 0 such that

H(r) ≥ H0 r
n+3 ∀ 0 < r < 1. (3.9)

Proof. The starting point is the computation of H ′(r):

d

dr

(
log

H(r)

rn+3

)
= 2

D(r)

H(r)
− 3

r
=

2 rn+2

H(r)
W(r, u). (3.10)

Let γ > 0 be the constant in Proposition 3.2.5: by Corollary 2.3.3, there
exists a constant C > 0 such that

d

dr

(
log

H(r)

rn+3

)
≤ C rγ/2−1 ∀ 0 < r < 1. (3.11)

Integrating this differential inequality we get that the function

H(r)

rn+3e
2C
γ
rγ/2

is nonincreasing. In particular, there exists the limit

H0 := lim
r→0

H(r)

rn+3eCr
γ/2

= lim
r→0

H(r)

rn+3
> 0.

Since the function H(r)
rn+3 is monotone increasing by (3.10), we conclude the

proof. �

Note now that by (3.9) we then deduce thatˆ
∂B1

u2
r dHn ≥ H0.

Therefore, since from (3.8) we also deduce the convergence of the traces of
ur on ∂B1, we finally get thatˆ

∂B1

u2
0 dHn ≥ H0 > 0

for every limiting profile u0, thus showing that u0 6≡ 0.
3.3.3. Uniqueness of blowups. A key ingredient of the analysis of the

free boundary we are going to perform is to show that

(i) the blowup u0 is actually unique, meaning that the whole sequence
ur → u0 in L2(B1) as r → 0,

(ii) there is a rate of convergence of ur to u0.

This is again an easy consequence of the epiperimetric inequality.

Proposition 3.3.4. Let u be a solution to the Signorini problem and
K ⊂⊂ B′1. Then there exist a constant C > 0 such that for every x0 ∈
Γ3/2(u) ∩K there exists a unique blowup ux0 andˆ

∂B1

|ux0r − ux0 | dHn ≤ C r
γ/2 for all 0 < r < dist(K, ∂B1), (3.12)
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where γ > 0 is the constant in Proposition 3.2.5.

Proof. Consider the case x0 = 0 ∈ Γ3/2(u). Let 0 < s < r < 1 be fixed
radii; we can then compute as follows:ˆ
∂B1

|ur − us|dHn ≤
ˆ
∂B1

ˆ r

s
t−1
∣∣∣∇ut · ν − 3

2
ut

∣∣∣ dtdHn

≤
√
nωn

ˆ r

s
t−

1/2

(
t−1

ˆ
∂B1

∣∣∣∇ut · ν − 3

2
ut

∣∣∣2 dHn
)1/2

dt

(3.6)

≤
√
nωn

ˆ r

s
t−

1/2
( d

dt
W3/2(t, u)

)1/2
dt

≤
√
nωn log

(
r/s
)1/2 (

W (r, u)−W (s, u)
)1/2

. (3.13)

By (3.2) and a simple dyadic argument (applying (3.13) to s = r/2 = 2−k

for k ∈ N sufficiently large) we easily deduce that for every 0 < s < r < 1ˆ
∂B1

|ur − us| dHn ≤ C r
γ/2

for a constant C > 0 which in turn depends only on the constants in Propo-
sition 3.2.5. Sending s to 0 and eventually changing the value of the constant
C, we then conclude. The same holds for every other x0 ∈ Γ3/2(u) ∩K. �

3.3.5. C1,α regularity of the free boundary Γ3/2. In view of the uniqueness

result in Proposition 3.3.4 we are in the position to prove the C1,α regularity
Γ3/2.

Proposition 3.3.6. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then there exists a dimensional constant α > 0 such Γ3/2(u) is a C1,α

regular submanifold of dimension n− 1.

Proof. Without loss of generality it is enough to prove that if 0 ∈
Γ3/2(u) then Γ3/2(u) is a C1,α submanifold in a neighborhood of 0. To this
aim we start noticing that by the openness of Γ3/2(u) there exists s > 0
such that Bs ∩ Γ(u) = Bs ∩ Γ3/2(u). From the complete characterization of
the homogeneous 3/2 solutions, we have that for every x0 ∈ Bs ∩ Γ3/2(u) the
unique blowup ux00

ux00 = λx0he(x0),

for some λx0 > 0 and |e(x0)| = 1 with e(x0) · en+1 = 0, where

he(x0)(x) = u3/2(x · e(x0), xn+1)

– cf. Chapter 2 Exercise 2.6.3.

We first prove the Hölder continuity of x0 7→ λx0 . To this aim we start
observing that, thanks to Proposition 3.2.5 and Proposition 3.3.2 we can
further estimate (3.10) in the following way

d

dr

(
log

H(x0, r)

rn+3

)
=

2 rn+2

H(x0, r)
Wx0(r, u) ≤ C rγ−1 ∀r ∈ (0, 1). (3.14)



FRACTIONAL OBSTACLE PROBLEM 23

Notice that by the strong convergence in L2(B1) of the rescaled functions it
follows that

λ2
x0 = c0 lim

r→0

Hx0(r)

rn+3

for some dimensional constant c0 > 0. Integrating (3.14) we can then deduce
that

c0
Hx0(r)

rn+3
− λ2

x0 ≤ C r
γ ∀ r ∈ (0, 1). (3.15)

Notice moreover that for x0, y0 ∈ Bs ∩ Γ3/2(u) and r = |x0 − y0|1−θ with
θ = γ/(1 + γ) it holds thatˆ

∂B1

|ux0r − uy0r |dHn

≤ r−3/2

ˆ
∂B1

ˆ 1

0

∣∣∇u(s(x0 + rx) + (1− s)(y0 + rx)
)
| |y0 − x0| ds dHn(x)

≤ Cr−1 |y0 − x0| ≤ C |y0 − x0|θ. (3.16)

Therefore we can conclude that for r = |x0−y0|1−θ with θ = γ/(1 + γ) it holds
that∣∣λ2
x0 − λ

2
y0

∣∣ ≤ ∣∣∣λ2
x0 − c0

H(x0, r)

rn+3

∣∣∣+ c0

∣∣∣H(x0, r)

rn+3
− H(y0, r)

rn+3

∣∣∣+
∣∣∣c0

H(y0, r)

rn+3
− λ2

y0

∣∣∣
≤ C rγ + C

ˆ
∂B1

∣∣(ux0r )2 − (uy0r )2
∣∣ dHn

≤ C rγ + C

ˆ
∂B1

∣∣ux0r − uy0r ∣∣ dHn ≤ C rθ (3.17)

where we used the uniform L∞ (actually C1,1/2) bound on ux0r for every
x0 ∈ Γ3/2(u) ∩Bs.

