# A Variational Approach to the Regularity of the Fractional Obstacle Problem 

Draft vi.June2017<br>Emanuele Spadaro


#### Abstract

This are lecture notes for the course A variational approach to the regularity of the fractional obstacle problem that I taught at the , held in Warwick, June 10th - 16th 2017.


## Contents

1. Introduction ..... 2
1.1. The fractional Laplacian and its obstacle problem ..... 2
1.2. The local version: the lower dimensional obstacle problem ..... 2
1.3. The scalar Signorini problem ..... 3
2. Optimal regularity of the solutions ..... 4
2.1. $W^{2,2}$-theory: penalization method ..... 4
2.2. $\quad C^{1, \alpha}$-regularity: hole-filling technique ..... 8
2.3. Almgren's frequency function ..... 10
2.4. Alt-Caffarelli-Friedman's monotonicity formula ..... 12
2.5. Optimal regularity: $C^{1,1 / 2}$ ..... 16
2.6. Exercises ..... 17
3. The free boundary: the regular points ..... 18
3.1. The regular part of the free boundary ..... 18
3.2. The epiperimetric inequality ..... 18
3.3. Regularity of the free boundary ..... 20
3.4. Proof of the epiperimetric inequality ..... 24
3.5. Exercises ..... 32
4. The free boundary: the singular points ..... 33
4.1. Frequency characterization ..... 33
4.2. Uniqueness of blowups ..... 34
4.3. Stratification of singular points ..... 38
4.4. Exercise ..... 40
References ..... 41

## 1. Introduction

1.1. The fractional Laplacian and its obstacle problem. We define the fractional Laplacian as follows: let $s \in(0,1)$ be a fixed constant and, for every $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\int_{\mathbb{R}^{n}} \frac{|u(x)|}{(1+|x|)^{n+2 s}} \mathrm{~d} x<+\infty
$$

we set

$$
\begin{align*}
(-\Delta)^{s} f(x) & :=c(n, s) \mathrm{PV} \int_{\mathbb{R}^{n}} \frac{f(x)-f(y)}{|y|^{n+2 s}} \mathrm{~d} y \\
& =c(n, s) \mathrm{PV} \lim _{\varepsilon \rightarrow 0+} \int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \frac{f(x)-f(y)}{|y|^{n+2 s}} \mathrm{~d} y \tag{1.1}
\end{align*}
$$

where the constant $c(n, s)>0$ is given by

$$
c(n, s):=\left(\int_{\mathbb{R}^{n}} \frac{1-\cos \left(y_{1}\right)}{|y|^{n+2 s}} \mathrm{~d} y\right)^{-1}
$$

The fractional obstacle problem is then the following: let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function, we look at a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\min \left\{f-\phi,(-\Delta)^{s} f(x)\right\}=0 \quad \text { in } \mathbb{R}^{n}  \tag{1.2}\\
\lim _{|x| \rightarrow+\infty} f(x)=0
\end{array}\right.
$$

1.2. The local version: the lower dimensional obstacle problem. Although the fractional Laplacian is a non-local operator, one can use the so called extension method to write it a local operator in a space with one extra variable. More precisely, let us consider the half space $\mathbb{R}_{+}^{n+1}:=\{x \in$ $\left.\mathbb{R}^{n+1}: x_{n+1}>0\right\}$ and the (degenerate) elliptic boundary value problem

$$
\begin{cases}\operatorname{div}\left(x_{n+1}^{a} \nabla u(x)\right)=0 & \text { in } \mathbb{R}_{+}^{n+1}  \tag{1.3}\\ u\left(x^{\prime}, 0\right)=f\left(x^{\prime}\right) & \forall x^{\prime} \in \mathbb{R}^{n} \times\{0\}\end{cases}
$$

where $a:=1-2 s \in(-1,1)$.
Lemma 1.2.1 (Caffarelli-Silvestre [5]). There exists a dimensional constant $C>0$ such that, for every $f \in$, we have

$$
\begin{equation*}
(-\Delta)^{s} f\left(x^{\prime}\right)=C \lim _{x_{n+1} \downarrow 0^{+}} x_{n+1}^{a} \frac{\partial u}{\partial x_{n+1}}\left(x^{\prime}, x_{n+1}\right) \tag{1.4}
\end{equation*}
$$

Proof.
Without loss of generality, we can consider the functions $u$ extended to the whole $\mathbb{R}^{n+1}$ evenly:

$$
u\left(x^{\prime}, x_{n+1}\right)=u\left(x^{\prime},-x_{n+1}\right) \quad \forall x=\left(x^{\prime}, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R}
$$

Eq. (1.3) is the Euler-Lagrange equation of the functional

$$
\int_{\mathbb{R}_{+}^{n+1}}|\nabla u(x)|^{2} x_{n+1}^{a} \mathrm{~d} x
$$

In particular, the function $u$ can be found as the the minimizer of the above energy with constraint $u\left(x^{\prime}, 0\right)=f\left(x^{\prime}\right)$.
1.3. The scalar Signorini problem. As far as the local regularity of the solution to the fractional obstacle problem is concerned, we can look at the function $u$ which is a minimizer (actually the unique minimizer) with respect to its own boundary conditions of the weighted Dirichlet energy

$$
\begin{equation*}
\min \int_{B_{R}}|\nabla u(x)|^{2}\left|x_{n+1}\right|^{a} \mathrm{~d} x \quad: \quad u\left(x^{\prime}, 0\right) \geq \phi\left(x^{\prime}\right) \tag{1.5}
\end{equation*}
$$

Such problem is sometimes called the lower dimensional obstacle problem, because the constraint $u\left(x^{\prime}, 0\right) \geq \phi\left(x^{\prime}\right)$ is given on a low dimensional submanifold.

The above problem also arises in elasticity theory and in the case of $s=\frac{1}{2}(i . e . a=0)$ it is called the scalar Signorini problem.

In this perspective, one is also led to consider the simplest version of such a problem, namely the case of zero obstacle $\phi \equiv 0$ and boundary value $\left.u\right|_{\partial B_{r}}=g$ with $g \geq 0$ on $\partial B_{R} \cap\left\{x_{n+1}=0\right\}$. This is the problem we consider: given any boundary value $g \in H^{1}(B)$ even symmetric with respect to $x_{n+1}$ and with $\left.g\right|_{B_{1}^{\prime}}>0$, we consider the minimization problem

$$
\begin{equation*}
\min _{u \in \mathcal{A}_{g}} \int_{B}|\nabla u(x)|^{2} \mathrm{~d} x, \tag{1.6}
\end{equation*}
$$

where

$$
\mathcal{A}_{g}:=\left\{v \in g+H_{0}^{1}\left(B_{1}\right):\left.v\right|_{B_{1}^{\prime}} \geq 0, v\left(x^{\prime}, x_{n+1}\right)=v\left(x^{\prime},-x_{n+1}\right)\right\} .
$$

It follows from the direct method in the calculus of variations and from the convexity of the energy that there exists a unique minimizer to the Signorini problem (1.6) and that it is even symmetric with respect to $x_{n+1}$.

The main questions concerning the solutions to the thin obstacle problem we would like to address are those regarding the regularity. In this regard, we need to distinguish between two kind of regularity:
(a) the regularity of the solution $u$ itself; namely, whether for smooth obstacles is the solutions also smooth, or if not which the best regularity we can hope for;
(b) the regularity of the free boundary $\Gamma(u)$, i.e. of the relative boundary of the coincide set $\Lambda(u)$ :

$$
\Lambda(u):=\left\{x^{\prime} \in B_{R}^{\prime}: u\left(x^{\prime}, 0\right)=\phi\left(x^{\prime}\right)\right\}
$$

and

$$
\Gamma(u):=\partial_{\left\{x_{n+1}=0\right\}}\left\{x^{\prime} \in B_{R}^{\prime}: u\left(x^{\prime}, 0\right)=\phi\left(x^{\prime}\right)\right\} .
$$

## 2. Optimal regularity of the solutions

In this chapter we prove the following result.
Theorem 2.0.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the lower dimensional obstacle problem. Then, $u \in C_{\mathrm{loc}}^{1,1 / 2}\left(B_{1}^{+} \cup B_{1}^{\prime}\right)$ and

$$
\|u\|_{C^{1,1 / 2}\left(B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}\right)} \leq C(n)\|u\|_{L^{2}\left(B_{1}\right)}
$$

where $C(n)>0$ is a dimensional constant.
In particular, this gives a precise meaning to the Signorini "ambiguous boundary conditions".

Corollary 2.0.2. Every solution $u$ to the lower dimensional obstacle problem is characterized by the following set of equalities and inequalities:

$$
\begin{cases}\Delta u=0 & \text { in } B_{1}^{+}  \tag{2.1}\\ u \geq 0, \quad-\partial_{n+1} u \geq 0, \quad u \partial_{n+1} u=0 \quad \text { on } B_{1}^{\prime}\end{cases}
$$

where the value of $\partial_{n+1} u$ on $B_{1}^{\prime}$ is well-defined according to the regularity of Theorem 2.0.1.

Remark 2.0.3. The regularity in Theorem 2.0.1 is optimal: in the sense that there exists solutions $u_{0}$ which are not $C^{1, \alpha}$ for any $\alpha>\frac{1}{2}$ : e.g.,

$$
u_{0}(x)=\left(2 x_{1}-\sqrt{x_{1}^{2}+x_{n+1}^{2}}\right) \sqrt{\sqrt{x_{1}^{2}+x_{n+1}^{2}}+x_{1}} .
$$

2.1. $W^{2,2}$-theory: penalization method. We consider a smooth function $\beta: \mathbb{R} \rightarrow \mathbb{R}$ with the following properties:

$$
\beta(t)=0 \quad \forall t \geq 0, \quad \beta^{\prime}(t) \geq 0 \quad \forall t \in \mathbb{R}, \quad \beta^{\prime \prime}(t) \leq 0 \quad \forall t \in \mathbb{R},
$$

and

$$
\beta(t)=2 t+1 \quad \forall t \leq-2 \quad \text { and } \quad|\beta(t)| \leq 2|t| \quad \forall t \in \mathbb{R} .
$$

We set

$$
\beta_{\varepsilon}(t):=\varepsilon^{-1} \beta(t / \varepsilon) .
$$

Then, one can consider the solutions of following boundary value problem

$$
\begin{cases}\Delta u_{\varepsilon}=0 & \text { in } B_{1}^{+}  \tag{2.2}\\ -\partial_{n+1} u_{\varepsilon}+\beta_{\varepsilon}\left(u_{\varepsilon}\right)=0 & \text { in } B_{1}^{\prime} \\ u_{\varepsilon}=g & \text { in }\left(\partial B_{1}\right)^{+}\end{cases}
$$

The weak solutions to (2.2)

$$
\begin{equation*}
\int_{B_{1}^{+}} \nabla u_{\varepsilon} \cdot \nabla \eta \mathrm{d} x=-\int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \eta \mathrm{d} x^{\prime} \quad \forall \eta \in H_{0}^{1}\left(B_{1}\right) \tag{2.3}
\end{equation*}
$$

are the unique minimizer of the following variational problem:

$$
\begin{equation*}
\min _{\left.v \in H^{1}\left(B_{1}\right) v\right|_{\partial B_{1}=g}} \frac{1}{2} \int_{B_{1}^{+}}|\nabla v(x)|^{2} \mathrm{~d} x+\int_{B_{1}^{\prime}} F_{\varepsilon}\left(v\left(x^{\prime}, 0\right)\right) \mathrm{d} x^{\prime}, \tag{2.4}
\end{equation*}
$$

where $F_{\varepsilon}$ is a primitive of the function $\beta_{\varepsilon}$ :

$$
F_{\varepsilon}(t):= \begin{cases}0 & t \geq 0 \\ -\int_{t}^{0} \beta_{\varepsilon}(s) \mathrm{d} s & t<0\end{cases}
$$

Note that $F_{\varepsilon} \geq 0$ and $F_{\varepsilon}(t) \leq C \varepsilon^{-1}|t|^{2}$ for a dimensional constant $C>0$. It is then simple to verify that the energies in (2.4) are coercive, lower semicontinuous and convex, and therefore there exists a unique minimizer $u_{\varepsilon} \in H^{1}\left(B_{1}^{+}\right)$. Without loss of generality, we can extend it to the whole $B_{1}$ by even reflection.

Moreover, we have the following.
Lemma 2.1.1. Let $g, u, u_{\varepsilon}$ be as above. Then, $u_{\varepsilon}$ converges to $u$ in $L^{2}\left(B_{1}\right)$ and there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{H^{1}(B)} \leq C\|u\|_{H^{1}(B)} \quad \forall \varepsilon>0 . \tag{2.5}
\end{equation*}
$$

Proof. We start noticing that

$$
\begin{aligned}
\frac{1}{2} \int_{B_{1}^{+}}\left|\nabla u_{\varepsilon}(x)\right|^{2} \mathrm{~d} x & \leq \frac{1}{2} \int_{B_{1}^{+}}\left|\nabla u_{\varepsilon}(x)\right|^{2} \mathrm{~d} x+\int_{B^{\prime}} F_{\varepsilon}\left(u_{\varepsilon}\left(x^{\prime}, 0\right)\right) \mathrm{d} x^{\prime} \\
& \leq \frac{1}{2} \int_{B_{1}^{+}}|\nabla u(x)|^{2} \mathrm{~d} x+\int_{B^{\prime}} F_{\varepsilon}\left(u\left(x^{\prime}, 0\right)\right) \mathrm{d} x^{\prime} \\
& =\frac{1}{2} \int_{B_{1}^{+}}|\nabla u(x)|^{2} \mathrm{~d} x .
\end{aligned}
$$

Therefore, we deduce the existence of a constant $C>0$ (depending on $g$ ) such that (2.5) holds.

We test now (2.3) with $\eta:=u_{\varepsilon} \zeta^{2}$ where $\zeta \in C_{c}^{1}(B)$ is a cut-off function: it follows that

$$
\begin{aligned}
\int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) u_{\varepsilon} \zeta^{2} \mathrm{~d} x^{\prime} & =-\int_{B_{1}^{+}} \nabla u_{\varepsilon} \cdot \nabla\left(u_{\varepsilon} \zeta^{2}\right) \mathrm{d} x \\
& \leq \int_{B_{1}^{+}}\left(2\left|\nabla u_{\varepsilon}\right|^{2} \zeta^{2}+4 u_{\varepsilon}^{2}|\nabla \zeta|^{2}\right) \mathrm{d} x \stackrel{(2.5)}{\leq} C,
\end{aligned}
$$

where the constant $C>0$ depends on $u$ and $\zeta$. We therefore deduce that for every $\delta>0$

$$
\mathcal{H}^{n}\left(\left\{u_{\varepsilon}<-\delta\right\} \cap B_{1}^{\prime} \cap\{\zeta=1\}\right)\left|\beta_{\varepsilon}(-\delta)\right| \delta \leq C .
$$

Since $\left|\beta_{\varepsilon}(t)\right| \geq\left|2 \varepsilon^{-2}\right| t\left|+\varepsilon^{-1}\right|$ for $t<-2 \varepsilon$, we deduce that for $2 \varepsilon<\delta$

$$
\mathcal{H}^{n}\left(\left\{u_{\varepsilon}<-\delta\right\} \cap B_{1}^{\prime} \cap\{\zeta=1\}\right) \leq C \frac{\varepsilon^{2}}{\delta|\varepsilon-2 \delta|} .
$$

In particular, any weak limit $w$ of $u_{\varepsilon}$ satisfies $\left.w\right|_{B_{1}^{\prime}} \geq 0$ and

$$
\int_{B_{1}^{+}}|\nabla w(x)|^{2} \mathrm{~d} x \leq \liminf _{\varepsilon \rightarrow 0^{+}} \int_{B_{1}^{+}}\left|\nabla u_{\varepsilon}(x)\right|^{2} \mathrm{~d} x \leq \int_{B_{1}^{+}}|\nabla u(x)|^{2} \mathrm{~d} x
$$

Since $u$ is the unique solution to the Signorini problem, we infer that $w=$ $u$.

Next we show that $u_{\varepsilon}$ are actually uniformly $H_{\text {loc }}^{2}\left(B_{1}\right)$. To this aim we introduce the notation: for $i=1, \ldots, n$ and $h \in \mathbb{R}$,

$$
\tau_{h, i} u(x):=\frac{u\left(x+h e_{i}\right)-u(x)}{h}
$$

Proposition 2.1.2. The solution to the thin obstacle problem $u$ are $H_{\mathrm{loc}}^{2}\left(B_{1}^{+}\right)$and there exists a dimensional constant $C>0$ such that for every $\varepsilon>0$

$$
\begin{equation*}
\int_{B_{r}^{+}\left(x_{0}\right)} \frac{\left|\nabla\left(\partial_{i} u\right)\right|^{2}}{\left|x-x_{0}\right|^{n-1}} \mathrm{~d} x \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\partial_{i} u\right|^{2} \mathrm{~d} x \tag{2.6}
\end{equation*}
$$

for every $x_{0} \in B_{1 / 2}^{\prime}$ and for every $r \in(0,1 / 4)$.
In particular, the Signorini ambiguous boundary conditions in Corollary 2.0.2 are satisfied in the sense of traces.

Proof. Without loss of generality it suffices to consider the case $x_{0}=0$. Let $\zeta \in C_{c}^{1}(B)$ be a test function with

$$
\zeta \equiv 1 \text { in } B_{r}, \zeta \equiv 0 \text { in } B_{1} \backslash B_{2 r} \text { and }|\nabla \zeta| \leq C r^{-1}
$$

and for a small parameter $\delta>0$ let

$$
\Psi(x):=\min \left\{|x|^{1-n}, \delta^{1-n}\right\}
$$

We test (2.3) with $\eta:=\tau_{-h, i}\left(\tau_{h, i} u_{\varepsilon} \Psi \zeta^{2}\right)$ and $i=1, \ldots, n$. In the following we omit to write the index $i$ and use the change of variables at the base of the partial integration for the discrete derivatives

$$
\int\left(\tau_{h} f\right) g \mathrm{~d} x=\int f\left(\tau_{-h} g\right) \mathrm{d} x
$$

and the fact that $\tau_{h}$ and $\nabla$ commute: $\nabla\left(\tau_{h}\right) f=\tau_{h}(\nabla f)$. We have

$$
\begin{align*}
\int_{B_{1}^{+}} \nabla u_{\varepsilon} \cdot \nabla \eta \mathrm{d} x & =\int_{B_{1}^{+}} \nabla\left(\tau_{h} u_{\varepsilon}\right) \cdot \nabla\left(\left(\tau_{h} u_{\varepsilon}\right) \Psi \zeta^{2}\right) \mathrm{d} x \\
& =\int_{B_{1}^{+}}\left|\nabla\left(\tau_{h} u_{\varepsilon}\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x+I+I I \tag{2.7}
\end{align*}
$$

with

$$
\begin{aligned}
I & =\int_{B_{1}^{+}}\left(\tau_{h} u_{\varepsilon}\right) \zeta^{2} \nabla\left(\tau_{h} u_{\varepsilon}\right) \cdot \nabla \Psi \mathrm{d} x \\
I I & =2 \int_{B^{+}}\left(\tau_{h} u_{\varepsilon}\right) \Psi \zeta \nabla\left(\tau_{h} u_{\varepsilon}\right) \cdot \nabla \zeta \mathrm{d} x
\end{aligned}
$$

II can be estimated via Hölder as follows:

$$
|I I| \leq \frac{1}{2} \int_{B_{1}^{+}}\left|\nabla\left(\tau_{h} u_{\varepsilon}\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x+C \int_{B_{1}^{+}}\left(\tau_{h} u_{\varepsilon}\right)^{2}|\nabla \zeta|^{2} \Psi \mathrm{~d} x
$$

For what concerns $I$, we make an integration by parts (we used $\Delta \Psi=0$ in $\left.B-1 \backslash B_{\delta}\right)$ :

$$
\begin{aligned}
I= & \frac{1}{2} \int_{B_{1}^{+} \backslash B_{\delta}} \zeta^{2} \nabla\left(\tau_{h} u_{\varepsilon}\right)^{2} \cdot \nabla \Psi \mathrm{~d} x \\
= & -\int_{B_{1}^{+} \backslash B_{\delta}} \zeta\left(\tau_{h} u_{\varepsilon}\right)^{2} \nabla \Psi \cdot \nabla \zeta \mathrm{~d} x-\frac{1}{2} \int_{B_{1}^{\prime} \backslash B_{\delta}} \zeta^{2}\left(\tau_{h} u_{\varepsilon}\right)^{2} \nabla \Psi \cdot e_{n} \mathrm{~d} x^{\prime} \\
& -\frac{1}{2} \int_{\left(\partial B_{\delta}\right)^{+}} \zeta^{2}\left(\tau_{h} u_{\varepsilon}\right)^{2} \nabla \Psi \cdot \frac{x}{|x|} \mathrm{d} \mathcal{H}^{n}(x) \\
= & -\int_{B_{1}^{+} \backslash B_{\delta}} \zeta\left(\tau_{h} u_{\varepsilon}\right)^{2} \nabla \Psi \cdot \nabla \zeta \mathrm{~d} x-\frac{(1-n)}{2 \delta^{n}} \int_{\left(\partial B_{\delta}\right)^{+}} \zeta^{2}\left(\tau_{h} u_{\varepsilon}\right)^{2} \mathrm{~d} \mathcal{H}^{n}(x) \\
\geq & -\int_{B_{1}^{+} \backslash B_{\delta}} \zeta\left(\tau_{h} u_{\varepsilon}\right)^{2} \nabla \Psi \cdot \nabla \zeta \mathrm{~d} x \geq-\frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}}\left(\tau_{h} u_{\varepsilon}\right)^{2} \mathrm{~d} x .
\end{aligned}
$$

Next we note that

$$
\begin{aligned}
& -\int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \tau_{-h}\left(\tau_{h} u_{\varepsilon}\right) \Psi \zeta^{2} \mathrm{~d} x^{\prime}=-\int_{B_{1}^{\prime}} \tau_{h}\left(\beta_{\varepsilon}\left(u_{\varepsilon}\right)\right)\left(\tau_{h} u_{\varepsilon}\right) \Psi \zeta^{2} \mathrm{~d} x^{\prime} \\
& \quad=-\int_{B^{\prime}} \frac{\beta_{\varepsilon}\left(u_{\varepsilon}\left(x+h e_{i}\right)\right)-\beta_{\varepsilon}\left(u_{\varepsilon}(x)\right)}{h} \frac{u_{\varepsilon}\left(x+h e_{i}\right)-u(x)}{h} \Psi \zeta^{2} \mathrm{~d} x^{\prime} \leq 0
\end{aligned}
$$

In particular, we have derived that

$$
\begin{aligned}
\int_{B_{1}^{+}}\left|\nabla\left(\tau_{h} u_{\varepsilon}\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x & =-I-I I-\int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \tau_{-h}\left(\tau_{h} u_{\varepsilon}\right) \Psi \zeta^{2} \mathrm{~d} x^{\prime} \\
& \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}}\left(\tau_{h} u_{\varepsilon}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{B_{1}^{+}}\left|\nabla\left(\tau_{h} u_{\varepsilon}\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x
\end{aligned}
$$

from which

$$
\int_{B_{1}^{+}}\left|\nabla\left(\tau_{h} u_{\varepsilon}\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}}\left(\tau_{h} u_{\varepsilon}\right)^{2} \mathrm{~d} x
$$

In particular, it follows that $\partial_{i} \partial_{j} u_{\varepsilon}$ exists in $L_{\text {loc }}^{2}\left(B_{1}^{+}\right)$for every $1=1, \ldots, n$ and for every $j=1, \ldots, n+1$, with uniform bounds. In particular, using $\Delta u_{\varepsilon}=0$ in $B_{1}^{+}$, we also infer $\partial_{n+1} \partial_{n+1} u_{\varepsilon} \in L_{\mathrm{loc}}^{2}\left(B_{1}^{+}\right)$.

For what concerns the estimate relative to $\nabla\left(\partial_{n+1} u_{\varepsilon}\right)$, we test the equation (2.3) with $\eta:=\partial_{n+1}\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right)$ :

$$
\begin{aligned}
& -\int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \partial_{n+1}\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x^{\prime}=\int_{B_{1}^{\prime}} \partial_{n+1} u_{\varepsilon} \partial_{n+1}\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x^{\prime} \\
& \quad=\int_{B_{1}^{+}} \nabla u_{\varepsilon} \cdot \nabla\left(\partial_{n+1}\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right)\right) \mathrm{d} x \\
& \quad=-\int_{B_{1}^{+}} \nabla\left(\partial_{n+1} u_{\varepsilon}\right) \cdot \nabla\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x-\int_{B_{1}^{\prime}} \nabla u_{\varepsilon} \cdot \nabla\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x^{\prime}
\end{aligned}
$$

Therefore we deduce that (we denote with $\nabla^{\prime}$ the derivatives in the horizontal directions)

$$
\begin{align*}
\int_{B_{1}^{+}} & \nabla\left(\partial_{n+1} u_{\varepsilon}\right) \cdot \nabla\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x=-\int_{B_{1}^{\prime}} \nabla^{\prime} u_{\varepsilon} \cdot \nabla^{\prime}\left(\partial_{n+1} u_{\varepsilon} \Psi \zeta^{2}\right) \mathrm{d} x^{\prime}  \tag{2.8}\\
& =-\int_{B_{1}^{\prime}} \nabla^{\prime} u_{\varepsilon} \cdot \nabla^{\prime}\left(\beta_{\varepsilon}\left(u_{\varepsilon}\right) \Psi \zeta^{2}\right) \mathrm{d} x^{\prime}  \tag{2.9}\\
& =-\int_{B_{1}^{\prime}}\left|\nabla^{\prime} u_{\varepsilon}\right|^{2} \beta_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right) \Psi \zeta^{2} \mathrm{~d} x^{\prime}-\int_{B^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \nabla^{\prime} u_{\varepsilon} \cdot \nabla^{\prime}\left(\Psi \zeta^{2}\right) \mathrm{d} x^{\prime}  \tag{2.10}\\
& \leq-\int_{B^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \nabla^{\prime} u_{\varepsilon} \cdot \nabla^{\prime}\left(\Psi \zeta^{2}\right) \mathrm{d} x^{\prime} . \tag{2.11}
\end{align*}
$$

By the compact embeddings we have that $\beta_{\varepsilon}\left(u_{\varepsilon}\right)=\partial_{n} u_{\varepsilon}$ strongly converge in $L^{2}\left(B_{1}^{\prime}\right)$ to $\partial_{n+1} u$ and $\nabla^{\prime} u_{\varepsilon}$ weakly converge in $L^{2}\left(B_{1}^{\prime}\right)$ to $\nabla^{\prime} u$. Therefore, from the Signorini ambiguous boundary conditions we deduce that

$$
\lim _{\varepsilon \rightarrow 0} \int_{B_{1}^{\prime}} \beta_{\varepsilon}\left(u_{\varepsilon}\right) \nabla^{\prime} u_{\varepsilon} \cdot \nabla^{\prime}\left(\Psi \zeta^{2}\right) \mathrm{d} x^{\prime}=0
$$

We can then argue as above in (2.8) and deduce that

$$
\int_{B_{1}^{+}}\left|\nabla\left(\partial_{n+1} u\right)\right|^{2} \Psi \zeta^{2} \mathrm{~d} x \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}}\left(\partial_{n+1} u\right)^{2} \mathrm{~d} x .
$$

2.2. $C^{1, \alpha}$-regularity: hole-filling technique. The next step is to show the following intermediate regularity.

Theorem 2.2.1. Let $u$ be a solution to the Signorini problem. Then, there exists a constant $\alpha \in(0,1)$ such that $u \in C_{\mathrm{loc}}^{1, \alpha}\left(B_{1}^{+} \cup B_{1}^{\prime}\right)$ and

$$
\begin{equation*}
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}\right)} \leq C\|u\|_{L^{2}\left(B_{1}^{+}\right)} \tag{2.12}
\end{equation*}
$$

Proof. We consider the following integral quantities:

$$
\mathrm{I}\left(x_{0}, r\right):=\int_{B_{r}^{+}\left(x_{0}\right)} \sum_{i=1}^{n} \frac{\left|\nabla\left(\partial_{i} u\right)\right|^{2}}{\left|x-x_{0}\right|^{n-1}} \mathrm{~d} x,
$$

and

$$
\mathrm{II}\left(x_{0}, r\right):=\int_{B_{r}^{+}\left(x_{0}\right)} \frac{\left|\nabla\left(\partial_{n+1} u\right)\right|^{2}}{\left|x-x_{0}\right|^{n-1}} \mathrm{~d} x
$$

By Proposition 2.1.2 we have that

$$
\mathrm{I}\left(x_{0}, r\right) \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\nabla^{\prime} u\right|^{2} \mathrm{~d} x
$$

and

$$
\mathrm{II}\left(x_{0}, r\right) \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\partial_{n+1} u\right|^{2} \mathrm{~d} x
$$

From the Signorini boundary conditions, for every $r \in(0,1 / 4)$ we have to consider two possibilities: either

$$
\mathcal{H}^{n}\left(\Lambda(u) \cap B_{2 r}^{\prime} \backslash B_{r}^{\prime}\left(x_{0}\right)\right) \geq \frac{\mathcal{H}^{n}\left(B_{2 r}^{\prime} \backslash B_{r}^{\prime}\left(x_{0}\right)\right)}{2}
$$

or

$$
\mathcal{H}^{n}\left(\left\{\partial_{n+1} u=0\right\} \cap B_{2 r}^{\prime} \backslash B_{r}^{\prime}\left(x_{0}\right)\right) \geq \frac{\mathcal{H}^{n}\left(B_{2 r}^{\prime} \backslash B_{r}^{\prime}\left(x_{0}\right)\right)}{2}
$$

Using a Poincarè-type inequality we have in the first case

$$
\begin{aligned}
\mathrm{I}\left(x_{0}, r\right) & \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\nabla^{\prime} u\right|^{2} \mathrm{~d} x \leq \frac{C}{r^{n-1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\nabla\left(\nabla^{\prime}\right) u\right|^{2} \mathrm{~d} x \\
& \leq C\left(\mathrm{I}\left(x_{0}, 2 r\right)-\mathrm{I}\left(x_{0}, r\right)\right)
\end{aligned}
$$

In the second case we have that

$$
\begin{aligned}
\mathrm{II}\left(x_{0}, r\right) & \leq \frac{C}{r^{n+1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\partial_{n} u\right|^{2} \mathrm{~d} x \leq \frac{C}{r^{n-1}} \int_{B_{2 r}^{+} \backslash B_{r}^{+}\left(x_{0}\right)}\left|\nabla \partial_{n} u\right|^{2} \mathrm{~d} x \\
& \leq C\left(\operatorname{II}\left(x_{0}, 2 r\right)-\mathrm{II}\left(x_{0}, r\right)\right)
\end{aligned}
$$

In both cases we can add $C \mathrm{I}\left(x_{0}, r\right)$ or $C \mathrm{II}\left(x_{0}, r\right)$ to both sides and infer that for every $r \in(0,1 / 4)$
either $\mathrm{I}\left(x_{0}, r\right) \leq \theta \mathrm{I}\left(x_{0}, 2 r\right) \quad$ or $\quad \mathrm{II}\left(x_{0}, r\right) \leq \theta \mathrm{II}\left(x_{0}, 2 r\right)$
with $\theta:=\frac{C}{C+1} \in(0,1)$.
We claim that (2.13) leads to the following:

$$
\mathrm{II}\left(x_{0}, r\right) \leq C r^{2 \alpha} \quad \forall r \in(0,1 / 4)
$$

for some constants $C, \alpha>0$. Indeed, consider any $r \in(0,1 / 4)$ and let $k \in \mathbb{N}$ be such that $r \in\left[4^{-k-1}, 4^{-k}\right)$. Set for convenience $r_{l}:=2^{-l}$ for $l=2, \ldots, 2 k$. Then, there exists at least $k$ radii $r_{l}$, say $\left\{r_{l_{j}}\right\}_{j=1}^{M}$ with $M \geq k$ and $l_{j} \leq l_{j+1}$, such that at lest one between I and II decays. In particular, we deduce that

$$
\mathrm{I}\left(x_{0}, r_{l_{j}}\right) \leq \theta \mathrm{I}\left(x_{0}, 2 r_{l_{j}}\right) \leq \theta \mathrm{I}\left(x_{0}, r_{l_{j-1}}\right)
$$

or

$$
\operatorname{II}\left(x_{0}, r_{l_{j}}\right) \leq \theta \operatorname{II}\left(x_{0}, 2 r_{l_{j}}\right) \leq \theta \operatorname{II}\left(x_{0}, r_{l_{j-1}}\right)
$$

Iterating this inequality we deduce that

$$
\min \left\{\frac{\mathrm{I}\left(x_{0}, r\right)}{\mathrm{I}\left(x_{0},{ }^{1 / 4}\right)}, \frac{\mathrm{II}\left(x_{0}, r\right)}{\mathrm{II}\left(x_{0},{ }^{1 / 4}\right)}\right\} \leq \theta^{k} \leq r^{2 \alpha},
$$

with $\alpha=-\frac{\log \theta}{4 \log 4}$. In particular, considering that $\mathrm{I}\left(x_{0},{ }^{1 / 4}\right)+\mathrm{II}\left(x_{0}, 1 / 4\right) \leq$ $C\|D u\|_{L^{2}\left(B_{1}\right)}$, we deduce that

$$
\min \left\{\mathrm{I}\left(x_{0}, r\right), \mathrm{II}\left(x_{0}, r\right)\right\} \leq C\|D u\|_{L^{2}\left(B_{1}\right)} r^{2 \alpha}
$$

Finally, note that since $\partial_{n+1} \partial_{n+1} u=-\sum_{i=1}^{n} \partial_{i i} u$ we also deduce that
$\mathrm{II}\left(x_{0}, r\right) \leq(n+1) \mathrm{I}\left(x_{0}, r\right) \leq(n+1) \min \left\{\mathrm{I}\left(x_{0}, r\right), \mathrm{II}\left(x_{0}, r\right)\right\} \leq C\|D u\|_{L^{2}\left(B_{1}\right)} r^{2 \alpha}$.
In particular,

$$
\int_{B_{r}\left(x_{0}\right)^{+}}\left|\nabla \partial_{n+1} u\right|^{2} \leq C r^{n-2+2 \alpha},
$$

and from Morrey's inequality it follows that $\partial_{n+1} u \in C_{\text {loc }}^{0, \alpha}\left(B_{1}^{\prime}\right)$ and from Schauder estimates $u \in C_{\text {loc }}^{1, \alpha}\left(B_{1}^{+}\right)$.
2.3. Almgren's frequency function. We introduce the following integral quantities: for every $x_{0} \in B_{1}^{\prime}$ and $r \in\left(0, \operatorname{dist}\left(x_{0}, \partial B_{1}\right)\right)$, we set

$$
D\left(x_{0}, r\right):=\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \mathrm{~d} x \quad \text { and } \quad H\left(x_{0}, r\right):=\int_{\partial B_{r}\left(x_{0}\right)} u^{2} \mathrm{~d} \mathcal{H}^{n}
$$

and, if $H\left(x_{0}, r\right)>0$ (that is always the case for the solutions to the Signorini problem, unless $u \equiv 0$ ), we define

$$
I\left(x_{0}, r\right):=\frac{r D\left(x_{0}, r\right)}{H\left(x_{0}, r\right)}
$$

The function $I$ is called Almgren's frequency function.
Proposition 2.3.1. Let u be a nonzero solution to the Signorini problem. Then,

$$
I\left(x_{0}, r_{0}\right) \leq I\left(x_{0}, r_{1}\right) \quad \forall x_{0} \in B_{1}^{\prime}, \quad \forall 0<r_{0}<r_{1}<\operatorname{dist}\left(x_{0}, \partial B_{1}\right) .
$$

Moreover, if there exist $x_{0} \in B_{1}^{\prime}, k \in \mathbb{R}$ and $0<r_{0}<r_{1}<\operatorname{dist}\left(x_{0}, \partial B_{1}\right)$ such that $I\left(x_{0}, r\right)=k$ for all $r \in\left(r_{0}, r_{1}\right)$, then the solution $u$ is $k$-homogeneous around $x_{0}$, i.e. there exists $w: \partial B_{1} \rightarrow \mathbb{R}$ such that

$$
u(x)=\left|x-x_{0}\right|^{k} w\left(\frac{x-x_{0}}{\left|x-x_{0}\right|}\right) \quad \forall x \in B_{1} .
$$

Proof. Without loss of generality we consider $x_{0}=0$. Note that the functions $D(r), H(r)$ and $I(r)$ are absolutely continuous and we can compute as follows (we set $\nu(x):=x /|x|$ for the outward unit normal to $B_{r}$ ):

$$
\begin{equation*}
H^{\prime}(r)=\frac{n}{r} H(r)+2 \int_{\partial B_{r}} u u_{\nu} \mathrm{d} \mathcal{H}^{n} \tag{2.14}
\end{equation*}
$$

(use the change of variable $x=r y, y \in \partial B_{1}$ );

$$
\begin{equation*}
D(r)=\int_{\partial B_{r}} u u_{\nu} \mathrm{d} \mathcal{H}^{n} \tag{2.15}
\end{equation*}
$$

(use the identity $\Delta\left(u^{2}\right)=2|\nabla u|^{2}+2 u \Delta u$ and the Signorini boundary conditions);

$$
\begin{aligned}
D^{\prime}(r)= & \int_{\partial B_{r}}|\nabla u|^{2} \mathrm{~d} x=2 r^{-1} \int_{B_{r}^{+}} \operatorname{div}\left(|\nabla u|^{2} x\right) \mathrm{d} x \\
= & 2 r^{-1} \int_{B_{r}^{+}}\left((n+1)|\nabla u|^{2}+2 \sum_{i j=1}^{n} \partial_{i j} u \partial_{i} u x_{j}\right) \mathrm{d} x \\
= & 2 r^{-1} \int_{B_{r}^{+}}\left((n+1)|\nabla u|^{2}-2 \sum_{i j=1}^{n} \partial_{i i} u \partial_{j} u x_{j}-2 \delta_{i j} \partial_{i} u \partial_{j} u\right) \mathrm{d} x \\
& +4 r^{-2} \sum_{i j=1}^{n} \int_{\left(\partial B_{r}\right)^{+}} \partial_{i} u x_{i} \partial_{j} u x_{j} \mathrm{~d} \mathcal{H}^{n}-4 r^{-1} \int_{B_{r}^{\prime}} \partial_{n+1} u(\nabla u \cdot x) \mathrm{d} x^{\prime} \\
= & \frac{n-1}{r} \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x+2 \int_{\partial B_{r}}\left(\partial_{\nu} u\right)^{2} \mathrm{~d} \mathcal{H}^{n}
\end{aligned}
$$

where we used that $\Delta u=0$ in $B_{r}^{+}$and by the Signorini boundary conditions $\partial_{n} u(\nabla u \cdot x)=0$ on $B_{r}^{\prime}$. We can then derive that

$$
\begin{aligned}
\frac{I^{\prime}(r)}{I(r)} & =\frac{1}{r}+\frac{D^{\prime}(r)}{D(r)}-\frac{H^{\prime}(r)}{H(r)} \\
& =2\left(\frac{\int_{\partial B_{r}} u_{\nu}^{2} \mathrm{~d} \mathcal{H}^{n}}{\int_{\partial B_{r}} u u_{\nu} \mathrm{d} \mathcal{H}^{n}}-\frac{\int_{\partial B_{r}} u u_{\nu} \mathrm{d} \mathcal{H}^{n}}{\int_{\partial B_{r}} u^{2} \mathrm{~d} \mathcal{H}^{n}}\right) \geq 0
\end{aligned}
$$

the last inequality is due to the Cauchy-Schwarz inequality. In particular, if $I^{\prime}(r)=0$ for $r \in\left(r_{0}, r_{1}\right)$, then there exist a function $\lambda:\left(r_{0}, r_{1}\right) \rightarrow \mathbb{R}$ such that $u_{\nu}(x)=\lambda(|x|) u(x)$ for every $x \in B_{r_{1}} \backslash B_{r_{0}}$ : in particular,

$$
k=I(r)=\frac{r D(r)}{H(r)}=\frac{r \int_{\partial B_{r}} u u_{\nu} \mathrm{d} \mathcal{H}^{n}}{\int_{\partial B_{r}} u^{2} \mathrm{~d} \mathcal{H}^{n}}=r \lambda(r) \quad \forall r \in\left(r_{0}, r_{1}\right)
$$

We then deduce that $\nabla u(x) \cdot x=k u(x)$ for every $x \in B_{r_{1}} \backslash B_{r_{0}}$ : by the Euler formula we get $u(x)=|x|^{k} w(x /|x|)$ for some function $w: \partial B_{1} \rightarrow \mathbb{R}$ and by unique continuation for harmonic functions we conclude that this representation holds in all of $B_{1}$.