By Proposition 3.3.4 and a similar computation we can show thatˆ
∂B1

|ux00 − u
y0
0 | dH

n ≤
ˆ
∂B1

|ux00 − u
x0
r | dHn +

ˆ
∂B1

|ux0r − uy0r | dHn

+

ˆ
∂B1

|uy0r − u
y0
0 | dH

n

(3.12) & (3.16)

≤ C r
γ/2 + C |x0 − y0|θ ≤ C |x0 − y0|

γθ/2

(3.18)

Note finally that there exists a geometric constant C̄ > 0 such that

|e(x0)− e(y0)| ≤ C̄
ˆ
∂B1

∣∣he(x0) − he(y0)

∣∣ dHn.
Therefore from (3.17) and (3.18) we easily deduce that

|e(x0)− e(y0)| ≤ C |x0 − y0|
γθ/2. (3.19)
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Next we show that the vectors e(x0) do actually encode a geometric
property of the free boundary. To this aim we introduce the following nota-
tion for cones centered at points x0 ∈ Γ3/2(u): for any ε > 0 we set

C±(x0, ε) := {x ∈ Rn × {0} : ±〈x− x0, e(x0)〉 ≥ ε|x− x0|} .

The main claim are then the following two: for every ε > 0, there exists
δ > 0 such that, for every x0 ∈ Γ3/2(u) ∩Bs/2,

u > 0 in C+(x0, ε) ∩Bδ(x0). (3.20)

u = 0 in C−(x0, ε) ∩Bδ(x0). (3.21)

Assume by contradiction that there exist xj ∈ Γ3/2(u)∩Bs/2 with xj → x0 ∈
Γ3/2(u) ∩ B̄s/2, and yj ∈ C+(xj , ε) with yj − xj → 0 such that u(yj) = 0.

By the C1,1/2 regularity of the solution, (3.12) and (3.18), the rescalings u
xj
rj

with rj := |yj − xj |, converge uniformly to ux00 . Up to subsequences, by
the Hölder continuity of the normals proved in (3.19) we can assume that
r−1
j (yj−xj)→ z ∈ C+(x0, ε)∩Sn−1 and by uniform convergence ux00 (z) = 0.

This contradicts the fact that x0 ∈ Γ3/2(u) and ux00 > 0 on C+(x0, ε) \ {0}.
For what concerns (3.21), we argue as above: assume by contradiction

that there exist xj → x0 ∈ Γ3/2(u) ∩ B̄s/2 as above and yj ∈ C−(xj , ε) with
yj − xj → 0 such that u(yj) > 0, which implies ∂n+1u(yj) = 0. By the

C1,1/2 regularity of the solution, (3.12) and (3.18), the rescalings u
xj
rj with

rj := |yj−xj |, converge uniformly to ux00 . Up to subsequences, by the Hölder

continuity of the normals proved in (3.19) we can assume that r−1
j (yj−xj)→

z ∈ C−(x0, ε) ∩ Sn−1 and by uniform convergence ∂n+1u
x0
0 (z) = 0. This

contradicts the fact that x0 ∈ Γ3/2(u) and ∂n+1u
x0
0 > 0 on C−(x0, ε) \ {0}.

We can now conclude that Γ3/2(u) ∩ Bρ is the graph of a function g,
for a suitably chosen small ρ > 0. Without loss of generality assume that
e(0) = en and set

g(x′′) := max
{
t ∈ R : (x′′, t, 0) ∈ Λ(u)

}
for all points x′ ∈ Rn−1 with |x′| ≤ δ

√
1− ε2. Note that by (3.20) this

maximum exists and belongs to [−εδ, εδ]. Moreover u(x′, t, 0) = 0 for every
−ε δ < t < g(x′) and u(x′, t, 0) > 0 for every g(x′) < t < ε δ. Eventually, by
applying (3.20) with respect to arbitrary ε, we deduce that g is differentiable
and in view of (3.19) we can conclude that g is C1,α regular for a suitable
α > 0. �

3.4. Proof of the epiperimetric inequality. In this section we give
a sketch of the proof of the epiperimetric inequality Theorem 3.2.2. To
simplify the notation in the proof below we shall denote W (1, ·) by G .
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3.4.1. Proof by contradiction. We argue by contradiction: we start off
assuming the existence of numbers κj ↓ 0 and of functions cj ∈ H1(B1) that
are even symmetric with respect to xn+1, 3/2-homogeneous, positive on B′1
and such that

(1− κj)G (cj) ≤ inf
v∈Acj

G (v), (3.22)

where we recall

Acj :=
{
u ∈ H1(B1) : u ≥ 0 on B′1, u = cj on (∂B1)+

}
.

Note that (3.22) is invariant if we replace cj with λcj and λ > 0: in partic-
ular, we can assume that

distH1

(
cj ,H3/2

)
= 1 for all j ∈ N, (3.23)

where H3/2 denotes the closed convex cone of 3/2-homogeneous solutions

H3/2 :=
{
λu3/2(x · e, xn+1) : λ > 0, |e| = 1, e · en+1 = 0

}
,

– cf. Exercise 2.6.3 Chapter 2. Moreover, by a change of coordinates de-
pending on j, we can also assume that

‖cj − λj h‖H1 = 1,

where h := hen . We divide the rest of the proof in some intermediate steps.
3.4.2. Introduction of a family of auxiliary functionals. We rewrite in-

equality (3.22) conveniently and interpret it as an almost minimality condi-
tion for a sequence of new functionals.

We start noticing that, for every ψ ∈H3/2 and for every ϕ ∈ H1(B1), a
simple integration by parts yieldsˆ

B+
1

∇ψ · ∇ϕdx =

ˆ
B+

1

div(ϕ∇ψ)dx

=

ˆ
(∂B1)+

ϕ
∂ψ

∂ν
dHn −

ˆ
B′1

ϕ
∂ψ

∂xn+1
(x′, 0+)dx′

=
3

2

ˆ
(∂B1)+

ϕψ dHn −
ˆ
B′1

ϕ
∂ψ

∂xn+1
(x′, 0+)dx′,

where ν = x
|x| and we used that ψ is 3/2-homogeneous and ∆ψ = 0 in B+

1 .

Therefore, by the even symmetry of ψ we concludeˆ
B1

∇ψ · ∇ϕdx =
3

2

ˆ
∂B1

ϕψ dHn − 2

ˆ
B′1

ϕ
∂ψ

∂xn+1
(x′, 0+)dHn. (3.24)

In particular, (3.24) yields that the first variation of G3/2 at ψ ∈H3/2 in the

direction ϕ ∈ H1(B1), formally defined as

δG3/2(ψ)[ϕ] := 2

ˆ
B1

∇ψ · ∇ϕdx− 3

ˆ
∂B1

ψ ϕdHn,

satisfies

δG3/2(ψ)[ϕ] = −4

ˆ
B′1

ϕ
∂ψ

∂xn+1
(x′, 0+)dHn. (3.25)
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Furthermore, by taking into account the Signorini boundary conditions for
ψ and (3.24) applied to ϕ = ψ, we get

G3/2(ψ) = 0 for all ψ ∈H3/2. (3.26)

For any fixed j, let v ∈ Acj and use (3.25) (applied twice to ψj = λjh
with test functions ϕ = cj − ψj and ϕ = v − ψj) and (3.26), in order to
rewrite (3.22) in the following form

(1−κj)
(
G (cj)−G (ψj)−δG (ψj)[cj−ψj ]−4

ˆ
B′1

(cj−ψj)
∂ψj
∂xn+1

(x′, 0+) dx′
)

≤ G (v)− G (ψj)− δG (ψj)[v − ψj ]− 4

ˆ
B′1

(v − ψj)
∂ψj
∂xn+1

(x′, 0+) dx′.

Simple algebraic manipulations then lead to

(1− κj)
(
G (cj − ψj)− 4

ˆ
B′1

(cj − ψj)
∂ψj
∂xn+1

(x′, 0+) dx′
)

≤ G (v − ψj)− 4

ˆ
B′1

(v − ψj)
∂ψj
∂xn+1

(x′, 0+) dx′, (3.27)

for all v ∈ Acj .

Next we introduce the following notation. We set

zj := cj − λj h, (3.28)

Bj :=
{
z ∈ zj +H1

0 (B1) : (z + λjh)|B′1 ≥ 0
}
. (3.29)

Then we define the functionals Gj : L2(B1)→ (−∞,+∞] given by

Gj(z) :=


ˆ
B1

|∇z|2dx− 3

2

ˆ
∂B1

z2
j dHn − 4λj

ˆ
B′1

z
∂h

∂xn+1
(x′, 0+) dx′

if z ∈ Bj ,

+∞ otherwise.

(3.30)
Note that the second term in the formula does not depend on z but only on
the boundary conditions zj |∂B1 .

Therefore, (3.27) reduces to

(1− κj)Gj(zj) ≤ Gj(z) for all z ∈ Bj . (3.31)

Moreover, note that by (3.23) and (3.28)

‖zj‖H1(B1) = 1. (3.32)

This implies that we can extract a subsequence (not relabeled) such that

(a) (zj)j∈N converges weakly in H1(B1) to some z∞;

(b) the corresponding traces (zj |∂B+
1

)j∈N converge strongly in L2(∂B+
1 );

(c) (λj)j∈N has a limit λ ∈ [0,∞].
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Now we establish the equi-coercivity and some further properties of the
family of the auxiliary functionals (Gj)j∈N. Notice that for all w ∈ Bj , being
w|∂B1 = zj |∂B1 , it holds that

−
ˆ
B′1

w
∂h

∂xn+1
(x′, 0+) dx′ =

ˆ
B′1

−(w + λj h)
∂h

∂xn+1
(x′, 0+) dx′

+ λj

ˆ
B′1

h
∂h

∂xn+1
(x′, 0+) dx′ ≥ 0, (3.33)

where we used (w + λj h)|B′1 ≥ 0. Therefore, we deduce from the very

definition (3.30) that for all w ∈ Bjˆ
B1

|∇w|2dx− 3

2

ˆ
∂B1

z2
j ≤ Gj(w), (3.34)

thus establishing the equi-coercivity of the sequence (Gj)j∈N.
By taking into account (3.32), if λ ∈ [0,+∞) then

lim inf
j

Gj(zj) ≥ 1−
ˆ
B1

z2
∞−

3

2

ˆ
∂B1

z2
∞ dHn− 4λ

ˆ
B′1

z∞
∂h

∂xn+1
(x′, 0+) dx′.

(3.35)
Instead, if λ = +∞ then (3.32) and (3.34) yield

lim inf
j

Gj(zj) ≥ 1−
ˆ
B1

z2
∞ −

3

2

ˆ
∂B1

z2
∞ dHn.

Hence in all instances, it is not restrictive (up to passing to a further subse-
quence which we do not relabel) to assume that (Gj(zj))j∈N ⊂ R has a limit
in (−∞,+∞]. Finally, note that

lim
j

Gj(zj) = +∞ ⇐⇒ lim
j
λj

ˆ
B′1

zj
∂h

∂xn+1
(x′, 0+) dx′ = −∞. (3.36)

3.4.3. Asymptotic analysis of (Gj)j∈N: Γ-convergence. Next step of the
proof is to upgrade the convergence of zj to z∞ to strongly H1(B1) and to
characterize the limiting functions z∞.

Here we prove a Γ-convergence result for the family of energies Gj . To
this aim, we recall some basic definitions of this important notion introduced
by De Giorgi.

Definition 3.4.4. Let (X, d) be a metric space and functionals Fj : X →
R for j ∈ N ∪ {∞}. We say that a sequence of functionals Fj Γ-converge to
F∞ (and we write F∞ = Γ-limFj) if

(a) for all (wj)j∈N and w ∈ X such that wj → w

lim inf
j→+∞

Fj(wj) ≥ F∞(w); (3.37)

(b) for all w ∈ X there exists (wj)j∈N ⊂ X such that wj → w and

lim sup
j→+∞

Fj(wj) ≤ F∞(w). (3.38)

(wj)j∈N is called a recovery sequence
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This is a simple consequence of the definition.

Lemma 3.4.5. Let (X, d) be a metric space and Fj , F∞ : X → R func-
tionals such that F∞ = Γ-limFj. If (xj)j∈N ⊂ X is a sequence such that

lim
j→+∞

Fj(xj) = lim
j→+∞

inf
X
Fj ,

then every accumulation point x∞ of (xj)j∈N is a minimum point of F∞ and

min
X

F∞ = F∞(x∞) = lim
j→+∞

Fj(xj).