A first consequence is the existence of homogeneous blowups at every free boundary point.

Corollary 2.3.2. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem and let $x_{0} \in \Gamma(u)$. Then, for every infinitesimal sequence of decreasing radii $\left(r_{i}\right)_{i \in \mathbb{N}}$ with $r_{0} \leq d_{0}:=\operatorname{dist}\left(x_{0}, \partial B_{1}\right)$, there exists a subsequence
$\left(r_{i_{k}}\right)_{k \in \mathbb{N}}$, such that the rescaled functions $u_{x_{0}, r_{i_{k}}}: B_{\frac{d_{0}}{r_{i_{k}}}} \rightarrow \mathbb{R}$ defined by

$$
u_{x_{0}, r_{i_{k}}}(y):=\frac{r_{i_{k}}^{n / 2} u\left(x_{0}+r_{i_{k}} y\right)}{\int_{\partial B_{i_{k}}\left(x_{0}\right)} u^{2} \mathrm{~d} \mathcal{H}^{n}}
$$

converge $C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n+1}\right)$ to a homogeneous function.
Proof. It is immediate to verify that the functions $u_{x_{0}, r_{i}}$ are solutions to the Signorini problem. Therefore, from Theorem 2.2.1 we have that the functions $u_{x_{0}, r_{i}}$ are uniformly bounded in $C^{1, \alpha}$ for some $\alpha>0$, from which the convergence up to subsequences follows.

In order to deduce the homogeneity of the limiting points $u_{x_{0}}$, we notice that

$$
I_{u_{x_{0}}}(r)=\lim _{k \rightarrow+\infty} I_{u_{x_{0}, r_{i_{k}}}}(r)=\lim _{k \rightarrow+\infty} I_{u}\left(x_{0}, r_{i_{k}} r\right)=I_{u}\left(x_{0}, 0^{+}\right) \quad \forall r>0 .
$$

In particular, $I_{u_{x_{0}}}(r)$ turns out to be constant and by Proposition 2.3.1 we deduce that $u_{x_{0}}$ is homogeneous with respect to the origin and with homogeneity exponent $I_{u}\left(x_{0}, 0^{+}\right)$.

Similarly, the following corollary will be useful later.
Corollary 2.3.3. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem and let $x_{0} \in \Gamma(u) \cap B_{1 / 2}$ and $\lambda=I\left(x_{0}, 0^{+}\right)$. Then,

$$
\begin{equation*}
r^{-n-2 \lambda} H\left(x_{0}, r\right) \leq s^{-n-2 \lambda} H\left(x_{0}, s\right) \tag{2.16}
\end{equation*}
$$

for all $0<r<s<1 / 2$. In particular, there exists a dimensional constant $C>0$ such that

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)} u^{2} \mathrm{~d} x \leq C\|u\|_{L^{2}\left(B_{1}\right)} r^{n+1+2 \lambda} \quad \forall r \in(0,1 / 2) . \tag{2.17}
\end{equation*}
$$

Proof. Assume without loss of generality $x_{0}=0$. Using $r D(r) \geq$ $\lambda H(r)$ and (2.14), we integrate the differential inequality

$$
H^{\prime}(r)=\frac{n}{r} H(r)+2 D(r) \geq \frac{n}{r} H(r)+\frac{\lambda}{r}
$$

to obtain (2.16). Eq. (2.17) follows from (2.16), Theorem 2.0.1 and an integration in polar co-ordinates.
2.4. Alt-Caffarelli-Friedman's monotonicity formula. Given any open set $S \subset \mathbb{S}^{d-1}$, let $\lambda(S)$ and $v_{\lambda}$ be the first eigenvalue and the corresponding eigenfunction of the spherical Laplacian in $S$ with Dirichlet boundary conditions:

$$
\lambda(S):=\inf _{v \in H_{0}^{1}(S), v \neq 0} \frac{\int_{S}\left|\nabla_{\tau} v\right|^{2} \mathrm{~d} \mathcal{H}^{d-1}}{\int_{S} v^{2} \mathrm{~d} \mathcal{H}^{d-1}}=\frac{\int_{S}\left|\nabla_{\tau} v_{\lambda}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1}}{\int_{S} v_{\lambda}^{2} \mathrm{~d} \mathcal{H}^{d-1}},
$$

where $\nabla_{\tau} v$ denotes the (covariant) tangential derivative of $v: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$. Corresponding to the eigenvalue $\lambda(S)$, one defines the characteristic constant $\alpha(S)$ given by the positive root of

$$
\alpha^{2}+\alpha(d-2)-\lambda=0
$$

Note that $\alpha(S)$ is the homogeneity exponent of the harmonic extension of $v_{\lambda}$ : writing in polar co-ordinates $u(r, \theta):=r^{\alpha} v_{\lambda}(\theta)$ we have that

$$
\begin{aligned}
\Delta u & =\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u+\frac{d-1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r} u+\frac{1}{r^{2}} \Delta_{\mathbb{S}^{d-1}} u \\
& =(\alpha(\alpha-1)+(d-1) \alpha-\lambda) r^{\alpha-2} v_{\lambda}(\theta)=0 .
\end{aligned}
$$

We need the following result by Friedland and Hayman ([11]).
Theorem 2.4.1. Let $S_{1}, S_{2} \in \mathbb{S}^{d-1}$ be two disjoint open sets. Then,

$$
\begin{equation*}
\alpha\left(S_{1}\right)+\alpha\left(S_{2}\right) \geq 2 \tag{2.18}
\end{equation*}
$$

with equality if and only if $S_{1}$ and $S_{2}$ are two disjoint hemispheres.
The following is the monotonicity formula discovered by Alt, Caffarelli and Friedman [1].

Theorem 2.4.2. Let $u_{1}, u_{2}$ be nonnegative continuous subharmonic functions in $B_{1} \subset \mathbb{R}^{d}$. Assume that $u_{1} u_{2} \equiv 0$ and $u_{1}(0)=u_{1}(0)=0$. Then, the function

$$
J(r):=\frac{1}{r^{4}} \int_{B_{r}} \frac{\left|\nabla u_{1}(x)\right|^{2}}{|x|^{d-2}} \mathrm{~d} x \int_{B_{r}} \frac{\left|\nabla u_{2}(x)\right|^{2}}{|x|^{d-2}} \mathrm{~d} x
$$

is monotone nondecreasing for $r \in(0,1)$ with

$$
J(r) \leq C(n)\left\|u_{1}\right\|_{L^{2}\left(B_{1}\right)}^{2}\left\|u_{2}\right\|_{L^{2}\left(B_{1}\right)}^{2} \quad \forall r \in(0,1 / 2) .
$$

Proof. We start establishing the following two inequalities: for $v=u_{1}$ or $v=u_{2}$, we have $v \in H_{\mathrm{loc}}^{1}\left(B_{1}\right)$ and for a.e. $r \in(0,1)$

$$
\begin{equation*}
\int_{B_{r}} \frac{|\nabla v|^{2}}{|x|^{d-2}} \mathrm{~d} x \leq \frac{C}{r^{d}} \int_{B_{2 r} \backslash B_{r}} v^{2} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{r}} \frac{|\nabla v|^{2}}{|x|^{d-2}} \mathrm{~d} x \leq \frac{d-2}{2 r^{d-1}} \int_{\partial B_{r}} v^{2} \mathrm{~d} \mathcal{H}^{d-1}+\frac{1}{r^{d-2}} \int_{\partial B_{r}} v \partial_{\nu} v \mathrm{~d} \mathcal{H}^{d-1}, \tag{2.20}
\end{equation*}
$$

where $\nu(x):=\frac{x}{|x|}$ is the outer unit normal and $C>0$ is a dimensional constant. To this aim, we consider a regularization of $v$ by convolution $v_{\varepsilon}:=\varphi_{\varepsilon} \star v$, where $\varphi_{\varepsilon}$ is a standard convolution kernel; and for every $\delta \in(0, r)$ we set

$$
g_{\delta}=\min \left\{|x|^{2-d}, \delta^{2-d}\right\} .
$$

From the subharmonicity and the positivity of $v$ we get that

$$
\Delta v_{\varepsilon}^{2}=2\left|\nabla v_{\varepsilon}\right|^{2}+2 v_{\varepsilon} \Delta v_{\varepsilon} \geq 2\left|\nabla v_{\varepsilon}\right|^{2} .
$$

In particular, if $\psi \in C_{c}^{\infty}\left(B_{2 r}\right)$ is such that

$$
\psi \equiv 1 \quad \text { on } \quad B_{r} \quad \text { and } \quad r|D \psi|+r^{2}\left|D^{2} \psi\right| \leq C,
$$

then we have that

$$
\begin{aligned}
2 \int_{B_{2 r}} \psi g_{\delta}\left|\nabla v_{\varepsilon}\right|^{2} & \leq \int_{B_{2 r}} \psi g_{\delta} \Delta v_{\varepsilon}^{2} \\
& =\int_{B_{2 r} \backslash B_{\delta}} \Delta\left(\psi g_{\delta}\right) v_{\varepsilon}^{2} \mathrm{~d} x+\int_{\partial B_{\delta}} \psi \partial_{\nu} g_{\delta} v_{\varepsilon}^{2} \mathrm{~d} \mathcal{H}^{d-1} \\
& \leq \frac{C}{r^{d}} \int_{B_{2 r} \backslash B_{r}} v_{\varepsilon}^{2} \mathrm{~d} x+\frac{d-2}{r^{d-1}} \int_{\partial B_{\delta}} v_{\varepsilon}^{2} \mathrm{~d} \mathcal{H}^{d-1},
\end{aligned}
$$

where we used that $\Delta g_{\delta}(x)=0$ for $|x|>\delta$. Sending $\delta$ to zero, we infer that

$$
\int_{B_{r}} \frac{\left|\nabla v_{\varepsilon}\right|^{2}}{|x|^{d-2}} \mathrm{~d} x \leq \frac{C}{r^{d}} \int_{B_{2 r} \backslash B_{r}} v_{\varepsilon}^{2} \mathrm{~d} x+C v_{\varepsilon}(0)^{2} .
$$

In particular, the functions $v_{\varepsilon}$ are uniformly in $H^{1}\left(B_{r}\right)$; and taking now the limit $\varepsilon \rightarrow 0$ (recall that $v_{\varepsilon}$ converges to $v$ uniformly and $v(0)=0$ ), we conclude (2.19).

Similarly, for (2.20), we proceed as follows:

$$
\begin{aligned}
2 \int_{B_{r}} g_{\delta}\left|\nabla v_{\varepsilon}\right|^{2} \mathrm{~d} x \leq & \int_{B_{r}} \Delta v_{\varepsilon}^{2} g_{\delta} \mathrm{d} x \\
= & \int_{B_{r} \backslash B_{\delta}} \Delta g_{\delta} v_{\varepsilon}^{2} \mathrm{~d} x+2 \int_{\partial B_{r}} v_{\varepsilon} \nabla_{\nu} v_{\varepsilon} g_{\delta} \mathrm{d} \mathcal{H}^{d-1} \\
& -\int_{\partial B_{r}} \partial_{\nu} g_{\delta} v_{\varepsilon}^{2} \mathrm{~d} \mathcal{H}^{d-1}+\frac{d-2}{r^{d-1}} \int_{\partial B_{\delta}} v_{\varepsilon}^{2} \mathrm{~d} \mathcal{H}^{d-1} .
\end{aligned}
$$

Considering that $\Delta g_{\delta}=0$, we can take the limits $\delta \rightarrow 0$ and $\varepsilon \rightarrow 0$ in this order to infer (2.20).

Computing the derivative of $J$ we have that

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \int_{B_{r}} \frac{\left|\nabla u_{i}\right|^{2}}{|x|^{d-2}} \mathrm{~d} x=r^{2-d} \int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1} \quad \text { for a.e. } r \in(0,1)
$$

and therefore

$$
\frac{J^{\prime}(r)}{J(r)}=r^{2-d} \frac{\int_{\partial B_{r}}\left|\nabla u_{1}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1}}{\int_{B_{r}} \frac{\left|\nabla u_{1}\right|^{2}}{|x|^{d-2}} \mathrm{~d} x}+r^{2-d} \frac{\int_{\partial B_{r}}\left|\nabla u_{2}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1}}{\int_{B_{r}} \frac{\left|\nabla z_{2}\right|^{2}}{|x|^{d-2}} \mathrm{~d} x}-\frac{4}{r} .
$$

We can then estimate as follows for $i=1,2$ :

$$
\begin{aligned}
\int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1} \geq & \int_{\partial B_{r}}\left(\left|\partial_{\nu} u_{i}\right|^{2}+\left|\nabla_{\tau} u_{i}\right|^{2}\right) \mathrm{d} \mathcal{H}^{d-1} \\
\geq & \int_{\partial B_{r}}\left(\left|\partial_{\nu} u_{i}\right|^{2}+\lambda_{i} r^{-2} u_{i}^{2}\right) \mathrm{d} \mathcal{H}^{d-1} \\
\geq & 2 \alpha_{i} r^{-1}\left(\int_{\partial B_{r}}\left(\partial_{\nu} u_{i}\right)^{2} \mathrm{~d} \mathcal{H}^{d-1}\right)^{1 / 2}\left(\int_{\partial B_{1}} u_{i}^{2} \mathrm{~d} \mathcal{H}^{d-1}\right)^{1 / 2} \\
& +\left(\lambda_{i}-\alpha_{i}^{2}\right) r^{-2} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \mathcal{H}^{d-1}
\end{aligned}
$$

where $\lambda_{i}$ denotes the lowest eigenvalue of the spherical Laplacian with Dirichlet boundary conditions in $S_{i}:=\left(\left\{u_{i}>0\right\} \cap \partial B_{r}\right) / r \subset \mathbb{S}^{n}$, and $\alpha_{i}$ is the corresponding characteristic number: in particular, $\alpha_{i}(d-2)=\lambda-\alpha_{i}^{2}$ and

$$
\frac{\int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \mathcal{H}^{d-1}}{\int_{B_{r}} \left\lvert\, \frac{\left.\nabla u_{i}\right|^{2}}{|x|^{d-2}} \mathrm{~d} x\right.} \stackrel{(2.20)}{\geq} 2 \frac{\alpha_{i}}{r} .
$$

thus leading to

$$
\frac{J^{\prime}(r)}{J(r)} \geq \frac{2}{r}\left(\alpha_{1}+\alpha_{2}\right)-\frac{4}{r} \stackrel{(2.18)}{\geq} 0
$$

The last conclusion of the theorem follows from (2.19).
A consequence of the ACF-monotonicity formula is the following identification of the least possible frequency at free boundary points.

Corollary 2.4.3. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then,

$$
I_{u}\left(x_{0}, 0^{+}\right) \in\{3 / 2\} \cup[2,+\infty) \quad \forall x_{0} \in \Gamma(u) .
$$

Proof. From Corollary 2.3.2 it is not restrictive to assume that $u$ is a homogeneous solution in $\mathbb{R}^{n+1}$ with exponent $\lambda=I_{u}\left(x_{0}, 0^{+}\right)$. From the $C^{1, \alpha}$ regularity of $u$ and the fact that $\nabla u\left(x_{0}\right)=0$ for a free boundary point $x_{0}$, we deduce that $\lambda>1$. Moreover, we can consider the horizontal derivatives $\partial_{e} u \in C^{\alpha}\left(B^{+}\right)$for every $e \in \mathbb{S}^{n}$, with $e \cdot e_{n+1}=0$.

It is easy to verify that $\left(\partial_{e} u\right)^{ \pm}$are subharmonic functions with disjoint supports and $\left(\partial_{e} u\right)^{ \pm}(0)=0$ (see Exercise 2.6.1). Therefore, we can apply Theorem 2.4.2 to infer that for all $r \in(0,1]$

$$
J(r)=\frac{1}{r^{4}} \int_{B_{r}} \frac{\left|\nabla\left(\partial_{e} u\right)^{+}(x)\right|^{2}}{|x|^{n-1}} \mathrm{~d} x \int_{B_{r}} \frac{\left|\nabla\left(\partial_{e} u\right)^{-}(x)\right|^{2}}{|x|^{n-1}} \mathrm{~d} x<C<+\infty .
$$

Considering that $\nabla\left(\partial_{e} u\right)^{ \pm}$is $(\lambda-2)$-homogeneous, we deduce that

$$
J(r)=r^{4 \lambda-8} J(1) .
$$

Therefore, either $\lambda \geq 2$ or we must have $J(1)=0$. Note that this is possible if and only if at least one between $\left(\partial_{e} u\right)^{+}$and $\left(\partial_{e} u\right)^{-}$is constantly zero. In particular, for every $e \in \mathbb{S}^{n}$ with $e \cdot e_{n+1}=0$, we have that $u$ is monotone
in the direction $e$, which is equivalent to say that $u$ is a function of a two variables (see Exercise 2.6.2):

$$
u(x)=v\left(x \cdot \bar{e}, x_{n+1}\right) \quad \text { for some } \bar{e} \in \mathbb{S}^{n}, \quad \bar{e} \cdot e_{n+1}=0,
$$

and $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a solution to the Signorini problem, which can be easily classified (see Exercise 2.6.3). By direct inspection the only frequency $\lambda \in$ $(1,2)$ is given by the value $\frac{3}{2}$.

### 2.5. Optimal regularity: $C^{1,1 / 2}$.

Theorem 2.5.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, $u \in C^{1,1 / 2}\left(B_{1}^{+} \cup B_{1}^{\prime}\right)$ with

$$
\|u\|_{C^{1,1 / 2}\left(B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}\right)} \leq C(K)\|u\|_{L^{2}\left(B^{+}\right)} .
$$

Proof. For every $x \in B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}$ we denote by $d(x)$ the distance from the free boundary:

$$
d(x):=\operatorname{dist}(x, \Gamma(u)) .
$$

Note that either $B_{d(x)}(x) \cap B_{1}^{\prime} \subset \Lambda(u)$ or $B_{d(x)}(x) \cap B_{1}^{\prime} \subset B_{1}^{\prime} \backslash \Lambda(u)$ : in particular, in the first case the odd reflection of $u$, in the second one the even reflection of $u$, are harmonic functions. We denote such harmonic functions (in both cases) with $U$.