Proof. Assume that xjk → x∞. Then, for every w ∈ X, by using (b)
((wj) and (x̄j) are recovery sequence for w and x∞) and (a) we have that

F∞(w)
(b)

≥ lim sup
j→+∞

Fj(wj) ≥ lim
j→+∞

inf
X
Fj = lim

j→+∞
Fj(xj)

= lim
k→+∞

Fjk(xjk)
(a)

≥ F∞(x∞)
(b)

≥ lim sup
j→+∞

Fj(x̄j) ≥ lim
j→+∞

inf
X
Fj .

�

We prove the following proposition.

Proposition 3.4.6. We have the following Γ-convergence result.

(1) If λ ∈ [0,+∞), then (z∞ + λh)|B′1 ≥ 0 and Γ(L2(B1))- limj Gj =

G
(1)
∞ , where

G (1)
∞ (z) :=



ˆ
B1

|∇z|2dx− 3

2

ˆ
∂B1

z2
∞ dHn

−4λ

ˆ
B′1

z
∂h

∂xn+1
(x̂, 0+) dx′ if z ∈ B

(1)
∞ ,

+∞ if z ∈ L2(B1) \B
(1)
∞ ,

where

B(1)
∞ :=

{
z ∈ z∞ +H1

0 (B1) : (z + λh)|B′1 ≥ 0
}
.

(2) If λ = +∞ and limj Gj(zj) < +∞, then z∞|B′,−1 = 0 with B′,−1 =

B′1 ∩ {xn ≤ 0} and Γ(L2(B1))- limj Gj = G
(2)
∞ , where

G (2)
∞ (z) :=


ˆ
B1

|∇z|2dx− 3

2

ˆ
∂B1

z2
∞ dHn if z ∈ B

(2)
∞ ,

+∞ if z ∈ L2(B1) \B
(1)
∞ ,

where

B(2)
∞ :=

{
z ∈ z∞ +H1

0 (B1) : z|B′,−1 = 0
}
.

(3) if ϑ = +∞ and limj Gj(zj) = +∞, then Γ(L2(B1))- limj Gj = G
(3)
∞ ,

where G
(3)
∞ ≡ +∞ on the whole L2(B1).
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If limj Gj(zj) < +∞, we show that actually (zj)j∈N converges strongly
to z∞ in H1(B1). The equi-coercivity of (Gj)j∈N established in (3.34), the
Poincarè inequality and the condition ‖zj‖2H1 = 1 in (3.32) imply the exis-

tence of an absolute minimizer ζj of Gj on L2 with fixed i ∈ {1, 2}. Next
note that by (3.31) zj is an almost minimizer of Gj , in the following sense:

0 ≤ Gj(zj)− Gj(ζj) ≤ κj Gj(zj) ≤ κj · sup
j

Gj(zj).

Hence, recalling that we have assumed the existence of the limit G (zj), we
can apply Lemma 3.4.5 to infer that z∞ is the unique (due to the strict

convexity of G
(i)
∞ ) minimizers of G

(i)
∞ for i = 1, 2. In particular, using the

strong convergence of the traces in L2(∂B+
1 ) we infer thatˆ

B1

|∇zj |2 dx→
ˆ
B1

|∇ζ∞|2 dx,

in turn implying the strong convergence of (zj)j∈N to z∞ in H1(B1).
3.4.7. Characterization of z∞ in case (1). We recall what we have achieved

so far about z∞, namely

(i) ‖z∞‖H1 = 1,
(ii) z∞ is 3/2-homogeneous and even with respect to xn+1 = 0,

(iii) z∞ is the unique minimizer of G
(1)
∞ with respect to its own boundary

conditions,

(iv) z∞ ∈ B
(1)
∞ , i.e. z∞ + λh ≥ 0 on B′1.

As an easy consequence of the properties above, we show now that

w∞ := z∞ + λh

is a solution of the Signorini problem. To show this claim, for every z ∈ B
(1)
∞

we set w := z + ϑh and by means of (3.25) we write

G (1)
∞ (z) =

ˆ
B1

|∇w|2dx− ϑ2

ˆ
B1

|∇h|2dx− 3

2

ˆ
∂B1

z2
∞ dHn

− 2λ

ˆ
B1

∇z · ∇h dx− 4λ

ˆ
B′1

z
∂h

∂xn
(x̂, 0+) dx′

(3.25)
=

ˆ
B1

|∇w|2dx− λ2

ˆ
B1

|∇h|2dx− 3

2

ˆ
∂B1

z2
∞ dHn

− 3ϑ

ˆ
∂B1

z∞ h dHn.

Therefore, since z∞ is the unique minimizer of G
(1)
∞ and w∞ ≥ 0 on B′1, it

follows from the previous computation that w∞ is a solution of the Signorini
problem. Using now the 3/2-homogeneity of w∞ and the classification of
global solutions of the thin obstacle problem with such homogeneity, we
deduce that w∞, and hence z∞, belongs to H3/2. This is a contradiction
because zj → z∞ ∈H3/2 but distH1(zj ,H3/2) = 1.
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3.4.8. Discussion of case (3). The heuristic idea to rule out case (3) is
to correct the scaling of the energies in order to get a non-trivial Γ-limit for
the rescaled functionals.

More in details, we start recalling that by (3.36) if limj Gj(zj) = +∞,
then

γj := −4λj

ˆ
B′1

zj
∂h

∂xn+1
(x̂, 0+) dx′ ↑ +∞. (3.39)

Further, the convergence zj → z∞ in L2(B′1) and (3.33) yield

lim
j

γj
λj

= −4 lim
j

ˆ
B′1

zj
∂h

∂xn
(x̂, 0+) dx′

= −4

ˆ
B′1

z∞
∂h

∂xn
(x̂, 0+) dx′ ∈ [0,+∞),

so that

λj γ
−1/2
j →↑ +∞. (3.40)

It is then immediate to deduce that the right rescaling of the functionals
Gj is obtained by dividing by a factor γ−1

j : namely, for every z ∈ Bj we

consider γ−1
j Gj(z) and notice that

γ−1
j Gj(z) = G̃j

(
γ
−1/2
j z

)
, (3.41)

where the functional G̃j is given by

G̃j(w) :=


ˆ
B1

|∇w|2dx− 3

2

ˆ
∂B1

w2 dHn − 4
λj

γ
1/2
j

ˆ
B′1

w
∂h

∂xn
(x̂, 0+) dHn

if w ∈ B̃j ,

+∞ otherwise,

(3.42)
where

B̃j :=
{
w ∈ γ−1/2

j zj +H1
0 (B1) :

(
w + λj γ

−1/2
j h

)
|B′1 ≥ 0

}
. (3.43)

Setting z̃j := γ
−1/2
j zj , by (3.32) and γj ↑ +∞ we get z̃j → 0 in H1(B1).

In addition, (3.41) and the very definition of γj in (3.39) imply that

G̃j(z̃j) = 1 +O(γ−1
j ). (3.44)

Furthermore, (3.31) rewrites as

(1− κj)G̃j(z̃j) ≤ G̃j(z̃) for all z̃ ∈ B̃j .

In particular, by taking into account (3.40), z̃j → 0 in H1(B1) and (3.44),

namely limj G̃j(z̃j) < +∞, we can argue exactly as in case (2) to deduce
that

Γ(L2(B1))- lim
j

G̃j = G̃∞
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with

G̃∞(z̃) :=


ˆ
B1

|∇z̃|2dx if z̃ ∈ B̃∞,

+∞ otherwise,

where B̃∞ := {z̃ ∈ H1
0 (B1) : z̃|B′,−1 = 0}.

By the convergence z̃j → 0 in H1(B1), the null function turns out to be

the unique minimizer of G̃∞ and limj G̃j(z̃j) = G̃∞(0) = 0, thus leading to a
contradiction to (3.44).

3.4.9. Characterization of z∞ in case (2). To this aim, as already pointed
out, we need to investigate more closely the properties of the limit z∞. From
now on we assume that we are in the setting of case (2): i.e. λ = +∞ and
limj Gj(zj) < +∞.

We exploit the fact that ψj is a point of minimal distance of cj from
H3/2 to deduce that z∞ is orthogonal to the tangent space ThH3/2. We start
noticing that λ = +∞ implies that λj > 0 for all j large enough. Moreover,
by the minimal distance condition (3.23) we infer that, for all ν ∈ Sn−1 and
λ ≥ 0,

‖zj‖H1 ≤ ‖ψj − λhν + zj‖H1 ,

or, equivalently,

− ‖ψj − λhν‖2H1(B1) ≤ 2〈zj , ψj − λhν〉. (3.45)

Therefore, assuming (λj , en) 6= (λ, ν) and renormalizing (3.45), we get

−‖ψj − λhν‖H1 ≤ 2〈zj ,
ψj − λhν

‖ψj − λhν‖H1

〉,

and by taking the limit (λ, ν)→ (λj , en−1) we conclude

〈zj , ζ〉 = 0 for all ζ ∈ TψjH3/2 = ThH3/2, (3.46)

where

ThH3/2 = {αh+ ven,ξ : ξ · en+1 = ξ · en = 0, α ∈ R} , (3.47)

where we have set

ve,ξ(x) := (x̂ · ξ)
√√

(x̂ · e)2 + x2
n+1 + x̂ · e (3.48)

Note moreover that

ve,ξ(x) =
√

2 (x̂ · ξ) Re
[
(x̂ · e+ i xn+1)

1/2
]
,

where the determination of the complex square root is chosen in such a way
that ve,ξ ≥ 0 in {xn+1 = 0}.

Now letting j ↑ ∞ in the equality above we get that

〈z∞, ζ〉 = 0 for all ζ ∈ ThH3/2. (3.49)

A consequence of Let z∞ : Rn+1 → R satisfy the following:
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(a) z∞ solves the boundary value problem{
∆z∞ = 0 in B1 \ {xn ≤ 0},
z∞ = 0 on B′,−1 ;

(3.50)

(b) z∞(x′, xn+1) = z∞(x′,−xn+1) for every (x′, xn+1) ∈ B1;
(c) z∞ is 3/2-homogeneous,

is that

z∞(x) = a0 h(x) +

(
n−1∑
i=1

ai xi

)√√
x2
n + x2

n+1 + xn, (3.51)

for some a0, . . . , an−1 ∈ R, i.e. z∞ ∈ ThH3/2 (cp. (3.47)). The proof is left
as an exercise.

We finally reach a contradiction: since z∞ has the form in (3.53), we can
choose h as test function in (??) to deduce a0 = 0. Then take ζ = ven−1,ξ

(cp. (3.48)) to deduce a1 = . . . = an−2 = 0 by the arbitrariness of ξ ∈ Sn−1

with ξ · en = ξ · en−1 = 0.
Therefore, z∞ is the null function, contradicting the strong convergence

1 = ‖zj‖ → ‖z∞‖.
3.4.10. Proof of the Γ-convergence. We refer to the paper [8].

3.5. Exercises.

Exercise 3.5.1. Let z∞ : Rn+1 → R satisfy the following:

(a) z∞ solves the boundary value problem{
∆z∞ = 0 in B1 \ {xn ≤ 0},
z∞ = 0 on B′,−1 ;

(3.52)

(b) z∞(x′, xn+1) = z∞(x′,−xn+1) for every (x′, xn+1) ∈ B1;
(c) z∞ is 3/2-homogeneous.

Then,

z∞(x) = a0 h(x) +

(
n−1∑
i=1

ai xi

)√√
x2
n + x2

n+1 + xn, (3.53)

for some a0, . . . , an−1 ∈ R.

Hint. Follow the three steps:

(I) to show the Hölder regularity of z∞ and of all its transversal deriva-
tives in the sense of distributions

vα :=
∂α1

∂xα1
1

· · · ∂
αn−1z∞

∂x
αn−1

n−1

with α = (α1, . . . , αn−1) ∈ Nn−2;

(II) the use of a bidimensional conformal transformation in the variable
(xn, xn+1) to reduce the problem to the upper half ball B+

1 ;
(III) the classification of all 3/2-homogeneous solutions.
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4. The free boundary: the singular points

In this chapter we investigate the structure of another class of free bound-
ary points, the singular points.

Definition 4.0.1. Let u ∈ H1(B1) be a solution to the thin obstacle
problem. A point of the free boundary x0 ∈ Γ(u) is called singular it the
coincidence set Λ(u) has Lebesgue density zero at x0:

lim
r→0+

Hn(Λ(u) ∩B′r(x0))

rn
= 0.