In order to prove the theorem, it is enough to show that

$$
\left|\nabla u\left(x_{1}\right)-\nabla\left(x_{2}\right)\right| \leq C\|u\|_{L^{2}(B)}\left|x_{1}-x_{2}\right|^{1 / 2}
$$

for all $x_{1}, x_{2} \in B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}$ with $\left|x_{1}-x_{2}\right|<1 / 8$. We consider three cases.
Case 1: $d\left(x_{1}\right) \geq 1 / 4$. In this case, $x_{2} \in B_{d\left(x_{1}\right) / 2}\left(x_{1}\right)$ and by the interior estimates for the harmonic function $U$ we have that

$$
\begin{aligned}
\left|\nabla u\left(x_{1}\right)-\nabla u\left(x_{2}\right)\right| & \leq C \frac{\|U\|_{L^{2}\left(B_{d\left(x_{1}\right)}\left(x_{1}\right)\right)}}{d\left(x_{1}\right)^{2+\frac{n+1}{2}}}\left|x_{1}-x_{2}\right| \\
& \leq C\|u\|_{L^{2}\left(B_{1}^{+}\right)}\left|x_{1}-x_{2}\right|^{1 / 2} .
\end{aligned}
$$

Case 2: $d\left(x_{2}\right) \leq d\left(x_{1}\right)<1 / 4$ and $\left|x_{1}-x_{2}\right| \geq d\left(x_{1}\right) / 2$. From Corollary 2.3.3 and Corollary 2.4.3 we have that

$$
\|U\|_{L^{2}\left(B_{d\left(x_{1}\right)}\left(x_{1}\right)\right)} \leq C\|u\|_{L^{2}\left(B^{+}\right)} d\left(x_{1}\right)^{n / 2+4} .
$$

In particular, considering that $U$ is harmonic, we have that

$$
\begin{aligned}
\|U\|_{L^{\infty}\left(B_{d\left(x_{1}\right) / 2}\left(x_{1}\right)\right)} & \leq C \frac{\|U\|_{L^{2}\left(B_{d\left(x_{1}\right)}\left(x_{1}\right)\right)}}{d\left(x_{1}\right)^{\frac{n+1}{2}}} \leq C \frac{\|u\|_{L^{2}\left(B_{1}^{+}\right)} d\left(x_{1}\right)^{\frac{n+4}{2}}}{d\left(x_{1}\right)^{\frac{n+1}{2}}} \\
& =\|u\|_{L^{2}\left(B_{1}^{+}\right)} d\left(x_{1}\right)^{\frac{3}{2}}
\end{aligned}
$$

Since the same can be done for $x_{2}$, we get

$$
\begin{aligned}
\left|\nabla u\left(x_{1}\right)-\nabla u\left(x_{2}\right)\right| & \leq\left|\nabla u\left(x_{1}\right)\right|+\left|\nabla u\left(x_{2}\right)\right| \\
& \leq C\|u\|_{L^{2}\left(B^{+}\right)} d\left(x_{1}\right)^{1 / 2} \leq C\|u\|_{L^{2}\left(B_{1}^{+}\right)}\left|x_{1}-x_{2}\right|^{1 / 2} .
\end{aligned}
$$

Case 3: $d\left(x_{2}\right) \leq d\left(x_{1}\right)<1 / 4$ and $\left|x_{1}-x_{2}\right|<d\left(x_{1}\right) / 2$. Arguing as before via interior estimates for harmonic functions and Corollary 2.3.3, we have

$$
\left\|D^{2} U\right\|_{L^{\infty}\left(B_{d\left(x_{1}\right) / 2}\left(x_{1}\right)\right)} \leq C \frac{\|U\|_{L^{2}\left(B_{d\left(x_{1}\right)}\left(x_{1}\right)\right)}}{d\left(x_{1}\right)^{\frac{n+5}{2}}} \leq\|u\|_{L^{2}\left(B^{+}\right)} d\left(x_{1}\right)^{-1 / 2} .
$$

Therefore

$$
\begin{aligned}
\left|\nabla u\left(x_{1}\right)-\nabla\left(x_{2}\right)\right| & \leq\left\|D^{2} u\right\|_{L^{\infty}\left(B_{d\left(x_{1}\right) / 2}\left(x_{1}\right)\right)}\left|x_{1}-x_{2}\right| \\
& \leq C\|u\|_{L^{2}(B)} d\left(x_{1}\right)^{-1 / 2}\left|x_{1}-x_{2}\right| \\
& \leq C\|u\|_{L^{2}(B)}\left|x_{1}-x_{2}\right|^{1 / 2} .
\end{aligned}
$$

### 2.6. Exercises.

Exercise 2.6.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Show that, for every $e \in \mathbb{S}^{n}$ with $e \cdot e_{n+1}=0$, the functions $\left(\partial_{e} u\right)^{ \pm}$are subharmonic.

Hint. Consider the approximations $v_{\delta}^{+}:=\phi_{\delta}\left(\partial_{e} u\right)$ with $\phi_{\delta}$ a regularization of $t^{+}$and $\phi_{\delta}(0)=0$. Similarly, consider $v_{\delta}^{-}:=\phi_{\delta}\left(-\partial_{e} u\right)$. Note that $v_{\delta}^{ \pm}$are zero in a neighborhood of $\Lambda(u)$.

Exercise 2.6.2. Let $v \in C^{1}\left(B_{1}\right), B_{1} \subset \mathbb{R}^{d}$, be monotone in each direction $e \in \mathbb{S}^{d-1}$. Show that $v$ is a functions of a single variable: i.e. there exists $\phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\bar{e} \in \mathbb{S}^{d-1}$ such that $v(x)=\phi(\bar{e} \cdot x)$.

Exercise 2.6.3. Show that the only homogeneous solutions to the Signorini problem in $\mathbb{R}^{2}$ (i.e. $n=1$ ) are given by the following formulas:

$$
\begin{gathered}
u_{2 m}\left(x_{1}, x_{2}\right)=C \operatorname{Re}\left(x_{1}+i\left|x_{2}\right|\right)^{2 m}, \quad m \in \mathbb{N} \backslash\{0\}, C \geq 0 \\
u_{2 m-1 / 2}\left(x_{1}, x_{2}\right)=C \operatorname{Re}\left(x_{1}+i\left|x_{2}\right|\right)^{2 m-1 / 2}, \quad m \in \mathbb{N} \backslash\{0\}, C \geq 0 \\
u_{2 m+1}\left(x_{1}, x_{2}\right)=C \operatorname{Im}\left(x_{1}+i\left|x_{2}\right|\right)^{2 m+1}, \quad m \in \mathbb{N}, C \geq 0,
\end{gathered}
$$

where the determination of the square root for $u_{2 m-1 / 2}$ is chosen in such a way that the $u_{2 m-1 / 2}\left(x_{1}, 0\right) \geq 0$.

Hint. Use polar co-ordinates.

## 3. The free boundary: the regular points

We start now the study of the regularity points of the free boundary. To this aim, it can be useful to recall the definitions of contact set $\Lambda(u)$ and of free boundary $\Gamma(u)$ of a solution $u$ to the Signorini problem:

$$
\Lambda(u):=\left\{\left(x^{\prime}, 0\right) \in B_{1}^{\prime}: u\left(x^{\prime}, 0\right)=0\right\} \quad \text { and } \quad \Gamma(u):=\partial_{B_{1}^{\prime}} \Lambda(u),
$$

where $\partial_{B_{1}^{\prime}}$ denotes the boundary in the (relative) topology of $B_{1}^{\prime}$.
3.1. The regular part of the free boundary. In this chapter we consider the so called regular part $\Gamma_{3 / 2}(u)$ of the free boundary, defined as the set with least frequency:

$$
\Gamma_{3 / 2}(u):=\left\{x \in \Gamma(u): I_{u}\left(x, 0^{+}\right)=3 / 2\right\} .
$$

The reason why this subsets of the free boundary is called regular has mostly to do with the results we are going to discuss next.

Theorem 3.1.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, $\Gamma_{3 / 2}(u)$ is a relatively open subset of $\Gamma(u)$ and is an analytic $(n-1)$ dimensional submanifold of $\mathbb{R}^{n+1}$.

Comments 3.1.2. (i) $\Gamma_{3 / 2}(u) \subset \Gamma(u)$ open is easily seen as follows: from Almgren's monotonicity formula in Proposition 2.3.1

$$
I_{u}\left(x, 0^{+}\right)=\lim _{r \rightarrow 0^{+}} I_{u}(x, r)=\inf _{r>0} I_{u}(x, r)
$$

is an upper semicontinuous function (greatest lower bound of continuous functions $x \mapsto I_{u}(x, r)$ ), and therefore taking into account Corollary 2.4.3 we infer that

$$
\Gamma_{3 / 2}(u):=\left\{x \in \Gamma(u): I_{u}\left(x, 0^{+}\right)<2\right\} \subset \Gamma(u) \quad \text { is relatively open. }
$$

(ii) The main breakthrough is due to Athanasopoulos, Caffarelli and Salsa [3] (see Caffarelli, Salsa and Silvestre [6] for the case of the fractional Laplacian), where the authors prove the $C^{1, \alpha}$ regularity of $\Gamma_{3 / 2}(u)$.
(iii) The higher regularity has been recently obtained in $[7,16]$ via bootstrap methods and hodograph transformation.

Here we present a proof of the $C^{1, \alpha}$ regularity of $\Gamma_{3 / 2}(u)$ as a consequence of the epiperimetric inequality established by Focardi and Spadaro [8].
3.2. The epiperimetric inequality. We introduce a family of boundary adjusted energies: namely, for every $u \in H^{1}\left(B_{1}\right)$ even symmetric with respect to $x_{n+1}$, for every $x_{0} \in \Gamma_{3 / 2}(u)$ and for every $r \in\left(0,1-\left|x_{0}\right|\right)$, we set

$$
W_{x_{0}}(r, u):=\frac{1}{r^{n+2}} \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \mathrm{~d} x-\frac{3}{2 r^{n+3}} \int_{\partial B_{r}\left(x_{0}\right)} u^{2} \mathrm{~d} \mathcal{H}^{n} .
$$

We omit to write the point $x_{0}$ if it is the origin.

Remark 3.2.1. The introduction of the boundary adjusted energies goes back to the work by Weiss for the classical obstacle problem [21] and has been generalized to the Signorini problem by Garofalo and Petrosyan [12].

The main result is now the following
Theorem 3.2.2 (Epiperimetric inequality Focardi-S. [8]). There exists a dimensional constant $\kappa \in(0,1)$ such that if $c \in H^{1}\left(B_{1}\right)$ is a ${ }^{3} / 2$-homogeneous function with $c \geq 0$ on $B^{\prime}$, then

$$
\begin{equation*}
\inf _{v \in \mathcal{A}_{c}} W(1, v) \leq(1-\kappa) W(1, c) . \tag{3.1}
\end{equation*}
$$

Recall the definition

$$
\mathcal{A}_{c}:=\left\{v \in c+H_{0}^{1}\left(B_{1}\right):\left.v\right|_{B_{1}^{\prime}} \geq 0, v\left(x^{\prime}, x_{n+1}\right)=v\left(x^{\prime},-x_{n+1}\right)\right\} .
$$

Remark 3.2.3. A similar inequality has also been proved by Garofalo, Petrosyan and Smit Vega [?].
3.2.4. Decay of the boundary adjusted energy. The main consequence of the epiperimetric inequality in Theorem 3.2.2 is the decay of the boundary adjusted energy.

Proposition 3.2.5. There exists a dimensional constant $\gamma>0$ with this property. For every $x_{0} \in \Gamma_{3 / 2}(u)$ there exists a constant $C>0$ such that

$$
\begin{equation*}
0 \leq W_{x_{0}}(r, u) \leq C r^{\gamma} \quad \forall 0<r<1-\left|x_{0}\right| . \tag{3.2}
\end{equation*}
$$

Proof. Without loss of generality, we consider $x_{0}=0$. We start computing:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} r} W(r, u)= & -\frac{n+2}{r^{n+3}} D(r)+\frac{D^{\prime}(r)}{r^{n+3}}-\frac{3}{2 r^{n+3}} H^{\prime}(r)+\frac{3(n+3)}{2 r^{n+4}} H(r) \\
=- & \frac{n+2}{r} W(r, u)-\frac{3(n+2)}{2 r^{n+4}} H(r) \\
& +\underbrace{\frac{D^{\prime}(r)}{r^{n+3}}+\frac{9}{2 r^{n+4}} H(r)-3 \frac{D(r)}{r^{n+3}}}_{=: I} . \tag{3.3}
\end{align*}
$$

where we used the formula (2.14)

$$
H^{\prime}(r)=\frac{n}{r} H(r)+2 D(r) .
$$

In order to treat the terms in $I$, we introduce the rescaled functions

$$
\begin{equation*}
u_{r}(x):=\frac{u(r x)}{r^{3 / 2}} \tag{3.4}
\end{equation*}
$$

and deduce by simple computations that

$$
\begin{align*}
I & =\frac{1}{r} \int_{\partial B_{1}}\left(\left|\nabla u_{r}\right|^{2}-3 u_{r} \nabla u_{r} \cdot \nu+\frac{9}{2} u_{r}^{2}\right) d \mathcal{H}^{n} \\
& =\frac{1}{r} \int_{\partial B_{1}}\left[\left(\nabla u_{r} \cdot \nu-\frac{3}{2} u_{r}\right)^{2}+\left|\nabla_{\tau} u_{r}\right|^{2}+\frac{9}{4} u_{r}^{2}\right] d \mathcal{H}^{n}, \tag{3.5}
\end{align*}
$$

where we denoted by $\nabla_{\tau} u_{r}$ the (covariant) derivative of $u_{r}$ in the directions tangent to $\partial B_{1}$. Let $c_{r}$ be the ${ }^{3} / 2$-homogeneous extension of $\left.u_{r}\right|_{\partial B_{1}}$, i.e.

$$
c_{r}(x):=|x|^{3 / 2} u_{r}(x /|x|) .
$$

It is simple to verify that

$$
\int_{\partial B_{1}}\left(\left|\nabla_{\tau} u_{r}\right|^{2}+\frac{9}{4} u_{r}^{2}\right)=(n+2) \int_{B_{1}}\left|\nabla c_{r}\right|^{2} d x .
$$

We then conclude that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} r} W(r, u)= & \frac{n+2}{r}\left(W_{3 / 2}\left(1, c_{r}\right)-W_{3 / 2}\left(1, u_{r}\right)\right) \\
& +\frac{1}{r} \int_{\partial B_{1}}\left(\nabla u_{r} \cdot \nu-\frac{3}{2} u_{r}\right)^{2} d \mathcal{H}^{n} . \tag{3.6}
\end{align*}
$$

By the epiperimetric inequality in Theorem 3.2.2

$$
\frac{\mathrm{d}}{\mathrm{~d} r} W(r, u) \geq 2 \frac{n+2}{r} \frac{\kappa}{1-\kappa} W\left(1, u_{r}\right)=2 \frac{n+2}{r} \frac{\kappa}{1-\kappa} W(r, u) \quad \forall 0<r<r_{0} .
$$

Integrating this inequality we get

$$
W(r, u) \leq W(1, u) r^{\gamma} \quad \forall 0<r<r_{0},
$$

with $\gamma:=2(n+1)^{\kappa} /(1-\kappa)$.
3.3. Regularity of the free boundary. In this section we show how to derive the regularity of the free boundary around points of least frequency as a simple consequence of the epiperimetric inequality. We divide the argument in different steps.
3.3.1. Rescaled profiles. Assume that $0 \in \Gamma_{3 / 2}(u)$ and set

$$
\begin{equation*}
u_{r}(x):=\frac{u(r x)}{r^{3 / 2}} . \tag{3.7}
\end{equation*}
$$

A first consequence of Corollary 2.3.3 of Chapter 2 is that the rescaled profiles $u_{r}$ have equi-bounded Dirichlet energies:

$$
\begin{gather*}
\int_{B_{1}}\left|\nabla u_{r}\right|^{2} d x=\frac{\int_{B_{r}}|\nabla u|^{2} d x}{r^{n+2}}=\frac{r \int_{B_{r}}|\nabla u|^{2} d x}{\int_{\partial B_{r}} u^{2} d \mathcal{H}^{n}} \frac{\int_{\partial B_{r}} u^{2} d \mathcal{H}^{n}}{r^{n+3}} \\
\quad \begin{array}{c}
\text { Ch.2 (2.16) } \\
\leq
\end{array} I_{u}(r) H_{u}(1) \leq I_{u}(1) H_{1}(1) .
\end{gather*}
$$

Therefore, for every infinitesimal sequence of radii $r_{k} \downarrow 0$ there exists a subsequence $r_{k^{\prime}} \downarrow 0$ such that $u_{r_{k^{\prime}}} \rightarrow u_{0}$ in $L^{2}\left(B_{1}\right)$. Note however that this does not allow to deduce that there exists a limiting function $u_{0}$ which is not identically 0 . As an application of the epiperimetric inequality and the related decay of the energy in Proposition 3.2 .5 we can deduce that this is actually the case for every such limiting profiles $u_{0}$.

Proposition 3.3.2 (Nondegeneracy). Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem and assume that $0 \in \Gamma_{3 / 2}(u)$. Then there exists a constant $H_{0}>0$ such that

$$
\begin{equation*}
H(r) \geq H_{0} r^{n+3} \quad \forall 0<r<1 \tag{3.9}
\end{equation*}
$$

Proof. The starting point is the computation of $H^{\prime}(r)$ :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\log \frac{H(r)}{r^{n+3}}\right)=2 \frac{D(r)}{H(r)}-\frac{3}{r}=\frac{2 r^{n+2}}{H(r)} W(r, u) \tag{3.10}
\end{equation*}
$$

Let $\gamma>0$ be the constant in Proposition 3.2.5: by Corollary 2.3.3, there exists a constant $C>0$ such that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\log \frac{H(r)}{r^{n+3}}\right) \leq C r^{\gamma / 2-1} \quad \forall 0<r<1 . \tag{3.11}
\end{equation*}
$$

Integrating this differential inequality we get that the function

$$
\frac{H(r)}{r^{n+3} e^{\frac{2 C}{\gamma} r^{r / 2}}}
$$

is nonincreasing. In particular, there exists the limit

$$
H_{0}:=\lim _{r \rightarrow 0} \frac{H(r)}{r^{n+3} e^{C r^{r / 2}}}=\lim _{r \rightarrow 0} \frac{H(r)}{r^{n+3}}>0 .
$$

Since the function $\frac{H(r)}{r^{n+3}}$ is monotone increasing by (3.10), we conclude the proof.

Note now that by (3.9) we then deduce that

$$
\int_{\partial B_{1}} u_{r}^{2} d \mathcal{H}^{n} \geq H_{0}
$$

Therefore, since from (3.8) we also deduce the convergence of the traces of $u_{r}$ on $\partial B_{1}$, we finally get that

$$
\int_{\partial B_{1}} u_{0}^{2} d \mathcal{H}^{n} \geq H_{0}>0
$$

for every limiting profile $u_{0}$, thus showing that $u_{0} \not \equiv 0$.
3.3.3. Uniqueness of blowups. A key ingredient of the analysis of the free boundary we are going to perform is to show that
(i) the blowup $u_{0}$ is actually unique, meaning that the whole sequence $u_{r} \rightarrow u_{0}$ in $L^{2}\left(B_{1}\right)$ as $r \rightarrow 0$,
(ii) there is a rate of convergence of $u_{r}$ to $u_{0}$.

This is again an easy consequence of the epiperimetric inequality.
Proposition 3.3.4. Let $u$ be a solution to the Signorini problem and $K \subset \subset B_{1}^{\prime}$. Then there exist a constant $C>0$ such that for every $x_{0} \in$ $\Gamma_{3 / 2}(u) \cap K$ there exists a unique blowup $u^{x_{0}}$ and

$$
\begin{equation*}
\int_{\partial B_{1}}\left|u_{r}^{x_{0}}-u^{x_{0}}\right| d \mathcal{H}^{n} \leq C r^{\gamma / 2} \quad \text { for all } 0<r<\operatorname{dist}\left(K, \partial B_{1}\right) \tag{3.12}
\end{equation*}
$$

where $\gamma>0$ is the constant in Proposition 3.2.5.
Proof. Consider the case $x_{0}=0 \in \Gamma_{3 / 2}(u)$. Let $0<s<r<1$ be fixed radii; we can then compute as follows:

$$
\begin{align*}
\int_{\partial B_{1}}\left|u_{r}-u_{s}\right| \mathrm{d} \mathcal{H}^{n} & \leq \int_{\partial B_{1}} \int_{s}^{r} t^{-1}\left|\nabla u_{t} \cdot \nu-\frac{3}{2} u_{t}\right| \mathrm{d} t \mathrm{~d} \mathcal{H}^{n} \\
& \leq \sqrt{n \omega_{n}} \int_{s}^{r} t^{-1 / 2}\left(t^{-1} \int_{\partial B_{1}}\left|\nabla u_{t} \cdot \nu-\frac{3}{2} u_{t}\right|^{2} \mathrm{~d} \mathcal{H}^{n}\right)^{1 / 2} \mathrm{~d} t \\
& \stackrel{(3.6)}{\leq \sqrt{n \omega_{n}}} \int_{s}^{r} t^{-1 / 2}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} W_{3 / 2}(t, u)\right)^{1 / 2} d t \\
& \leq \sqrt{n \omega_{n}} \log (r / s)^{1 / 2}(W(r, u)-W(s, u))^{1 / 2} \tag{3.13}
\end{align*}
$$

By (3.2) and a simple dyadic argument (applying (3.13) to $s=r / 2=2^{-k}$ for $k \in \mathbb{N}$ sufficiently large) we easily deduce that for every $0<s<r<1$

$$
\int_{\partial B_{1}}\left|u_{r}-u_{s}\right| d \mathcal{H}^{n} \leq C r^{\gamma / 2}
$$

for a constant $C>0$ which in turn depends only on the constants in Proposition 3.2.5. Sending $s$ to 0 and eventually changing the value of the constant $C$, we then conclude. The same holds for every other $x_{0} \in \Gamma_{3 / 2}(u) \cap K$.
3.3.5. $C^{1, \alpha}$ regularity of the free boundary $\Gamma_{3 / 2}$. In view of the uniqueness result in Proposition 3.3.4 we are in the position to prove the $C^{1, \alpha}$ regularity $\Gamma_{3 / 2}$.

Proposition 3.3.6. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then there exists a dimensional constant $\alpha>0$ such $\Gamma_{3 / 2}(u)$ is a $C^{1, \alpha}$ regular submanifold of dimension $n-1$.

Proof. Without loss of generality it is enough to prove that if $0 \in$ $\Gamma_{3 / 2}(u)$ then $\Gamma_{3 / 2}(u)$ is a $C^{1, \alpha}$ submanifold in a neighborhood of 0 . To this aim we start noticing that by the openness of $\Gamma_{3 / 2}(u)$ there exists $s>0$ such that $B_{s} \cap \Gamma(u)=B_{s} \cap \Gamma_{3 / 2}(u)$. From the complete characterization of the homogeneous $3 / 2$ solutions, we have that for every $x_{0} \in B_{s} \cap \Gamma_{3 / 2}(u)$ the unique blowup $u_{0}^{x_{0}}$

$$
u_{0}^{x_{0}}=\lambda_{x_{0}} h_{e\left(x_{0}\right)}
$$

for some $\lambda_{x_{0}}>0$ and $\left|e\left(x_{0}\right)\right|=1$ with $e\left(x_{0}\right) \cdot e_{n+1}=0$, where

$$
h_{e\left(x_{0}\right)}(x)=u_{3 / 2}\left(x \cdot e\left(x_{0}\right), x_{n+1}\right)
$$

- cf. Chapter 2 Exercise 2.6.3.

We first prove the Hölder continuity of $x_{0} \mapsto \lambda_{x_{0}}$. To this aim we start observing that, thanks to Proposition 3.2.5 and Proposition 3.3.2 we can further estimate (3.10) in the following way

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\log \frac{H\left(x_{0}, r\right)}{r^{n+3}}\right)=\frac{2 r^{n+2}}{H\left(x_{0}, r\right)} W_{x_{0}}(r, u) \leq C r^{\gamma-1} \quad \forall r \in(0,1) \tag{3.14}
\end{equation*}
$$

Notice that by the strong convergence in $L^{2}\left(B_{1}\right)$ of the rescaled functions it follows that

$$
\lambda_{x_{0}}^{2}=c_{0} \lim _{r \rightarrow 0} \frac{H^{x_{0}}(r)}{r^{n+3}}
$$

for some dimensional constant $c_{0}>0$. Integrating (3.14) we can then deduce that

$$
\begin{equation*}
c_{0} \frac{H^{x_{0}}(r)}{r^{n+3}}-\lambda_{x_{0}}^{2} \leq C r^{\gamma} \quad \forall r \in(0,1) \tag{3.15}
\end{equation*}
$$

Notice moreover that for $x_{0}, y_{0} \in B_{s} \cap \Gamma_{3 / 2}(u)$ and $r=\left|x_{0}-y_{0}\right|^{1-\theta}$ with $\theta=\gamma /(1+\gamma)$ it holds that

$$
\begin{align*}
& \int_{\partial B_{1}}\left|u_{r}^{x_{0}}-u_{r}^{y_{0}}\right| \mathrm{d} \mathcal{H}^{n} \\
& \leq r^{-3 / 2} \int_{\partial B_{1}} \int_{0}^{1}\left|\nabla u\left(s\left(x_{0}+r x\right)+(1-s)\left(y_{0}+r x\right)\right)\right|\left|y_{0}-x_{0}\right| d s d \mathcal{H}^{n}(x) \\
& \leq C r^{-1}\left|y_{0}-x_{0}\right| \leq C\left|y_{0}-x_{0}\right|^{\theta} \tag{3.16}
\end{align*}
$$

Therefore we can conclude that for $r=\left|x_{0}-y_{0}\right|^{1-\theta}$ with $\theta=\gamma /(1+\gamma)$ it holds that

$$
\begin{align*}
\left|\lambda_{x_{0}}^{2}-\lambda_{y_{0}}^{2}\right| & \leq\left|\lambda_{x_{0}}^{2}-c_{0} \frac{H\left(x_{0}, r\right)}{r^{n+3}}\right|+c_{0}\left|\frac{H\left(x_{0}, r\right)}{r^{n+3}}-\frac{H\left(y_{0}, r\right)}{r^{n+3}}\right|+\left|c_{0} \frac{H\left(y_{0}, r\right)}{r^{n+3}}-\lambda_{y_{0}}^{2}\right| \\
& \leq C r^{\gamma}+C \int_{\partial B_{1}}\left|\left(u_{r}^{x_{0}}\right)^{2}-\left(u_{r}^{y_{0}}\right)^{2}\right| d \mathcal{H}^{n} \\
& \leq C r^{\gamma}+C \int_{\partial B_{1}}\left|u_{r}^{x_{0}}-u_{r}^{y_{0}}\right| d \mathcal{H}^{n} \leq C r^{\theta} \tag{3.17}
\end{align*}
$$

where we used the uniform $L^{\infty}$ (actually $C^{1,1 / 2}$ ) bound on $u_{r}^{x_{0}}$ for every $x_{0} \in \Gamma_{3 / 2}(u) \cap B_{s}$.

By Proposition 3.3.4 and a similar computation we can show that

$$
\begin{align*}
\int_{\partial B_{1}}\left|u_{0}^{x_{0}}-u_{0}^{y_{0}}\right| d \mathcal{H}^{n} \leq & \int_{\partial B_{1}}\left|u_{0}^{x_{0}}-u_{r}^{x_{0}}\right| d \mathcal{H}^{n}+\int_{\partial B_{1}}\left|u_{r}^{x_{0}}-u_{r}^{y_{0}}\right| d \mathcal{H}^{n} \\
& +\int_{\partial B_{1}}\left|u_{r}^{y_{0}}-u_{0}^{y_{0}}\right| d \mathcal{H}^{n} \\
& \leq \quad(3.12) \&(3.16) \tag{3.18}
\end{align*} r^{\gamma / 2}+C\left|x_{0}-y_{0}\right|^{\theta} \leq C\left|x_{0}-y_{0}\right|^{\gamma \theta / 2} .
$$

Note finally that there exists a geometric constant $\bar{C}>0$ such that

$$
\left|e\left(x_{0}\right)-e\left(y_{0}\right)\right| \leq \bar{C} \int_{\partial B_{1}}\left|h_{e\left(x_{0}\right)}-h_{e\left(y_{0}\right)}\right| d \mathcal{H}^{n}
$$

Therefore from (3.17) and (3.18) we easily deduce that

$$
\begin{equation*}
\left|e\left(x_{0}\right)-e\left(y_{0}\right)\right| \leq C\left|x_{0}-y_{0}\right|^{\gamma \theta / 2} \tag{3.19}
\end{equation*}
$$

Next we show that the vectors $e\left(x_{0}\right)$ do actually encode a geometric property of the free boundary. To this aim we introduce the following notation for cones centered at points $x_{0} \in \Gamma_{3 / 2}(u)$ : for any $\varepsilon>0$ we set

$$
C^{ \pm}\left(x_{0}, \varepsilon\right):=\left\{x \in \mathbb{R}^{n} \times\{0\}: \pm\left\langle x-x_{0}, e\left(x_{0}\right)\right\rangle \geq \varepsilon\left|x-x_{0}\right|\right\} .
$$

The main claim are then the following two: for every $\varepsilon>0$, there exists $\delta>0$ such that, for every $x_{0} \in \Gamma_{3 / 2}(u) \cap B_{s / 2}$,

$$
\begin{array}{ll}
u>0 & \text { in } C^{+}\left(x_{0}, \varepsilon\right) \cap B_{\delta}\left(x_{0}\right) . \\
u=0 & \text { in } C^{-}\left(x_{0}, \varepsilon\right) \cap B_{\delta}\left(x_{0}\right) . \tag{3.21}
\end{array}
$$

Assume by contradiction that there exist $x_{j} \in \Gamma_{3 / 2}(u) \cap B_{s / 2}$ with $x_{j} \rightarrow x_{0} \in$ $\Gamma_{3 / 2}(u) \cap \bar{B}_{s / 2}$, and $y_{j} \in C^{+}\left(x_{j}, \varepsilon\right)$ with $y_{j}-x_{j} \rightarrow 0$ such that $u\left(y_{j}\right)=0$. By the $C^{1,1 / 2}$ regularity of the solution, (3.12) and (3.18), the rescalings $u_{r_{j}}^{x_{j}}$ with $r_{j}:=\left|y_{j}-x_{j}\right|$, converge uniformly to $u_{0}^{x_{0}}$. Up to subsequences, by the Hölder continuity of the normals proved in (3.19) we can assume that $r_{j}^{-1}\left(y_{j}-x_{j}\right) \rightarrow z \in C^{+}\left(x_{0}, \varepsilon\right) \cap \mathbb{S}^{n-1}$ and by uniform convergence $u_{0}^{x_{0}}(z)=0$. This contradicts the fact that $x_{0} \in \Gamma_{3 / 2}(u)$ and $u_{0}^{x_{0}}>0$ on $C^{+}\left(x_{0}, \varepsilon\right) \backslash\{0\}$.

For what concerns (3.21), we argue as above: assume by contradiction that there exist $x_{j} \rightarrow x_{0} \in \Gamma_{3 / 2}(u) \cap \bar{B}_{s / 2}$ as above and $y_{j} \in C^{-}\left(x_{j}, \varepsilon\right)$ with $y_{j}-x_{j} \rightarrow 0$ such that $u\left(y_{j}\right)>0$, which implies $\partial_{n+1} u\left(y_{j}\right)=0$. By the $C^{1,1 / 2}$ regularity of the solution, (3.12) and (3.18), the rescalings $u_{r_{j}}^{x_{j}}$ with $r_{j}:=\left|y_{j}-x_{j}\right|$, converge uniformly to $u_{0}^{x_{0}}$. Up to subsequences, by the Hölder continuity of the normals proved in (3.19) we can assume that $r_{j}^{-1}\left(y_{j}-x_{j}\right) \rightarrow$ $z \in C^{-}\left(x_{0}, \varepsilon\right) \cap \mathbb{S}^{n-1}$ and by uniform convergence $\partial_{n+1} u_{0}^{x_{0}}(z)=0$. This contradicts the fact that $x_{0} \in \Gamma_{3 / 2}(u)$ and $\partial_{n+1} u_{0}^{x_{0}}>0$ on $C^{-}\left(x_{0}, \varepsilon\right) \backslash\{0\}$.

We can now conclude that $\Gamma_{3 / 2}(u) \cap B_{\rho}$ is the graph of a function $g$, for a suitably chosen small $\rho>0$. Without loss of generality assume that $e(0)=e_{n}$ and set

$$
g\left(x^{\prime \prime}\right):=\max \left\{t \in \mathbb{R}:\left(x^{\prime \prime}, t, 0\right) \in \Lambda(u)\right\}
$$

for all points $x^{\prime} \in \mathbb{R}^{n-1}$ with $\left|x^{\prime}\right| \leq \delta \sqrt{1-\varepsilon^{2}}$. Note that by (3.20) this maximum exists and belongs to $[-\varepsilon \delta, \varepsilon \delta]$. Moreover $u\left(x^{\prime}, t, 0\right)=0$ for every $-\varepsilon \delta<t<g\left(x^{\prime}\right)$ and $u\left(x^{\prime}, t, 0\right)>0$ for every $g\left(x^{\prime}\right)<t<\varepsilon \delta$. Eventually, by applying (3.20) with respect to arbitrary $\varepsilon$, we deduce that $g$ is differentiable and in view of (3.19) we can conclude that $g$ is $C^{1, \alpha}$ regular for a suitable $\alpha>0$.
3.4. Proof of the epiperimetric inequality. In this section we give a sketch of the proof of the epiperimetric inequality Theorem 3.2.2. To simplify the notation in the proof below we shall denote $W(1, \cdot)$ by $\mathscr{G}$.
3.4.1. Proof by contradiction. We argue by contradiction: we start off assuming the existence of numbers $\kappa_{j} \downarrow 0$ and of functions $c_{j} \in H^{1}\left(B_{1}\right)$ that are even symmetric with respect to $x_{n+1}, 3 / 2$-homogeneous, positive on $B_{1}^{\prime}$ and such that

$$
\begin{equation*}
\left(1-\kappa_{j}\right) \mathscr{G}\left(c_{j}\right) \leq \inf _{v \in \mathscr{A}_{c_{j}}} \mathscr{G}(v) \tag{3.22}
\end{equation*}
$$

where we recall

$$
\mathscr{A}_{c_{j}}:=\left\{u \in H^{1}\left(B_{1}\right): u \geq 0 \text { on } B_{1}^{\prime}, u=c_{j} \text { on }\left(\partial B_{1}\right)^{+}\right\} .
$$

Note that (3.22) is invariant if we replace $c_{j}$ with $\lambda c_{j}$ and $\lambda>0$ : in particular, we can assume that

$$
\begin{equation*}
\operatorname{dist}_{H^{1}}\left(c_{j}, \mathscr{H}_{3 / 2}\right)=1 \quad \text { for all } j \in \mathbb{N} \tag{3.23}
\end{equation*}
$$

where $\mathscr{H}_{3 / 2}$ denotes the closed convex cone of $3 / 2$-homogeneous solutions

$$
\mathscr{H}_{3 / 2}:=\left\{\lambda u_{3 / 2}\left(x \cdot e, x_{n+1}\right): \lambda>0,|e|=1, e \cdot e_{n+1}=0\right\}
$$

- cf. Exercise 2.6.3 Chapter 2. Moreover, by a change of coordinates depending on $j$, we can also assume that

$$
\left\|c_{j}-\lambda_{j} h\right\|_{H^{1}}=1
$$

where $h:=h_{e_{n}}$. We divide the rest of the proof in some intermediate steps.
3.4.2. Introduction of a family of auxiliary functionals. We rewrite inequality (3.22) conveniently and interpret it as an almost minimality condition for a sequence of new functionals.

We start noticing that, for every $\psi \in \mathscr{H}_{3 / 2}$ and for every $\varphi \in H^{1}\left(B_{1}\right)$, a simple integration by parts yields

$$
\begin{aligned}
\int_{B_{1}^{+}} \nabla \psi \cdot \nabla \varphi d x & =\int_{B_{1}^{+}} \operatorname{div}(\varphi \nabla \psi) d x \\
& =\int_{\left(\partial B_{1}\right)^{+}} \varphi \frac{\partial \psi}{\partial \nu} d \mathcal{H}^{n}-\int_{B_{1}^{\prime}} \varphi \frac{\partial \psi}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime} \\
& =\frac{3}{2} \int_{\left(\partial B_{1}\right)^{+}} \varphi \psi d \mathcal{H}^{n}-\int_{B_{1}^{\prime}} \varphi \frac{\partial \psi}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}
\end{aligned}
$$

where $\nu=\frac{x}{|x|}$ and we used that $\psi$ is $3 / 2$-homogeneous and $\Delta \psi=0$ in $B_{1}^{+}$. Therefore, by the even symmetry of $\psi$ we conclude

$$
\begin{equation*}
\int_{B_{1}} \nabla \psi \cdot \nabla \varphi d x=\frac{3}{2} \int_{\partial B_{1}} \varphi \psi d \mathcal{H}^{n}-2 \int_{B_{1}^{\prime}} \varphi \frac{\partial \psi}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) d \mathcal{H}^{n} \tag{3.24}
\end{equation*}
$$

In particular, (3.24) yields that the first variation of $\mathscr{G}_{3 / 2}$ at $\psi \in \mathscr{H}_{3 / 2}$ in the direction $\varphi \in H^{1}\left(B_{1}\right)$, formally defined as

$$
\delta \mathscr{G}_{3 / 2}(\psi)[\varphi]:=2 \int_{B_{1}} \nabla \psi \cdot \nabla \varphi d x-3 \int_{\partial B_{1}} \psi \varphi d \mathcal{H}^{n}
$$

satisfies

$$
\begin{equation*}
\delta \mathscr{G}_{3 / 2}(\psi)[\varphi]=-4 \int_{B_{1}^{\prime}} \varphi \frac{\partial \psi}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) d \mathcal{H}^{n} \tag{3.25}
\end{equation*}
$$

Furthermore, by taking into account the Signorini boundary conditions for $\psi$ and (3.24) applied to $\varphi=\psi$, we get

$$
\begin{equation*}
\mathscr{G}_{3 / 2}(\psi)=0 \quad \text { for all } \psi \in \mathscr{H}_{3 / 2} \tag{3.26}
\end{equation*}
$$

For any fixed $j$, let $v \in \mathscr{A}_{c_{j}}$ and use (3.25) (applied twice to $\psi_{j}=\lambda_{j} h$ with test functions $\varphi=c_{j}-\psi_{j}$ and $\varphi=v-\psi_{j}$ ) and (3.26), in order to rewrite (3.22) in the following form

$$
\begin{aligned}
& \left(1-\kappa_{j}\right)\left(\mathscr{G}\left(c_{j}\right)-\mathscr{G}\left(\psi_{j}\right)-\delta \mathscr{G}\left(\psi_{j}\right)\left[c_{j}-\psi_{j}\right]-4 \int_{B_{1}^{\prime}}\left(c_{j}-\psi_{j}\right) \frac{\partial \psi_{j}}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}\right) \\
& \quad \leq \mathscr{G}(v)-\mathscr{G}\left(\psi_{j}\right)-\delta \mathscr{G}\left(\psi_{j}\right)\left[v-\psi_{j}\right]-4 \int_{B_{1}^{\prime}}\left(v-\psi_{j}\right) \frac{\partial \psi_{j}}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}
\end{aligned}
$$

Simple algebraic manipulations then lead to

$$
\begin{align*}
&\left(1-\kappa_{j}\right)\left(\mathscr{G}\left(c_{j}-\psi_{j}\right)\right.\left.-4 \int_{B_{1}^{\prime}}\left(c_{j}-\psi_{j}\right) \frac{\partial \psi_{j}}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}\right) \\
& \leq \mathscr{G}\left(v-\psi_{j}\right)-4 \int_{B_{1}^{\prime}}\left(v-\psi_{j}\right) \frac{\partial \psi_{j}}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime} \tag{3.27}
\end{align*}
$$

for all $v \in \mathscr{A}_{c_{j}}$.
Next we introduce the following notation. We set

$$
\begin{gather*}
z_{j}:=c_{j}-\lambda_{j} h  \tag{3.28}\\
\mathscr{B}_{j}:=\left\{z \in z_{j}+H_{0}^{1}\left(B_{1}\right):\left.\left(z+\lambda_{j} h\right)\right|_{B_{1}^{\prime}} \geq 0\right\} \tag{3.29}
\end{gather*}
$$

Then we define the functionals $\mathscr{G}_{j}: L^{2}\left(B_{1}\right) \rightarrow(-\infty,+\infty]$ given by

$$
\mathscr{G}_{j}(z):= \begin{cases}\int_{B_{1}}|\nabla z|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{j}^{2} d \mathcal{H}^{n}-4 \lambda_{j} \int_{B_{1}^{\prime}} z \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}  \tag{3.30}\\ +\infty & \text { if } z \in \mathscr{B}_{j} \\ \text { otherwise }\end{cases}
$$

Note that the second term in the formula does not depend on $z$ but only on the boundary conditions $\left.z_{j}\right|_{\partial B_{1}}$.