4.1. Frequency characterization. The singular points are also char-
acterize by the value of their frequency.

Lemma 4.1.1. A point of the free boundary x0 is singular if and only if
its frequency equals 2m for some m ∈ N \ {0}.

Proof. We start showing that if x0 ∈ Γ(u) is a singular point, then its
frequency is an even natural number. Without loss of generality, assume
that x0 = 0 and consider the blowup rescalings

ur(y) :=
rn/2u(r y)´

∂Br(x0) u
2dHn

.

Let u0 be any blowup of u at 0. We claim that u0 is a harmonic function.
Indeed, consider the Signorini boundary condition for the rescaled solution
ur:

∆ur := 2 ∂n+1urHn Λ(ur).

We note next that by definition of singular point we have that

lim
r→0+

Hn
(
Λ(ur) ∩B′1

)
= lim

r→0+

Hn(Λ(u) ∩B′r(x0))

rn
= 0,

which implies that Hn Λ(ur) converges to zero as a measure in B′1. More-
over, since ur converges C1(B1 + ∪B′1) to u0, we also infer that

∆ur = 2 ∂n+1urHn Λ(ur)⇀
∗ 2 ∂n+1u0Hn Λ(u0) = ∆u0,

as measure, thus proving that u0 is harmonic in B1 and therefore, by its
homogeneity, u0 is harmonic in the entire space. A homogeneous (hence with
polynomial growth) harmonic function is by Liouville theorem a polynom,
and therefore its homogeneity equals an integer k ∈ N. Finally, considering
that u0 is positive on Rn × {0} and even symmetric with respect to xn+1,
one easily infers that the degree of u0 is indeed even (cf. Exercise 4.4.1).

For the reverse implication, let 0 be a point of the free boundary with
frequency 2m for some m ∈ N \ {0}, and let u0 be any blowup of u at 0. We
claim that u0 is indeed a harmonic polynom. To this aim, we consider the
harmonic polynoms

pl(x) := <
[
(xl + ixn+1)2m] l = 1, . . . , n,
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and we consider a radial cut-off functions ψ(x) := ϕ(|x|) with ψ ∈ C∞c (B1).
Recalling that ∆u0 = 2∂n+1u0Hn Λ(u0) we can test as follows:

2

ˆ
Λ(u0)

∂n+1u0 ψ pl dx
′ = −

ˆ
B1

∇u0 · ∇
(
ψ pl

)
dx

= −
ˆ
B1

pl∇u0 · ∇ψ dx−
ˆ
B1

ψ∇u0 · ∇pl dx

=

ˆ
B1

(
− pl∇u0 · ∇ψ + u0∇ψ · ∇pl

)
dx, (4.1)

where we used in (4.1) that ∆pl = 0. We consider next that ∇ψ(x) =
ϕ′(|x|) x

|x| and infer that

2

ˆ
Λ(u0)

∂n+1u0 ψ pl dx
′ =

ˆ
B1

ϕ′(|x|)
(
−pl∇u0 ·

x

|x|
+ u0∇pl ·

x

|x|

)
dx

=

ˆ
B1

ϕ′(|x|)
|x|

ϕ′(|x|) (−2mpl u0 + 2mu0 pl) dx = 0,

(4.2)

where we also used the homogeneity of u0 and pl to infer that

∇pl · x = 2mpl and ∇u0 · x = 2mu0.

Summing now the equations (4.2) for l = 1, . . . , n and setting P :=
∑n

l=1 pl,
we infer that ˆ

Λ(u0)
∂n+1u0 ψ P dx′ = 0. (4.3)

Since P (x) > 0 for every x 6= 0 and ∂n+1u0 ≤ 0, it follow from (4.3) that
∂n+1u0 ≡ 0, i.e. ∆u0 = 0.

In particular, u0 is a harmonic polynom of degree 2m: this implies that

Hn
(
Λ(u0) ∩B1

)
= 0,

(cp. Exercise 4.4.2). From the uniform convergence of ur to u0 we infer that

lim sup
r→0+

Λ(ur) := ∩r>0 ∪0<s<r Λ(ur) ⊂ Λ(u0),

and therefore

lim
r→0+

Hn(Λ(u) ∩B′r(x0))

rn
= lim

r→0+
Hn
(
Λ(ur) ∩B′1

)
= Hn

(
Λ(u0) ∩B′1

)
= 0,

i.e. 0 is a singular point. �

4.2. Uniqueness of blowups. In this section we show that the blowup
at any singular point is unique. This is a consequence of the following
monotonicity formula of Monneau-type (see [12]).

Proposition 4.2.1. Let u ∈ H1(B1) be a solution to the thin obstacle
problem and let x0 ∈ Γ(u) be a singular point with frequency 2m for some
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m ∈ N \ {0}. Then, for every homogeneous harmonic polynom of degree 2m
with

p(x′, 0) ≥ 0 and p(x′, xn+1) = p(x′,−xn+1),

the function

r 7→Mu(x0, r, p) :=
1

rn+4m

ˆ
∂Br(x0)

(u− p)2 dHn

is monotone nondecreasing for r ∈
(
0, dist(x0, ∂B1)

)
Proof. Without loss of generality we assume that x0 = 0 and compute

the derivative of M(r) := Mu(x0, r, p): set for simplicity w := u− p,

M ′(r) =
d

dr

(
1

r4m

ˆ
∂B1

w2(ry) dHn(y)

)
= − 4m

r4m+1

ˆ
∂B1

w2(ry) dHn(y) +
2

r4m

ˆ
∂B1

w(ry) ∂νw(ry) dHn(y)

= − 4m

rn+4m+1

ˆ
∂Br

w2 dHn +
2

rn+4m

ˆ
∂Br

w ∂νw dHn

= − 4m

rn+4m+1

ˆ
∂Br

w2 dHn +
2

rn+4m

ˆ
Br

|∇w|2 dx

+
2

rn+4m

ˆ
Br

w∆w dx. (4.4)

We notice next that

w∆w = (u− p) ∆(u− p) = −p∆u = −p ∂n+1uHn Λ(u) ≥ 0.