Therefore, (3.27) reduces to

$$
\begin{equation*}
\left(1-\kappa_{j}\right) \mathscr{G}_{j}\left(z_{j}\right) \leq \mathscr{G}_{j}(z) \quad \text { for all } z \in \mathscr{B}_{j} . \tag{3.31}
\end{equation*}
$$

Moreover, note that by (3.23) and (3.28)

$$
\begin{equation*}
\left\|z_{j}\right\|_{H^{1}\left(B_{1}\right)}=1 \tag{3.32}
\end{equation*}
$$

This implies that we can extract a subsequence (not relabeled) such that
(a) $\left(z_{j}\right)_{j \in \mathbb{N}}$ converges weakly in $H^{1}\left(B_{1}\right)$ to some $z_{\infty}$;
(b) the corresponding traces $\left(\left.z_{j}\right|_{\partial B_{1}^{+}}\right)_{j \in \mathbb{N}}$ converge strongly in $L^{2}\left(\partial B_{1}^{+}\right)$;
(c) $\left(\lambda_{j}\right)_{j \in \mathbb{N}}$ has a limit $\lambda \in[0, \infty]$.

Now we establish the equi-coercivity and some further properties of the family of the auxiliary functionals $\left(\mathscr{G}_{j}\right)_{j \in \mathbb{N}}$. Notice that for all $w \in \mathscr{B}_{j}$, being $\left.w\right|_{\partial B_{1}}=\left.z_{j}\right|_{\partial B_{1}}$, it holds that

$$
\begin{align*}
-\int_{B_{1}^{\prime}} w \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}= & \int_{B_{1}^{\prime}}-\left(w+\lambda_{j} h\right) \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime} \\
& +\lambda_{j} \int_{B_{1}^{\prime}} h \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime} \geq 0 \tag{3.33}
\end{align*}
$$

where we used $\left.\left(w+\lambda_{j} h\right)\right|_{B_{1}^{\prime}} \geq 0$. Therefore, we deduce from the very definition (3.30) that for all $w \in \mathscr{B}_{j}$

$$
\begin{equation*}
\int_{B_{1}}|\nabla w|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{j}^{2} \leq \mathscr{G}_{j}(w) \tag{3.34}
\end{equation*}
$$

thus establishing the equi-coercivity of the sequence $\left(\mathscr{G}_{j}\right)_{j \in \mathbb{N}}$.
By taking into account (3.32), if $\lambda \in[0,+\infty)$ then
$\underset{j}{\liminf } \mathscr{G}_{j}\left(z_{j}\right) \geq 1-\int_{B_{1}} z_{\infty}^{2}-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n}-4 \lambda \int_{B_{1}^{\prime}} z_{\infty} \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}$.
Instead, if $\lambda=+\infty$ then (3.32) and (3.34) yield

$$
\begin{equation*}
\underset{j}{\liminf } \mathscr{G}_{j}\left(z_{j}\right) \geq 1-\int_{B_{1}} z_{\infty}^{2}-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n} \tag{3.35}
\end{equation*}
$$

Hence in all instances, it is not restrictive (up to passing to a further subsequence which we do not relabel) to assume that $\left(\mathscr{G}_{j}\left(z_{j}\right)\right)_{j \in \mathbb{N}} \subset \mathbb{R}$ has a limit in $(-\infty,+\infty]$. Finally, note that

$$
\begin{equation*}
\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)=+\infty \quad \Longleftrightarrow \quad \lim _{j} \lambda_{j} \int_{B_{1}^{\prime}} z_{j} \frac{\partial h}{\partial x_{n+1}}\left(x^{\prime}, 0^{+}\right) \mathrm{d} x^{\prime}=-\infty . \tag{3.36}
\end{equation*}
$$

3.4.3. Asymptotic analysis of $\left(\mathscr{G}_{j}\right)_{j \in \mathbb{N}}: \Gamma$-convergence. Next step of the proof is to upgrade the convergence of $z_{j}$ to $z_{\infty}$ to strongly $H^{1}\left(B_{1}\right)$ and to characterize the limiting functions $z_{\infty}$.

Here we prove a $\Gamma$-convergence result for the family of energies $\mathscr{G}_{j}$. To this aim, we recall some basic definitions of this important notion introduced by De Giorgi.

Definition 3.4.4. Let $(X, d)$ be a metric space and functionals $F_{j}: X \rightarrow$ $\mathbb{R}$ for $j \in \mathbb{N} \cup\{\infty\}$. We say that a sequence of functionals $F_{j} \Gamma$-converge to $F_{\infty}$ (and we write $\left.F_{\infty}=\Gamma-\lim F_{j}\right)$ if
(a) for all $\left(w_{j}\right)_{j \in \mathbb{N}}$ and $w \in X$ such that $w_{j} \rightarrow w$

$$
\begin{equation*}
\liminf _{j \rightarrow+\infty} F_{j}\left(w_{j}\right) \geq F_{\infty}(w) ; \tag{3.37}
\end{equation*}
$$

(b) for all $w \in X$ there exists $\left(w_{j}\right)_{j \in \mathbb{N}} \subset X$ such that $w_{j} \rightarrow w$ and

$$
\begin{equation*}
\limsup _{j \rightarrow+\infty} F_{j}\left(w_{j}\right) \leq F_{\infty}(w) \tag{3.38}
\end{equation*}
$$

$\left(w_{j}\right)_{j \in \mathbb{N}}$ is called a recovery sequence

This is a simple consequence of the definition.
LEMMA 3.4.5. Let $(X, d)$ be a metric space and $F_{j}, F_{\infty}: X \rightarrow \mathbb{R}$ functionals such that $F_{\infty}=\Gamma-\lim F_{j}$. If $\left(x_{j}\right)_{j \in \mathbb{N}} \subset X$ is a sequence such that

$$
\lim _{j \rightarrow+\infty} F_{j}\left(x_{j}\right)=\lim _{j \rightarrow+\infty} \inf _{X} F_{j}
$$

then every accumulation point $x_{\infty}$ of $\left(x_{j}\right)_{j \in \mathbb{N}}$ is a minimum point of $F_{\infty}$ and

$$
\min _{X} F_{\infty}=F_{\infty}\left(x_{\infty}\right)=\lim _{j \rightarrow+\infty} F_{j}\left(x_{j}\right)
$$

Proof. Assume that $x_{j_{k}} \rightarrow x_{\infty}$. Then, for every $w \in X$, by using (b) $\left(\left(w_{j}\right)\right.$ and $\left(\bar{x}_{j}\right)$ are recovery sequence for $w$ and $\left.x_{\infty}\right)$ and (a) we have that

$$
\begin{aligned}
F_{\infty}(w) & \stackrel{(b)}{\geq} \limsup _{j \rightarrow+\infty} F_{j}\left(w_{j}\right) \geq \lim _{j \rightarrow+\infty} \inf _{X} F_{j}=\lim _{j \rightarrow+\infty} F_{j}\left(x_{j}\right) \\
& =\lim _{k \rightarrow+\infty} F_{j_{k}}\left(x_{j_{k}}\right) \stackrel{(a)}{\geq} F_{\infty}\left(x_{\infty}\right) \stackrel{(b)}{\geq} \limsup _{j \rightarrow+\infty} F_{j}\left(\bar{x}_{j}\right) \geq \lim _{j \rightarrow+\infty} \inf _{X} F_{j}
\end{aligned}
$$

We prove the following proposition.
Proposition 3.4.6. We have the following $\Gamma$-convergence result.
(1) If $\lambda \in[0,+\infty)$, then $\left.\left(z_{\infty}+\lambda h\right)\right|_{B_{1}^{\prime}} \geq 0$ and $\Gamma\left(L^{2}\left(B_{1}\right)\right)-\lim _{j} \mathscr{G}_{j}=$ $\mathscr{G}_{\infty}^{(1)}$, where
$\mathscr{G}_{\infty}^{(1)}(z):= \begin{cases}\int_{B_{1}}|\nabla z|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n} \\ -4 \lambda \int_{B_{1}^{\prime}}^{z \frac{\partial h}{\partial x_{n+1}}\left(\hat{x}, 0^{+}\right) \mathrm{d} x^{\prime}} & \text { if } z \in \mathscr{B}_{\infty}^{(1)}, \\ +\infty & \text { if } z \in L^{2}\left(B_{1}\right) \backslash \mathscr{B}_{\infty}^{(1)},\end{cases}$
where

$$
\mathscr{B}_{\infty}^{(1)}:=\left\{z \in z_{\infty}+H_{0}^{1}\left(B_{1}\right):\left.(z+\lambda h)\right|_{B_{1}^{\prime}} \geq 0\right\}
$$

(2) If $\lambda=+\infty$ and $\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)<+\infty$, then $\left.z_{\infty}\right|_{B_{1}^{\prime,-}}=0$ with $B_{1}^{\prime,-}=$ $B_{1}^{\prime} \cap\left\{x_{n} \leq 0\right\}$ and $\Gamma\left(L^{2}\left(B_{1}\right)\right)-\lim _{j} \mathscr{G}_{j}=\mathscr{G}_{\infty}^{(2)}$, where
$\mathscr{G}_{\infty}^{(2)}(z):= \begin{cases}\int_{B_{1}}|\nabla z|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n} & \text { if } z \in \mathscr{B}_{\infty}^{(2)}, \\ +\infty & \text { if } z \in L^{2}\left(B_{1}\right) \backslash \mathscr{B}_{\infty}^{(1)},\end{cases}$
where

$$
\mathscr{B}_{\infty}^{(2)}:=\left\{z \in z_{\infty}+H_{0}^{1}\left(B_{1}\right):\left.z\right|_{B_{1}^{\prime,-}}=0\right\}
$$

(3) if $\vartheta=+\infty$ and $\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)=+\infty$, then $\Gamma\left(L^{2}\left(B_{1}\right)\right)-\lim _{j} \mathscr{G}_{j}=\mathscr{G}_{\infty}^{(3)}$, where $\mathscr{G}_{\infty}^{(3)} \equiv+\infty$ on the whole $L^{2}\left(B_{1}\right)$.

If $\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)<+\infty$, we show that actually $\left(z_{j}\right)_{j \in \mathbb{N}}$ converges strongly to $z_{\infty}$ in $H^{1}\left(B_{1}\right)$. The equi-coercivity of $\left(\mathscr{G}_{j}\right)_{j \in \mathbb{N}}$ established in (3.34), the Poincarè inequality and the condition $\left\|z_{j}\right\|_{H^{1}}^{2}=1$ in (3.32) imply the existence of an absolute minimizer $\zeta_{j}$ of $\mathscr{G}_{j}$ on $L^{2}$ with fixed $i \in\{1,2\}$. Next note that by $(3.31) z_{j}$ is an almost minimizer of $\mathscr{G}_{j}$, in the following sense:

$$
0 \leq \mathscr{G}_{j}\left(z_{j}\right)-\mathscr{G}_{j}\left(\zeta_{j}\right) \leq \kappa_{j} \mathscr{G}_{j}\left(z_{j}\right) \leq \kappa_{j} \cdot \sup _{j} \mathscr{G}_{j}\left(z_{j}\right)
$$

Hence, recalling that we have assumed the existence of the limit $\mathscr{G}\left(z_{j}\right)$, we can apply Lemma 3.4 .5 to infer that $z_{\infty}$ is the unique (due to the strict convexity of $\left.\mathscr{G}_{\infty}^{(i)}\right)$ minimizers of $\mathscr{G}_{\infty}^{(i)}$ for $i=1,2$. In particular, using the strong convergence of the traces in $L^{2}\left(\partial B_{1}^{+}\right)$we infer that

$$
\int_{B_{1}}\left|\nabla z_{j}\right|^{2} \mathrm{~d} x \rightarrow \int_{B_{1}}\left|\nabla \zeta_{\infty}\right|^{2} \mathrm{~d} x
$$

in turn implying the strong convergence of $\left(z_{j}\right)_{j \in \mathbb{N}}$ to $z_{\infty}$ in $H^{1}\left(B_{1}\right)$.
3.4.7. Characterization of $z_{\infty}$ in case (1). We recall what we have achieved so far about $z_{\infty}$, namely
(i) $\left\|z_{\infty}\right\|_{H^{1}}=1$,
(ii) $z_{\infty}$ is $3 / 2$-homogeneous and even with respect to $x_{n+1}=0$,
(iii) $z_{\infty}$ is the unique minimizer of $\mathscr{G}_{\infty}^{(1)}$ with respect to its own boundary conditions,
(iv) $z_{\infty} \in \mathscr{B}_{\infty}^{(1)}$, i.e. $z_{\infty}+\lambda h \geq 0$ on $B_{1}^{\prime}$.

As an easy consequence of the properties above, we show now that

$$
w_{\infty}:=z_{\infty}+\lambda h
$$

is a solution of the Signorini problem. To show this claim, for every $z \in \mathscr{B}_{\infty}^{(1)}$ we set $w:=z+\vartheta h$ and by means of (3.25) we write

$$
\begin{aligned}
& \mathscr{G}_{\infty}^{(1)}(z)= \int_{B_{1}}|\nabla w|^{2} d x-\vartheta^{2} \int_{B_{1}}|\nabla h|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n} \\
&-2 \lambda \int_{B_{1}} \nabla z \cdot \nabla h d x-4 \lambda \int_{B_{1}^{\prime}} z \frac{\partial h}{\partial x_{n}}\left(\hat{x}, 0^{+}\right) \mathrm{d} x^{\prime} \\
& \stackrel{(3.25)}{=} \int_{B_{1}}|\nabla w|^{2} d x-\lambda^{2} \int_{B_{1}}|\nabla h|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} z_{\infty}^{2} d \mathcal{H}^{n} \\
&-3 \vartheta \int_{\partial B_{1}} z_{\infty} h d \mathcal{H}^{n} .
\end{aligned}
$$

Therefore, since $z_{\infty}$ is the unique minimizer of $\mathscr{G}_{\infty}^{(1)}$ and $w_{\infty} \geq 0$ on $B_{1}^{\prime}$, it follows from the previous computation that $w_{\infty}$ is a solution of the Signorini problem. Using now the $3 / 2$-homogeneity of $w_{\infty}$ and the classification of global solutions of the thin obstacle problem with such homogeneity, we deduce that $w_{\infty}$, and hence $z_{\infty}$, belongs to $\mathscr{H}_{3 / 2}$. This is a contradiction because $z_{j} \rightarrow z_{\infty} \in \mathscr{H}_{3 / 2}$ but $\operatorname{dist}_{H^{1}}\left(z_{j}, \mathscr{H}_{3 / 2}\right)=1$.
3.4.8. Discussion of case (3). The heuristic idea to rule out case (3) is to correct the scaling of the energies in order to get a non-trivial $\Gamma$-limit for the rescaled functionals.

More in details, we start recalling that by (3.36) if $\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)=+\infty$, then

$$
\begin{equation*}
\gamma_{j}:=-4 \lambda_{j} \int_{B_{1}^{\prime}} z_{j} \frac{\partial h}{\partial x_{n+1}}\left(\hat{x}, 0^{+}\right) \mathrm{d} x^{\prime} \uparrow+\infty . \tag{3.39}
\end{equation*}
$$

Further, the convergence $z_{j} \rightarrow z_{\infty}$ in $L^{2}\left(B_{1}^{\prime}\right)$ and (3.33) yield

$$
\begin{aligned}
\lim _{j} \frac{\gamma_{j}}{\lambda_{j}} & =-4 \lim _{j} \int_{B_{1}^{\prime}} z_{j} \frac{\partial h}{\partial x_{n}}\left(\hat{x}, 0^{+}\right) \mathrm{d} x^{\prime} \\
& =-4 \int_{B_{1}^{\prime}} z_{\infty} \frac{\partial h}{\partial x_{n}}\left(\hat{x}, 0^{+}\right) \mathrm{d} x^{\prime} \in[0,+\infty)
\end{aligned}
$$

so that

$$
\begin{equation*}
\lambda_{j} \gamma_{j}^{-1 / 2} \rightarrow \uparrow+\infty \tag{3.40}
\end{equation*}
$$

It is then immediate to deduce that the right rescaling of the functionals $\mathscr{G}_{j}$ is obtained by dividing by a factor $\gamma_{j}^{-1}$ : namely, for every $z \in \mathscr{B}_{j}$ we consider $\gamma_{j}^{-1} \mathscr{G}_{j}(z)$ and notice that

$$
\begin{equation*}
\gamma_{j}^{-1} \mathscr{G}_{j}(z)=\widetilde{\mathscr{G}}_{j}\left(\gamma_{j}^{-1 / 2} z\right) \tag{3.41}
\end{equation*}
$$

where the functional $\widetilde{\mathscr{G}_{j}}$ is given by

$$
\widetilde{\mathscr{G}}_{j}(w):= \begin{cases}\int_{B_{1}}|\nabla w|^{2} d x-\frac{3}{2} \int_{\partial B_{1}} w^{2} d \mathcal{H}^{n}-4 \frac{\lambda_{j}}{\gamma_{j}^{1 / 2}} \int_{B_{1}^{\prime}} w \frac{\partial h}{\partial x_{n}}\left(\hat{x}, 0^{+}\right) d \mathcal{H}^{n}  \tag{3.42}\\ +\infty & \text { if } w \in \widetilde{B}_{j} \\ \text { otherwise },\end{cases}
$$

where

$$
\begin{equation*}
\widetilde{\mathscr{B}}_{j}:=\left\{w \in \gamma_{j}^{-1 / 2} z_{j}+H_{0}^{1}\left(B_{1}\right):\left.\left(w+\lambda_{j} \gamma_{j}^{-1 / 2} h\right)\right|_{B_{1}^{\prime}} \geq 0\right\} \tag{3.43}
\end{equation*}
$$

Setting $\widetilde{z_{j}}:=\gamma_{j}^{-1 / 2} z_{j}$, by (3.32) and $\gamma_{j} \uparrow+\infty$ we get $\widetilde{z_{j}} \rightarrow 0$ in $H^{1}\left(B_{1}\right)$. In addition, (3.41) and the very definition of $\gamma_{j}$ in (3.39) imply that

$$
\begin{equation*}
\widetilde{\mathscr{G}_{j}}\left(\widetilde{z_{j}}\right)=1+O\left(\gamma_{j}^{-1}\right) . \tag{3.44}
\end{equation*}
$$

Furthermore, (3.31) rewrites as

$$
\left(1-\kappa_{j}\right) \widetilde{\mathscr{G}}_{j}\left(\widetilde{z}_{j}\right) \leq \widetilde{\mathscr{G}}_{j}(\widetilde{z}) \quad \text { for all } \widetilde{z} \in \widetilde{\mathscr{B}}_{j}
$$

In particular, by taking into account (3.40), $\tilde{z}_{j} \rightarrow 0$ in $H^{1}\left(B_{1}\right)$ and (3.44), namely $\lim _{j} \widetilde{\mathscr{G}}_{j}\left(\widetilde{z_{j}}\right)<+\infty$, we can argue exactly as in case $(2)$ to deduce that

$$
\Gamma\left(L^{2}\left(B_{1}\right)\right)-\lim _{j} \widetilde{\mathscr{G}_{j}}=\widetilde{G_{\infty}}
$$

with

$$
\widetilde{\mathscr{G}_{\infty}}(\widetilde{z}):= \begin{cases}\int_{B_{1}}|\nabla \widetilde{z}|^{2} d x & \text { if } \widetilde{z} \in \widetilde{\mathscr{B}_{\infty}}, \\ +\infty & \text { otherwise },\end{cases}
$$

where $\widetilde{B_{\infty}}:=\left\{\widetilde{z} \in H_{0}^{1}\left(B_{1}\right):\left.\widetilde{z}\right|_{B_{1}^{\prime,-}}=0\right\}$.
By the convergence $\widetilde{z_{j}} \rightarrow 0$ in $H^{1}\left(B_{1}\right)$, the null function turns out to be the unique minimizer of $\widetilde{\mathscr{G}_{\infty}}$ and $\lim _{j} \widetilde{\mathscr{G}_{j}}\left(\widetilde{z_{j}}\right)=\widetilde{\mathscr{G}_{\infty}}(0)=0$, thus leading to a contradiction to (3.44).
3.4.9. Characterization of $z_{\infty}$ in case (2). To this aim, as already pointed out, we need to investigate more closely the properties of the limit $z_{\infty}$. From now on we assume that we are in the setting of case (2): i.e. $\lambda=+\infty$ and $\lim _{j} \mathscr{G}_{j}\left(z_{j}\right)<+\infty$.

We exploit the fact that $\psi_{j}$ is a point of minimal distance of $c_{j}$ from $\mathscr{H}_{3 / 2}$ to deduce that $z_{\infty}$ is orthogonal to the tangent space $T_{h} \mathscr{H}_{3 / 2}$. We start noticing that $\lambda=+\infty$ implies that $\lambda_{j}>0$ for all $j$ large enough. Moreover, by the minimal distance condition (3.23) we infer that, for all $\nu \in \mathbb{S}^{n-1}$ and $\lambda \geq 0$,

$$
\left\|z_{j}\right\|_{H^{1}} \leq\left\|\psi_{j}-\lambda h_{\nu}+z_{j}\right\|_{H^{1}}
$$

or, equivalently,

$$
\begin{equation*}
-\left\|\psi_{j}-\lambda h_{\nu}\right\|_{H^{1}\left(B_{1}\right)}^{2} \leq 2\left\langle z_{j}, \psi_{j}-\lambda h_{\nu}\right\rangle \tag{3.45}
\end{equation*}
$$

Therefore, assuming $\left(\lambda_{j}, e_{n}\right) \neq(\lambda, \nu)$ and renormalizing (3.45), we get

$$
-\left\|\psi_{j}-\lambda h_{\nu}\right\|_{H^{1}} \leq 2\left\langle z_{j}, \frac{\psi_{j}-\lambda h_{\nu}}{\left\|\psi_{j}-\lambda h_{\nu}\right\|_{H^{1}}}\right\rangle
$$

and by taking the limit $(\lambda, \nu) \rightarrow\left(\lambda_{j}, e_{n-1}\right)$ we conclude

$$
\begin{equation*}
\left\langle z_{j}, \zeta\right\rangle=0 \quad \text { for all } \zeta \in T_{\psi_{j}} \mathscr{H}_{3 / 2}=T_{h} \mathscr{H}_{3 / 2} \tag{3.46}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{h} \mathscr{H}_{3 / 2}=\left\{\alpha h+v_{e_{n}, \xi}: \xi \cdot e_{n+1}=\xi \cdot e_{n}=0, \alpha \in \mathbb{R}\right\} \tag{3.47}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
v_{e, \xi}(x):=(\hat{x} \cdot \xi) \sqrt{\sqrt{(\hat{x} \cdot e)^{2}+x_{n+1}^{2}}+\hat{x} \cdot e} \tag{3.48}
\end{equation*}
$$

Note moreover that

$$
v_{e, \xi}(x)=\sqrt{2}(\hat{x} \cdot \xi) \operatorname{Re}\left[\left(\hat{x} \cdot e+i x_{n+1}\right)^{1 / 2}\right]
$$

where the determination of the complex square root is chosen in such a way that $v_{e, \xi} \geq 0$ in $\left\{x_{n+1}=0\right\}$.

Now letting $j \uparrow \infty$ in the equality above we get that

$$
\begin{equation*}
\left\langle z_{\infty}, \zeta\right\rangle=0 \quad \text { for all } \zeta \in T_{h} \mathscr{H}_{3 / 2} \tag{3.49}
\end{equation*}
$$

A consequence of Let $z_{\infty}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ satisfy the following:
(a) $z_{\infty}$ solves the boundary value problem

$$
\begin{cases}\Delta z_{\infty}=0 & \text { in } B_{1} \backslash\left\{x_{n} \leq 0\right\}  \tag{3.50}\\ z_{\infty}=0 & \text { on } B_{1}^{\prime,-}\end{cases}
$$

(b) $z_{\infty}\left(x^{\prime}, x_{n+1}\right)=z_{\infty}\left(x^{\prime},-x_{n+1}\right)$ for every $\left(x^{\prime}, x_{n+1}\right) \in B_{1}$;
(c) $z_{\infty}$ is $3 / 2$-homogeneous,
is that

$$
\begin{equation*}
z_{\infty}(x)=a_{0} h(x)+\left(\sum_{i=1}^{n-1} a_{i} x_{i}\right) \sqrt{\sqrt{x_{n}^{2}+x_{n+1}^{2}}+x_{n}} \tag{3.51}
\end{equation*}
$$

for some $a_{0}, \ldots, a_{n-1} \in \mathbb{R}$, i.e. $z_{\infty} \in T_{h} \mathscr{H}_{3 / 2}$ (cp. (3.47)). The proof is left as an exercise.

We finally reach a contradiction: since $z_{\infty}$ has the form in (3.53), we can choose $h$ as test function in (??) to deduce $a_{0}=0$. Then take $\zeta=v_{e_{n-1}, \xi}$ (cp. (3.48)) to deduce $a_{1}=\ldots=a_{n-2}=0$ by the arbitrariness of $\xi \in \mathbb{S}^{n-1}$ with $\xi \cdot e_{n}=\xi \cdot e_{n-1}=0$.

Therefore, $z_{\infty}$ is the null function, contradicting the strong convergence $1=\left\|z_{j}\right\| \rightarrow\left\|z_{\infty}\right\|$.
3.4.10. Proof of the $\Gamma$-convergence. We refer to the paper $[8]$.

### 3.5. Exercises.

ExERCISE 3.5.1. Let $z_{\infty}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ satisfy the following:
(a) $z_{\infty}$ solves the boundary value problem

$$
\begin{cases}\Delta z_{\infty}=0 & \text { in } B_{1} \backslash\left\{x_{n} \leq 0\right\}  \tag{3.52}\\ z_{\infty}=0 & \text { on } B_{1}^{\prime,-}\end{cases}
$$

(b) $z_{\infty}\left(x^{\prime}, x_{n+1}\right)=z_{\infty}\left(x^{\prime},-x_{n+1}\right)$ for every $\left(x^{\prime}, x_{n+1}\right) \in B_{1}$;
(c) $z_{\infty}$ is $3 / 2$-homogeneous.

Then,

$$
\begin{equation*}
z_{\infty}(x)=a_{0} h(x)+\left(\sum_{i=1}^{n-1} a_{i} x_{i}\right) \sqrt{\sqrt{x_{n}^{2}+x_{n+1}^{2}}+x_{n}} \tag{3.53}
\end{equation*}
$$

for some $a_{0}, \ldots, a_{n-1} \in \mathbb{R}$.
Hint. Follow the three steps:
(I) to show the Hölder regularity of $z_{\infty}$ and of all its transversal derivatives in the sense of distributions

$$
v_{\alpha}:=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n-1}} z_{\infty}}{\partial x_{n-1}^{\alpha_{n-1}}} \quad \text { with } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{N}^{n-2}
$$

(II) the use of a bidimensional conformal transformation in the variable $\left(x_{n}, x_{n+1}\right)$ to reduce the problem to the upper half ball $B_{1}^{+}$;
(III) the classification of all 3/2-homogeneous solutions.

## 4. The free boundary: the singular points

In this chapter we investigate the structure of another class of free boundary points, the singular points.

Definition 4.0.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the thin obstacle problem. A point of the free boundary $x_{0} \in \Gamma(u)$ is called singular it the coincidence set $\Lambda(u)$ has Lebesgue density zero at $x_{0}$ :

$$
\lim _{r \rightarrow 0^{+}} \frac{\mathcal{H}^{n}\left(\Lambda(u) \cap B_{r}^{\prime}\left(x_{0}\right)\right)}{r^{n}}=0 .
$$

4.1. Frequency characterization. The singular points are also characterize by the value of their frequency.

Lemma 4.1.1. A point of the free boundary $x_{0}$ is singular if and only if its frequency equals $2 m$ for some $m \in \mathbb{N} \backslash\{0\}$.

Proof. We start showing that if $x_{0} \in \Gamma(u)$ is a singular point, then its frequency is an even natural number. Without loss of generality, assume that $x_{0}=0$ and consider the blowup rescalings

$$
u_{r}(y):=\frac{r^{n / 2} u(r y)}{\int_{\partial B_{r}\left(x_{0}\right)} u^{2} \mathrm{~d} \mathcal{H}^{n}} .
$$

Let $u_{0}$ be any blowup of $u$ at 0 . We claim that $u_{0}$ is a harmonic function. Indeed, consider the Signorini boundary condition for the rescaled solution $u_{r}$ :

$$
\Delta u_{r}:=2 \partial_{n+1} u_{r} \mathcal{H}^{n}\left\llcorner\Lambda\left(u_{r}\right) .\right.
$$

We note next that by definition of singular point we have that

$$
\lim _{r \rightarrow 0^{+}} \mathcal{H}^{n}\left(\Lambda\left(u_{r}\right) \cap B_{1}^{\prime}\right)=\lim _{r \rightarrow 0^{+}} \frac{\mathcal{H}^{n}\left(\Lambda(u) \cap B_{r}^{\prime}\left(x_{0}\right)\right)}{r^{n}}=0
$$

which implies that $\mathcal{H}^{n}\left\llcorner\Lambda\left(u_{r}\right)\right.$ converges to zero as a measure in $B_{1}^{\prime}$. Moreover, since $u_{r}$ converges $C^{1}\left(B_{1}+\cup B_{1}^{\prime}\right)$ to $u_{0}$, we also infer that

$$
\Delta u_{r}=2 \partial_{n+1} u_{r} \mathcal{H}^{n}\left\llcorner\Lambda ( u _ { r } ) \rightharpoonup ^ { * } 2 \partial _ { n + 1 } u _ { 0 } \mathcal { H } ^ { n } \left\llcorner\Lambda\left(u_{0}\right)=\Delta u_{0},\right.\right.
$$

as measure, thus proving that $u_{0}$ is harmonic in $B_{1}$ and therefore, by its homogeneity, $u_{0}$ is harmonic in the entire space. A homogeneous (hence with polynomial growth) harmonic function is by Liouville theorem a polynom, and therefore its homogeneity equals an integer $k \in \mathbb{N}$. Finally, considering that $u_{0}$ is positive on $\mathbb{R}^{n} \times\{0\}$ and even symmetric with respect to $x_{n+1}$, one easily infers that the degree of $u_{0}$ is indeed even (cf. Exercise 4.4.1).

For the reverse implication, let 0 be a point of the free boundary with frequency $2 m$ for some $m \in \mathbb{N} \backslash\{0\}$, and let $u_{0}$ be any blowup of $u$ at 0 . We claim that $u_{0}$ is indeed a harmonic polynom. To this aim, we consider the harmonic polynoms

$$
p_{l}(x):=\Re\left[\left(x_{l}+i x_{n+1}\right)^{2 m}\right] \quad l=1, \ldots, n,
$$

and we consider a radial cut-off functions $\psi(x):=\varphi(|x|)$ with $\psi \in C_{c}^{\infty}\left(B_{1}\right)$. Recalling that $\Delta u_{0}=2 \partial_{n+1} u_{0} \mathcal{H}^{n}\left\llcorner\Lambda\left(u_{0}\right)\right.$ we can test as follows:

$$
\begin{align*}
2 \int_{\Lambda\left(u_{0}\right)} \partial_{n+1} u_{0} \psi p_{l} \mathrm{~d} x^{\prime} & =-\int_{B_{1}} \nabla u_{0} \cdot \nabla\left(\psi p_{l}\right) \mathrm{d} x \\
& =-\int_{B_{1}} p_{l} \nabla u_{0} \cdot \nabla \psi \mathrm{~d} x-\int_{B_{1}} \psi \nabla u_{0} \cdot \nabla p_{l} \mathrm{~d} x \\
& =\int_{B_{1}}\left(-p_{l} \nabla u_{0} \cdot \nabla \psi+u_{0} \nabla \psi \cdot \nabla p_{l}\right) \mathrm{d} x, \tag{4.1}
\end{align*}
$$

where we used in (4.1) that $\Delta p_{l}=0$. We consider next that $\nabla \psi(x)=$ $\varphi^{\prime}(|x|) \frac{x}{|x|}$ and infer that

$$
\begin{align*}
2 \int_{\Lambda\left(u_{0}\right)} \partial_{n+1} u_{0} \psi p_{l} \mathrm{~d} x^{\prime} & =\int_{B_{1}} \varphi^{\prime}(|x|)\left(-p_{l} \nabla u_{0} \cdot \frac{x}{|x|}+u_{0} \nabla p_{l} \cdot \frac{x}{|x|}\right) \mathrm{d} x \\
& =\int_{B_{1}} \frac{\varphi^{\prime}(|x|)}{|x|} \varphi^{\prime}(|x|)\left(-2 m p_{l} u_{0}+2 m u_{0} p_{l}\right) \mathrm{d} x=0 \tag{4.2}
\end{align*}
$$

where we also used the homogeneity of $u_{0}$ and $p_{l}$ to infer that

$$
\nabla p_{l} \cdot x=2 m p_{l} \quad \text { and } \quad \nabla u_{0} \cdot x=2 m u_{0} .
$$

Summing now the equations (4.2) for $l=1, \ldots, n$ and setting $P:=\sum_{l=1}^{n} p_{l}$, we infer that

$$
\begin{equation*}
\int_{\Lambda\left(u_{0}\right)} \partial_{n+1} u_{0} \psi P \mathrm{~d} x^{\prime}=0 . \tag{4.3}
\end{equation*}
$$

Since $P(x)>0$ for every $x \neq 0$ and $\partial_{n+1} u_{0} \leq 0$, it follow from (4.3) that $\partial_{n+1} u_{0} \equiv 0$, i.e. $\Delta u_{0}=0$.

In particular, $u_{0}$ is a harmonic polynom of degree $2 m$ : this implies that

$$
\mathcal{H}^{n}\left(\Lambda\left(u_{0}\right) \cap B_{1}\right)=0,
$$

(cp. Exercise 4.4.2). From the uniform convergence of $u_{r}$ to $u_{0}$ we infer that

$$
\limsup _{r \rightarrow 0^{+}} \Lambda\left(u_{r}\right):=\cap_{r>0} \cup_{0<s<r} \Lambda\left(u_{r}\right) \subset \Lambda\left(u_{0}\right),
$$

and therefore

$$
\lim _{r \rightarrow 0^{+}} \frac{\mathcal{H}^{n}\left(\Lambda(u) \cap B_{r}^{\prime}\left(x_{0}\right)\right)}{r^{n}}=\lim _{r \rightarrow 0^{+}} \mathcal{H}^{n}\left(\Lambda\left(u_{r}\right) \cap B_{1}^{\prime}\right)=\mathcal{H}^{n}\left(\Lambda\left(u_{0}\right) \cap B_{1}^{\prime}\right)=0,
$$

i.e. 0 is a singular point.
4.2. Uniqueness of blowups. In this section we show that the blowup at any singular point is unique. This is a consequence of the following monotonicity formula of Monneau-type (see [12]).

Proposition 4.2.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the thin obstacle problem and let $x_{0} \in \Gamma(u)$ be a singular point with frequency $2 m$ for some
$m \in \mathbb{N} \backslash\{0\}$. Then, for every homogeneous harmonic polynom of degree $2 m$ with

$$
p\left(x^{\prime}, 0\right) \geq 0 \quad \text { and } \quad p\left(x^{\prime}, x_{n+1}\right)=p\left(x^{\prime},-x_{n+1}\right)
$$

the function

$$
r \mapsto M_{u}\left(x_{0}, r, p\right):=\frac{1}{r^{n+4 m}} \int_{\partial B_{r}\left(x_{0}\right)}(u-p)^{2} d \mathcal{H}^{n}
$$

is monotone nondecreasing for $r \in\left(0, \operatorname{dist}\left(x_{0}, \partial B_{1}\right)\right)$
Proof. Without loss of generality we assume that $x_{0}=0$ and compute the derivative of $M(r):=M_{u}\left(x_{0}, r, p\right)$ : set for simplicity $w:=u-p$,

$$
\begin{align*}
M^{\prime}(r)= & \frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{1}{r^{4 m}} \int_{\partial B_{1}} w^{2}(r y) \mathrm{d} \mathcal{H}^{n}(y)\right) \\
= & -\frac{4 m}{r^{4 m+1}} \int_{\partial B_{1}} w^{2}(r y) \mathrm{d} \mathcal{H}^{n}(y)+\frac{2}{r^{4 m}} \int_{\partial B_{1}} w(r y) \partial_{\nu} w(r y) \mathrm{d} \mathcal{H}^{n}(y) \\
= & -\frac{4 m}{r^{n+4 m+1}} \int_{\partial B_{r}} w^{2} \mathrm{~d} \mathcal{H}^{n}+\frac{2}{r^{n+4 m}} \int_{\partial B_{r}} w \partial_{\nu} w \mathrm{~d} \mathcal{H}^{n} \\
= & -\frac{4 m}{r^{n+4 m+1}} \int_{\partial B_{r}} w^{2} \mathrm{~d} \mathcal{H}^{n}+\frac{2}{r^{n+4 m}} \int_{B_{r}}|\nabla w|^{2} \mathrm{~d} x \\
& +\frac{2}{r^{n+4 m}} \int_{B_{r}} w \Delta w \mathrm{~d} x . \tag{4.4}
\end{align*}
$$

We notice next that

$$
w \Delta w=(u-p) \Delta(u-p)=-p \Delta u=-p \partial_{n+1} u \mathcal{H}^{n}\llcorner\Lambda(u) \geq 0 .
$$

Moreover,

$$
\begin{aligned}
\int_{B_{r}}|\nabla w|^{2} \mathrm{~d} x= & \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x+\int_{B_{r}}|\nabla p|^{2} \mathrm{~d} x+2 \int_{B_{r}} \nabla u \cdot \nabla p \mathrm{~d} x \\
= & \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x+\int_{B_{r}}|\nabla p|^{2} \mathrm{~d} x-2 \int_{B_{r}} u \Delta p \mathrm{~d} x \\
& +2 \int_{\partial B_{r}} u \partial_{n} p \mathrm{~d} \mathcal{H}^{n} \\
= & \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x+\int_{B_{r}}|\nabla p|^{2} \mathrm{~d} x+\frac{4 m}{r} \int_{\partial B_{r}} u p \mathrm{~d} \mathcal{H}^{n},
\end{aligned}
$$

where we use the homogeneity of $p$ :

$$
\nabla p \cdot \frac{x}{|x|}=\frac{2 m}{|x|} p
$$

Therefore, we derive from (4.4)

$$
\begin{aligned}
M^{\prime}(r)= & \frac{2}{r^{n+4 m}} \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x-\frac{4 m}{r^{n+4 m+1}} \int_{\partial B_{r}} u^{2} \mathrm{~d} \mathcal{H}^{n} \\
& +\frac{2}{r^{n+4 m}} \int_{B_{r}}|\nabla p|^{2} \mathrm{~d} x-\frac{4 m}{r^{n+4 m+1}} \int_{\partial B_{r}} u^{2} \mathrm{~d} \mathcal{H}^{n} \\
= & \frac{2}{r^{n+4 m}} \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x-\frac{4 m}{r^{n+4 m+1}} \int_{\partial B_{r}} u^{2} \mathrm{~d} \mathcal{H}^{n} \geq 0,
\end{aligned}
$$

where we used that

$$
I_{u}(r)=\frac{r \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x}{\int_{\partial B_{r}} u^{2}} \geq I_{u}\left(0^{+}\right)=2 m \equiv I_{p}(r)=\frac{r \int_{B_{r}}|\nabla p|^{2} \mathrm{~d} x}{\int_{\partial B_{r}} p^{2}} .
$$

A simple corollary is now the uniqueness of the blowup.
Corollary 4.2.2. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, for every singular point $x_{0}$ of the free boundary there exists a unique blowup $u^{x_{0}}$.