Moreover,

ˆ
Br

|∇w|2 dx =

ˆ
Br

|∇u|2 dx+

ˆ
Br

|∇p|2 dx+ 2

ˆ
Br

∇u · ∇pdx

=

ˆ
Br

|∇u|2 dx+

ˆ
Br

|∇p|2 dx− 2

ˆ
Br

u∆p dx

+ 2

ˆ
∂Br

u ∂np dHn

=

ˆ
Br

|∇u|2 dx+

ˆ
Br

|∇p|2 dx+
4m

r

ˆ
∂Br

u pdHn,

where we use the homogeneity of p:

∇p · x
|x|

=
2m

|x|
p.
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Therefore, we derive from (4.4)

M ′(r) =
2

rn+4m

ˆ
Br

|∇u|2 dx− 4m

rn+4m+1

ˆ
∂Br

u2 dHn

+
2

rn+4m

ˆ
Br

|∇p|2 dx− 4m

rn+4m+1

ˆ
∂Br

u2 dHn

=
2

rn+4m

ˆ
Br

|∇u|2 dx− 4m

rn+4m+1

ˆ
∂Br

u2 dHn ≥ 0,

where we used that

Iu(r) =
r
´
Br
|∇u|2 dx´
∂Br

u2
≥ Iu(0+) = 2m ≡ Ip(r) =

r
´
Br
|∇p|2 dx´
∂Br

p2
.

�

A simple corollary is now the uniqueness of the blowup.

Corollary 4.2.2. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then, for every singular point x0 of the free boundary there exists a
unique blowup ux0.

Proof. Without loss of generality let x0 = 0 be a singular point. As-
sume by contradiction that there are two sequences of radii (ri)i∈N and
(si)i∈N such that

lim
i
uri = p1 6= p2 = lim

i
usi .

Then, since p1 is an admissible polynom for the Monneau-type monotonicity,
we can consider M(r) := Mu(0, r, p1). Note that

lim
ri→0+

M(ri) = 0 < lim
ri→0+

M(ri) =

ˆ
∂B1

(p2 − p1)2dHn = lim
si→0+

M(si),

against the monotonicity of M . �

Another consequence of the Monneau-type monotonicity is the following
nondegeneracy.

Proposition 4.2.3. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then, for every singular point x0 of the free boundary with frequency
2m we have that

H(x0, r) ≥ C rn+4m ∀ r ∈
(
0, dist(x0, ∂B1)

)
. (4.5)

Proof. Without loss of generality we assume that x0 = 0 and we argue
by contradiction: there is a sequence of radii rk ↓ 0 such that

H(rk)

rn+4m
k

→ 0.
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Let u0 be the blowup of u at 0. Then,

Mu(0, r, u0) =
1

rn+4m

ˆ
∂Br

(u− u0)2 dHn =
H(r)

rn+4m
+

1

rn+4m

ˆ
∂Br

u2
0 dHn

− 2

rn+4m

ˆ
∂Br

uu0 dHn.

Therefore,

lim
k→+∞

Mu(0, rk, u
0) =

ˆ
∂B1

u2
0 dHn.

In particular, by the monotonicity of the Monneau-type formula, we have
that Mu(0, r, u0) ≥

´
∂B1

u2
0 dHn for all r > 0, which reads as

0 ≤ 1

rn+4m

ˆ
∂Br

(
u2 − 2uu0

)
dHn

=
1

r4m

ˆ
∂B1

(
u2(ry)− 2u(ry)u0(ry)

)
dHn(y)

=
1

r4m

ˆ
∂B1

(
u2(ry)− 2 r2m u(ry)u0(y)

)
dHn(y)

=

ˆ
∂B1

( H(r)

rn+4m
u2
r − 2

H1/2(r)

rn/2+2m
ur u0

)
dHn(y).

where we used that

ur(y) =
rn/2u(ry)

H1/2(r)
.

Dividing by r−n/2−2mh(r)1/2 and taking the limit along the sequence rk → 0+

we infer that

−2

ˆ
∂B1

u2
0 dHn ≥ 0,

which gives the desired contradiction. �

In particular, for every singular point x0 with frequency 2m, one can
also consider these new rescalings

ũx0,r(y) :=
u(x0 + ry)

rm
.

As a corollary of Proposition 4.2.3 we get the following.

Corollary 4.2.4. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then, for every singular point x0 of the free boundary with frequency
2m there exists a harmonic polynom qx0 of degree 2m which is the unique
limit as r → 0+ of the rescalings ũx0,r.

Proof. From Corollary 2.3.3 and Proposition 4.2.3 the rescalings ũx0,r(y)
have equibounded L2 norms at the boundary which are uniformly away from
zero. Therefore, the conclusion follows from the compactness (implied for
example by Theorem 2.5.1) and Monneau monotonicity formula. �
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4.3. Stratification of singular points. In this section we prove a
stratification for the singular part of the free boundary following [12]. The
key ingredients is the following uniform estimate. For simplicity we denote
by Γ2m the set of singular free boundary points with frequency 2m.

Proposition 4.3.1. Let u ∈ H1(B1) be a solution to the Signorini prob-
lem. Then, the map Γ2m 3 x0 7→ qx0 ∈ L2(∂B1) is continuous and for every
compact subset K ⊂ B′1 there exists a modulus of continuity σK such that∣∣u(x)− qx0(x− x0)

∣∣ ≤ σK(|x− x0|) |x− x0|2m (4.6)

∀ x0 ∈ Γ2m ∩K, ∀ x ∈ B1.

Proof. For every x0 ∈ Γ2m ∩ K and for every ε > 0, there exists
rx0,ε > 0 such that ∥∥ũx0,r − qx0∥∥L2(∂B1)

≤ ε ∀ r ≤ rx0,ε.

In particular, by continuity we deduce that there exists δx0,ε > 0 such that∥∥ũy0,rx0,ε − qx0∥∥L2(∂B1)
≤ ε ∀ y0 ∈ Γ2m ∩Bδx0,ε .

Using Monneau’s monotonicity formula, we infer that∥∥ũy0,r − qx0∥∥L2(∂B1)
≤ ε ∀ r ≤ rx0,ε,∀ y0 ∈ Γ2m ∩Bδx0,ε .

and hence ‖qy0 − qx0‖L2(∂B1) ≤ ε, thus proving the first claim of the propo-
sition.

Now, covering the compact setK∩Γ2m with finitely many ballsBδx0,ε(x0),

we infer that (set r̄ε := minx0 rx0,ε)∥∥ũy0,r − qy0∥∥L2(∂B1)
≤ ε ∀ r ≤ r̄ε,∀ y0 ∈ Γ2m ∩K.