Proof. Without loss of generality let $x_{0}=0$ be a singular point. Assume by contradiction that there are two sequences of radii $\left(r_{i}\right)_{i \in \mathbb{N}}$ and $\left(s_{i}\right)_{i \in \mathbb{N}}$ such that

$$
\lim _{i} u_{r_{i}}=p_{1} \neq p_{2}=\lim _{i} u_{s_{i}} .
$$

Then, since $p_{1}$ is an admissible polynom for the Monneau-type monotonicity, we can consider $M(r):=M_{u}\left(0, r, p_{1}\right)$. Note that

$$
\lim _{r_{i} \rightarrow 0^{+}} M\left(r_{i}\right)=0<\lim _{r_{i} \rightarrow 0^{+}} M\left(r_{i}\right)=\int_{\partial B_{1}}\left(p_{2}-p_{1}\right)^{2} \mathrm{~d} \mathcal{H}^{n}=\lim _{s_{i} \rightarrow 0^{+}} M\left(s_{i}\right),
$$

against the monotonicity of $M$.
Another consequence of the Monneau-type monotonicity is the following nondegeneracy.

Proposition 4.2.3. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, for every singular point $x_{0}$ of the free boundary with frequency $2 m$ we have that

$$
\begin{equation*}
H\left(x_{0}, r\right) \geq C r^{n+4 m} \quad \forall r \in\left(0, \operatorname{dist}\left(x_{0}, \partial B_{1}\right)\right) . \tag{4.5}
\end{equation*}
$$

Proof. Without loss of generality we assume that $x_{0}=0$ and we argue by contradiction: there is a sequence of radii $r_{k} \downarrow 0$ such that

$$
\frac{H\left(r_{k}\right)}{r_{k}^{n+4 m}} \rightarrow 0
$$

Let $u_{0}$ be the blowup of $u$ at 0 . Then,

$$
\begin{aligned}
M_{u}\left(0, r, u_{0}\right)= & \frac{1}{r^{n+4 m}} \int_{\partial B_{r}}\left(u-u_{0}\right)^{2} \mathrm{~d} \mathcal{H}^{n}=\frac{H(r)}{r^{n+4 m}}+\frac{1}{r^{n+4 m}} \int_{\partial B_{r}} u_{0}^{2} \mathrm{~d} \mathcal{H}^{n} \\
& -\frac{2}{r^{n+4 m}} \int_{\partial B_{r}} u u_{0} \mathrm{~d} \mathcal{H}^{n}
\end{aligned}
$$

Therefore,

$$
\lim _{k \rightarrow+\infty} M_{u}\left(0, r_{k}, u^{0}\right)=\int_{\partial B_{1}} u_{0}^{2} \mathrm{~d} \mathcal{H}^{n}
$$

In particular, by the monotonicity of the Monneau-type formula, we have that $M_{u}\left(0, r, u_{0}\right) \geq \int_{\partial B_{1}} u_{0}^{2} \mathrm{~d} \mathcal{H}^{n}$ for all $r>0$, which reads as

$$
\begin{aligned}
0 & \leq \frac{1}{r^{n+4 m}} \int_{\partial B_{r}}\left(u^{2}-2 u u_{0}\right) \mathrm{d} \mathcal{H}^{n} \\
& =\frac{1}{r^{4 m}} \int_{\partial B_{1}}\left(u^{2}(r y)-2 u(r y) u_{0}(r y)\right) \mathrm{d} \mathcal{H}^{n}(y) \\
& =\frac{1}{r^{4 m}} \int_{\partial B_{1}}\left(u^{2}(r y)-2 r^{2 m} u(r y) u_{0}(y)\right) \mathrm{d} \mathcal{H}^{n}(y) \\
& =\int_{\partial B_{1}}\left(\frac{H(r)}{r^{n+4 m}} u_{r}^{2}-2 \frac{H^{1 / 2}(r)}{r^{n / 2+2 m}} u_{r} u_{0}\right) \mathrm{d} \mathcal{H}^{n}(y)
\end{aligned}
$$

where we used that

$$
u_{r}(y)=\frac{r^{n / 2} u(r y)}{H^{1 / 2}(r)}
$$

Dividing by $r^{-n / 2-2 m} h(r)^{1 / 2}$ and taking the limit along the sequence $r_{k} \rightarrow 0^{+}$ we infer that

$$
-2 \int_{\partial B_{1}} u_{0}^{2} \mathrm{~d} \mathcal{H}^{n} \geq 0
$$

which gives the desired contradiction.
In particular, for every singular point $x_{0}$ with frequency $2 m$, one can also consider these new rescalings

$$
\tilde{u}_{x_{0}, r}(y):=\frac{u\left(x_{0}+r y\right)}{r^{m}}
$$

As a corollary of Proposition 4.2 .3 we get the following.
Corollary 4.2.4. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, for every singular point $x_{0}$ of the free boundary with frequency $2 m$ there exists a harmonic polynom $q_{x_{0}}$ of degree $2 m$ which is the unique limit as $r \rightarrow 0^{+}$of the rescalings $\tilde{u}^{x_{0}, r}$.

Proof. From Corollary 2.3.3 and Proposition 4.2 .3 the rescalings $\tilde{u}_{x_{0}, r}(y)$ have equibounded $L^{2}$ norms at the boundary which are uniformly away from zero. Therefore, the conclusion follows from the compactness (implied for example by Theorem 2.5.1) and Monneau monotonicity formula.
4.3. Stratification of singular points. In this section we prove a stratification for the singular part of the free boundary following [12]. The key ingredients is the following uniform estimate. For simplicity we denote by $\Gamma_{2 m}$ the set of singular free boundary points with frequency $2 m$.

Proposition 4.3.1. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, the map $\Gamma_{2 m} \ni x_{0} \mapsto q_{x_{0}} \in L^{2}\left(\partial B_{1}\right)$ is continuous and for every compact subset $K \subset B_{1}^{\prime}$ there exists a modulus of continuity $\sigma_{K}$ such that

$$
\begin{equation*}
\left|u(x)-q_{x_{0}}\left(x-x_{0}\right)\right| \leq \sigma_{K}\left(\left|x-x_{0}\right|\right)\left|x-x_{0}\right|^{2 m} \tag{4.6}
\end{equation*}
$$

$\forall x_{0} \in \Gamma_{2 m} \cap K, \forall x \in B_{1}$.
Proof. For every $x_{0} \in \Gamma_{2 m} \cap K$ and for every $\varepsilon>0$, there exists $r_{x_{0}, \varepsilon}>0$ such that

$$
\left\|\tilde{u}_{x_{0}, r}-q_{x_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq \varepsilon \quad \forall r \leq r_{x_{0}, \varepsilon}
$$

In particular, by continuity we deduce that there exists $\delta_{x_{0}, \varepsilon}>0$ such that

$$
\left\|\tilde{u}_{y_{0}, r_{x_{0}, \varepsilon}}-q_{x_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq \varepsilon \quad \forall y_{0} \in \Gamma_{2 m} \cap B_{\delta_{x_{0}, \varepsilon}}
$$

Using Monneau's monotonicity formula, we infer that

$$
\left\|\tilde{u}_{y_{0}, r}-q_{x_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq \varepsilon \quad \forall r \leq r_{x_{0}, \varepsilon}, \forall y_{0} \in \Gamma_{2 m} \cap B_{\delta_{x_{0}, \varepsilon}}
$$

and hence $\left\|q_{y_{0}}-q_{x_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq \varepsilon$, thus proving the first claim of the proposition.

Now, covering the compact set $K \cap \Gamma_{2 m}$ with finitely many balls $B_{\delta_{x_{0}, \varepsilon}\left(x_{0}\right)}$, we infer that $\left(\operatorname{set} \bar{r}_{\varepsilon}:=\min _{x_{0}} r_{x_{0}, \varepsilon}\right)$

$$
\left\|\tilde{u}_{y_{0}, r}-q_{y_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq \varepsilon \quad \forall r \leq \bar{r}_{\varepsilon}, \forall y_{0} \in \Gamma_{2 m} \cap K
$$

Finally, we notice that, since $\tilde{u}_{y_{0}, r}$ are solution to the Signorini problem, then $\left(\tilde{u}_{y_{0}, r}\right)^{ \pm}$are subharmonic function (cp. Exercise 2.6.1). Therefore, we can use the usual $L^{\infty}$ estimate for subharmonic functions to conclude that

$$
\left\|\tilde{u}_{y_{0}, r}-q_{y_{0}}\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C\left\|\tilde{u}_{y_{0}, r}-q_{y_{0}}\right\|_{L^{2}\left(\partial B_{1}\right)} \leq C \varepsilon
$$

$\forall r \leq \bar{r}_{\varepsilon}, \forall y_{0} \in \Gamma_{2 m} \cap K$. From the arbitrariness of $\varepsilon$, one easily concludes (4.6).

Next we introduce the notion of invariant space for harmonic polynomials which are nonnegative on $B_{1}^{\prime}$, even symmetric with respect to $x_{n+1}$ and of degree $2 m$ :

$$
S(p):=\left\{y \in \mathbb{R}^{n} \times\{0\}: p(x+y)=p(x) \forall x \in \mathbb{R}^{n+1}\right\}
$$

It is easy to verify that, for every polynom $p \neq 0$ as above $\operatorname{dim}(S(p)) \leq n-1$ (cp. Exercise 4.4.3)

The main result is now the following (cp. [12]).

THEOREM 4.3.2. Let $u \in H^{1}\left(B_{1}\right)$ be a solution to the Signorini problem. Then, for every $m \in \mathbb{N}$ and for every $k \in\{0, \ldots, n-1\}$ the set

$$
\Gamma_{2 m}^{(k)}:=\left\{x_{0} \in \Gamma_{2 m}: \operatorname{dim}\left(S\left(q_{x_{0}}\right)\right)=k\right\}
$$

is locally a subset of a $C^{1}$ regular submanifold of dimension $k$.
Proof. 1. We consider the sets $A_{l}$ of all points $x_{0} \in \Gamma_{2 m} \cap B_{1-1 / l}$ such that

$$
\begin{equation*}
\frac{r^{2 m}}{l} \leq \max _{\left|x-x_{0}\right|=r} u(r) \leq l r^{2 m} \quad \forall r \in\left(0,1-\left|x_{0}\right|\right) \tag{4.7}
\end{equation*}
$$

In particular, by Proposition 4.2.3 (and Corollary 2.3.3) we have that $\Gamma_{2 m}=$ $\cup_{l \geq 1} A_{l}$. Moreover, the sets $A_{l}$ are closed: indeed, if $A_{l} \ni x_{k} \rightarrow x_{0}$, then (4.7) holds for $x_{0}$ too, by upper semicontinuity $\lambda\left(x_{0}\right) \geq 2 m$ and actually the equality holds because by Corollary 2.3 .3 we have that $\lambda\left(x_{0}\right)>2 m$ implies $|u(x)| \leq c\left|x-x_{0}\right|^{\lambda\left(x_{0}\right)}$ against (4.7).
2. Whitney data. We fix now a given $l \geq 1$. We show that the functions $f_{\alpha}: A_{l} \rightarrow \mathbb{R}$,

$$
f_{\alpha}(x):=D^{\alpha} q_{x}(0), \quad|\alpha| \leq 2 m, \forall x \in A_{l}
$$

are set of Whitney data, i.e.

$$
\left\{\begin{array}{l}
\left|f_{\alpha}(x)-\sum_{|\beta| \leq 2 m-|\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!}(x-y)^{\beta}\right|=o\left(|x-y|^{2 m-|\alpha|}\right)  \tag{4.8}\\
\text { for } x, y \in A_{l}, \text { as }|x-y| \rightarrow 0
\end{array}\right.
$$

The case $|\alpha|=2 m$ follows from the continuity of the blowups in Proposition 4.3.1: indeed, in this case we have

$$
\left|f_{\alpha}(x)-f_{\alpha}(y)\right|=\left|D^{\alpha} p_{x}(0)-D^{\alpha} p_{y}(0)\right| \leq C\left\|p_{x}-p_{y}\right\|_{L^{\infty}\left(B_{1}\right)}=o(|x-y|)
$$

On the other hand, if $|\alpha|<2 m$, noting that $f_{\gamma} \equiv 0$ for $|\gamma|<2 m$, we need to show that

$$
\left|\sum_{|\beta|=2 m-|\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!}(x-y)^{\beta}\right|=\left|D^{\alpha} q_{y}(x-y)\right|=o\left(|x-y|^{2 m-|\alpha|}\right)
$$

Assuming this is not the case, there exist points $x_{j}, y_{j} \in A_{l}$ with $\left|x_{j}-y_{j}\right|=$ : $r_{j} \rightarrow 0$ such that

$$
\left|D^{\alpha} q_{y_{j}}\left(x_{j}-y_{j}\right)\right| \geq \delta\left|x_{j}-y_{j}\right|^{2 m-|\alpha|}
$$

for some $\delta>0$. Up to passing to a subsequence, we can assume that $y_{j} \rightarrow y_{0} \in A_{l},\left(x_{i}-y_{i}\right) / r_{i} \rightarrow z_{0}$; therefore we obtain

$$
\begin{equation*}
\left|D^{\alpha} q_{y_{0}}\left(z_{0}\right)\right| \geq \delta \tag{4.9}
\end{equation*}
$$

Consider now the rescalings: $v_{j}(x):=r_{i}^{-2 m} u\left(y_{i}+r_{i} x\right)$. Note that, from (4.6) we have that $\left\|v_{j}-q_{y_{j}}\right\|_{L^{\infty}\left(B_{1}\right)}=o(1)$ and therefore $v_{j} \rightarrow q_{y_{0}}$ locally uniformly. Moreover, since $x_{j} \in A_{l}$, i.e.

$$
\frac{r^{2 m}}{l} \leq \sup _{\left|x-x_{j}\right|=r} u(x) \leq l r^{2 m} \quad \forall 0<r<1-\frac{1}{l}
$$

we infer that

$$
\frac{r^{2 m}}{l} \leq \sup _{\left|x-z_{0}\right|=r} q_{y_{0}}(x) \leq l r^{2 m} \quad \forall r>0
$$

In particular, $q_{y_{0}}$ is a homogeneous polynom of degree $2 m$ around $z_{0}$, thus contradicting (4.9) since $|\alpha|<2 m$.
3. Whitney extension theorem. We can now apply the extension theorem by Whitney $[\mathbf{2 2}]$ to infer that there exists a function $g \in C^{2 m}\left(\mathbb{R}^{n+1}\right)$ such that

$$
D^{\alpha} g(x)=f_{\alpha}(x) \quad \forall x \in A_{l}
$$

In particular, $A_{l} \subset\{g=0\}$.
4. To conclude the proof, we notice that for every point $x_{0} \in \Gamma_{2 m}^{(k)}$ we have that the blowup $q_{x_{0}}$ is a polynom of degree $2 m$ depending only on $n+1-k$ variables, say $q_{x_{0}}\left(y_{1}, \ldots, y_{n+1-k}, 0, \ldots, 0\right)$ with co-ordinates $x=\left(y_{1}, \ldots, y_{n+1-k}, 0, \ldots, 0\right) \in \mathbb{R}^{n+1}$. This means that there exists a multiindex $\beta \in \mathbb{N}^{n+1}$ with $|\beta|=2 m$ such that

$$
\beta=\left(\beta_{1}, \ldots, \beta_{n+1-k}, 0, \ldots, 0\right) \quad \text { and } \quad \beta_{i} \neq 0 \quad \forall i=1, \ldots, n+1-k
$$

Consider the multi-indexes $\alpha_{i}:=\left(\beta_{1}, \ldots, \beta_{i}-1, \ldots, \beta_{n+1-k}, 0, \ldots, 0\right)$ and the functions $F_{i}(x):=D^{\alpha_{i}} g(x)$ for $i=1, \ldots, n+1-k$. Then, the function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n-k}$ given by $F(x):=\left(F_{1}(x), \ldots, F_{n+1-k}(x)\right)$ has Jacobian $D_{y} F\left(x_{0}\right)=\left(\frac{\partial F_{i}}{\partial y_{j}}\left(x_{0}\right)\right)_{i, j=1, \ldots, n+1-k}$ invertible. Note that $F\left(x_{0}\right)=0$; therefore, by the implicit function theorem there is a neighborhood $U$ of $x_{0}$ such that $\{F=0\} \cap U$ is a $C^{1}$-regular submanifold. Recalling that $F(x)=0$ for every point $x \in \Gamma_{2 m}$, we conclude the proof.

### 4.4. Exercise.

EXERCISE 4.4.1. Let $p$ be a harmonic polynom in $\mathbb{R}^{n+1}$, homogeneous of degree $k \in \mathbb{N}$, with

$$
p\left(x^{\prime}, 0\right) \geq 0 \quad \text { and } \quad p\left(x^{\prime}, x_{n+1}\right)=p\left(x^{\prime},-x_{n+1}\right)
$$

Show that $k=2 m$ for some $m \in \mathbb{N}$.
EXERCISE 4.4.2. Let $p$ be a nontrivial harmonic polynom in $\mathbb{R}^{n+1}$, homogeneous of degree $2 m \in \mathbb{N}$, with

$$
p\left(x^{\prime}, 0\right) \geq 0 \quad \text { and } \quad p\left(x^{\prime}, x_{n+1}\right)=p\left(x^{\prime},-x_{n+1}\right)
$$

Show that

$$
\mathcal{H}^{n}\left(\Lambda\left(u_{0}\right) \cap B_{1}\right)=0
$$

EXERCISE 4.4.3. Let $p$ be a nontrivial harmonic polynom of degree $2 m$, which is nonnegative on $B_{1}^{\prime}$ and even symmetric with respect to $x_{n+1}$. Show that $\operatorname{dim}(S(p)) \leq n-1$.

## References

[1] H. Alt, L. Caffarelli, A. Friedman Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc., 282 (1984), no. 2, 431-461.
[2] I. Athanasopoulos, L. A. Caffarelli. Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 49-66, 226; translation in J. Math. Sci. (N. Y.), 132 (2006), no. 3, 274284.
[3] I. Athanasopoulos, L. A. Caffarelli, S. Salsa. The structure of the free boundary for lower dimensional obstacle problems. Amer. J. Math. 130 (2008), no. 2, 485498.
[4] L. A. Caffarelli. Further regularity for the Signorini problem. Comm. Partial Differential Equations 4 (1979), 1067-1075.
[5] L. A. Caffarelli, L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260.
[6] L. A. Caffarelli, S. Salsa, L. Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008), no. 2, 425-461.
[7] D. De Silva, O. Savin. $C^{\infty}$ regularity of certain thin free boundaries. Indiana Univ. Math. J. 64 (2015), no. 5, 1575-1608.
[8] M. Focardi, E. Spadaro. An epiperimetric inequality for the fractional obstacle problem. Adv. Differential Equations 21 (2016), no. 1-2, 153-200.
[9] J. Frehse. Two-dimensional variational problems with thin obstacles. Math. Z. 143 (1975), 279-288.
[10] J. Frehse. On Signorini's problem and variational problems with thin obstacles. Ann. Scuola Norm. Sup. Pisa 4 (1977), 343-362.
[11] H. Friedland, W. Hayman Eigenvalue inequalities for the Dirichlet problme on spheres and the growth of subharmonic functinos. Comment. Math. Helv., 51 (1976), 133-161.
[12] N. Garofalo, A. Petrosyan. Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math., 177 (2009), no. 2, 415-461.
[13]
[14] N. Garofalo, A. Petrosyan, M. Smit Vega Garcia. An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. J. Math. Pure Appl., 105 (2016), 745-787.
[15] D. Kinderlehrer. The smoothness of the solution of the boundary obstacle problem. J. Math. Pures Appl. 60 (1981), 193-212.
[16] H. Koch, A. Petrosyan, W. Shi. Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126 (2015), 3-44.
[17] R. Monneau. On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13 (2003), no. 2, 359-389.
[18] L. Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.
[19] N. N. Uraltseva Hölder continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type. Dokl. Akad. Nauk SSSR 280 (1985), 563-565.
[20] N. N. Uraltseva On the regularity of solutions of variational inequalities. (Russian) Uspekhi Mat. Nauk 42 (1987), no. 6(258), 151-174, 248.
[21] G. S. Weiss. A homogeneity improvement approach to the obstacle problem. Invent. Math., 138 (1999), no. 1, 23-50.
[22] H. Whitney. Analytic extensions of functions defined in closed sets. Trans. Amer. Math. Soc., 36 (1934), no. 1, 63-89.