Finally, we notice that, since ũy0,r are solution to the Signorini problem,
then (ũy0,r)

± are subharmonic function (cp. Exercise 2.6.1). Therefore, we
can use the usual L∞ estimate for subharmonic functions to conclude that∥∥ũy0,r − qy0∥∥L∞(B1/2)

≤ C
∥∥ũy0,r − qy0∥∥L2(∂B1)

≤ C ε,

∀ r ≤ r̄ε,∀ y0 ∈ Γ2m ∩K. From the arbitrariness of ε, one easily concludes
(4.6). �

Next we introduce the notion of invariant space for harmonic polynomi-
als which are nonnegative on B′1, even symmetric with respect to xn+1 and
of degree 2m:

S(p) :=
{
y ∈ Rn × {0} : p(x+ y) = p(x) ∀ x ∈ Rn+1

}
.

It is easy to verify that, for every polynom p 6= 0 as above dim(S(p)) ≤ n−1
(cp. Exercise 4.4.3)

The main result is now the following (cp. [12]).
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Theorem 4.3.2. Let u ∈ H1(B1) be a solution to the Signorini problem.
Then, for every m ∈ N and for every k ∈ {0, . . . , n− 1} the set

Γ
(k)
2m :=

{
x0 ∈ Γ2m : dim(S(qx0)) = k

}
is locally a subset of a C1 regular submanifold of dimension k.

Proof. 1. We consider the sets Al of all points x0 ∈ Γ2m ∩B1−1/l such
that

r2m

l
≤ max
|x−x0|=r

u(r) ≤ l r2m ∀ r ∈ (0, 1− |x0|). (4.7)

In particular, by Proposition 4.2.3 (and Corollary 2.3.3) we have that Γ2m =
∪l≥1Al. Moreover, the sets Al are closed: indeed, if Al 3 xk → x0, then
(4.7) holds for x0 too, by upper semicontinuity λ(x0) ≥ 2m and actually the
equality holds because by Corollary 2.3.3 we have that λ(x0) > 2m implies

|u(x)| ≤ c|x− x0|λ(x0) against (4.7).

2. Whitney data. We fix now a given l ≥ 1. We show that the functions
fα : Al → R,

fα(x) := Dαqx(0), |α| ≤ 2m, ∀ x ∈ Al,
are set of Whitney data, i.e.{∣∣∣fα(x)−

∑
|β|≤2m−|α|

fα+β(y)
β! (x− y)β

∣∣∣ = o
(
|x− y|2m−|α|

)
for x, y ∈ Al, as |x− y| → 0.

(4.8)

The case |α| = 2m follows from the continuity of the blowups in Proposi-
tion 4.3.1: indeed, in this case we have

|fα(x)− fα(y)| = |Dαpx(0)−Dαpy(0)| ≤ C‖px − py‖L∞(B1) = o(|x− y|).
On the other hand, if |α| < 2m, noting that fγ ≡ 0 for |γ| < 2m, we need
to show that∣∣∣∣∣∣

∑
|β|=2m−|α|

fα+β(y)

β!
(x− y)β

∣∣∣∣∣∣ = |Dαqy(x− y)| = o
(
|x− y|2m−|α|

)
.

Assuming this is not the case, there exist points xj , yj ∈ Al with |xj−yj | =:
rj → 0 such that

|Dαqyj (xj − yj)| ≥ δ |xj − yj |2m−|α|,
for some δ > 0. Up to passing to a subsequence, we can assume that
yj → y0 ∈ Al, (xi − yi)/ri → z0; therefore we obtain

|Dαqy0(z0)| ≥ δ. (4.9)

Consider now the rescalings: vj(x) := r−2m
i u(yi + rix). Note that, from

(4.6) we have that ‖vj − qyj‖L∞(B1) = o(1) and therefore vj → qy0 locally
uniformly. Moreover, since xj ∈ Al, i.e.

r2m

l
≤ sup
|x−xj |=r

u(x) ≤ l r2m ∀ 0 < r < 1− 1

l
,
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we infer that
r2m

l
≤ sup
|x−z0|=r

qy0(x) ≤ l r2m ∀ r > 0.

In particular, qy0 is a homogeneous polynom of degree 2m around z0, thus
contradicting (4.9) since |α| < 2m.

3. Whitney extension theorem. We can now apply the extension theorem
by Whitney [22] to infer that there exists a function g ∈ C2m(Rn+1) such
that

Dαg(x) = fα(x) ∀ x ∈ Al.
In particular, Al ⊂ {g = 0}.

4. To conclude the proof, we notice that for every point x0 ∈ Γ
(k)
2m

we have that the blowup qx0 is a polynom of degree 2m depending only
on n + 1 − k variables, say qx0(y1, . . . , yn+1−k, 0, . . . , 0) with co-ordinates
x = (y1, . . . , yn+1−k, 0, . . . , 0) ∈ Rn+1. This means that there exists a multi-
index β ∈ Nn+1 with |β| = 2m such that

β = (β1, . . . , βn+1−k, 0, . . . , 0) and βi 6= 0 ∀ i = 1, . . . , n+ 1− k.
Consider the multi-indexes αi := (β1, . . . , βi − 1, . . . , βn+1−k, 0, . . . , 0) and
the functions Fi(x) := Dαig(x) for i = 1, . . . , n+ 1− k. Then, the function
F : Rn+1 → Rn−k given by F (x) :=

(
F1(x), . . . , Fn+1−k(x)

)
has Jacobian

DyF (x0) =
(
∂Fi
∂yj

(x0)
)
i,j=1,...,n+1−k invertible. Note that F (x0) = 0; there-

fore, by the implicit function theorem there is a neighborhood U of x0 such
that {F = 0} ∩ U is a C1-regular submanifold. Recalling that F (x) = 0 for
every point x ∈ Γ2m, we conclude the proof. �

4.4. Exercise.

Exercise 4.4.1. Let p be a harmonic polynom in Rn+1, homogeneous
of degree k ∈ N, with

p(x′, 0) ≥ 0 and p(x′, xn+1) = p(x′,−xn+1).

Show that k = 2m for some m ∈ N.

Exercise 4.4.2. Let p be a nontrivial harmonic polynom in Rn+1, ho-
mogeneous of degree 2m ∈ N, with

p(x′, 0) ≥ 0 and p(x′, xn+1) = p(x′,−xn+1).

Show that
Hn
(
Λ(u0) ∩B1

)
= 0,

Exercise 4.4.3. Let p be a nontrivial harmonic polynom of degree 2m,
which is nonnegative on B′1 and even symmetric with respect to xn+1. Show
that dim(S(p)) ≤ n− 1.
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