
CHEAT SHEET

SOME USEFUL BACKGROUND MATERIAL

Unique perpendiculars. Given any two disjoint geodesics in the hyperbolic plane H2 with

distinct endpoints at infinity, there is a unique geodesic that is perpendicular to both.

Isometries of the hyperbolic plane. The group of orientation-preserving isometries of H2

is isomorphic to PSL(2,R). In the upper half-plane model for H we can think of an element

of PSL(2,R) as a Möbius transformation z 7→ az + b

cz + d
. We have the following classification of

isometries:

(1) Elliptic. An element of Isom+(H2) is elliptic if it fixes a point in H2. In this case the

map will be a rotation about the fixed point, and the map has no fixed points on ∂H2. In

PSL(2,R), the absolute value of the trace of an elliptic element is strictly less than 2.

(2) Parabolic. An element of Isom+(H2) is parabolic if it fixes exactly one point in ∂H2. In

this case the map is conjugate to z 7→ z + 1 in the upper half-plane model. In PSL(2,R),

the absolute value of the trace of a parabolic element is precisely 2. (Note: we do not count

the identity map as parabolic.)

(3) Hyperbolic. An element of Isom+(H2) is hyperbolic if it fixes two points in ∂H2. In this

case the map is a translation along an invariant geodesic, so we can think of one of the two

fixed points on ∂H2 as an attracting fixed point and the other as a repelling fixed point. In

PSL(2,R), the absolute value of the trace of a hyperbolic element is strictly greater than 2.

Hyperbolic isometries of H2 are sometimes called loxodromic.

Hyperbolic surface. A surface S admits a hyperbolic metric if there exists a complete, finite-area

Riemannian metric on S of constant curvature −1 and if ∂S is totally geodesic, that is, geodesics

in ∂S are geodesics in S. A surface endowed with a hyperbolic metric is a hyperbolic surface. Any

surface with negative Euler characteristic admits a hyperbolic metric.

Alternatively, we can define a (closed) hyperbolic surface S in terms of charts. Then we say that

a closed surface S is hyperbolic if there is an open cover (Ui) of S with maps φi : Ui → H2 where

each φi is an orientation-preserving homeomorphism onto its image, and satisfying the condition

that whenever Ui and Uj have nonempty intersection, then the restriction of φj ◦ φ−1
i to each

connected component of φi(Ui ∩ Uj) is the restriction of an orientation-preserving isometry of H2.
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Recall that a Riemannian metric is a smoothly varying choice of inner product on the tangent

space of a smooth manifold. On a surface, we can specify a Riemannian metric on an open set

U ⊂ R2 via four smooth functions gij : U → R satisfying two properties:

(1) g12(p) = g21(p) for all p ∈ U , and

(2) for all p ∈ U , the matrix
[
g11(p) g12(p)
g21(p) g22(p)

]
is positive definite.

The universal cover of any closed hyperbolic surface Sg is isometric to H2, and hence any hy-

perbolic surface Sg is isometric to the quotient of H2 by a free, properly discontinuous action by

isometries of π1(Sg). A deck transformation corresponding corresponding to a nontrivial element

of π1(Sg) that is not homotopic into a puncture is a hyperbolic isometry of H2.

One can also construct a surface of genus g ≥ 2 with a hyperbolic metric by taking a geodesic

4g-gon in H2 with interior angle sum 2π and then identifying opposite sides.

Geodesic representatives of curves. We will rely heavily on the following important property

of hyperbolic surfaces: if α is a closed curve in a hyperbolic surface S (and α is not homotopic to

a puncture on S), then there is a unique geodesic closed curve γ in the homotopy class of α. This

can be proved by examining the lift of α to the universal cover of S.

Hyperbolic structure. A hyperbolic structure on a surface S is a diffeomorphism φ : S → X,

where X is a hyperbolic surface. The map φ is called the marking, and we will use the notation

(X,φ), or simply X, to denote the marked hyperbolic surface.

Riemann surface. A Riemann surface X is a 1-dimensional complex manifold. Another way to

say this is that there is an atlas of charts, called coordinate maps:

(Uα, φα : Uα → C)

where the transition maps φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ C are biholomorphic. Two Riemann surfaces

are isomorphic if there is a biholomorphic homeomorphism from one to the other.

It is useful to note that, if Sg is a closed surface of genus g ≥ 2, then there is a bijective

correspondence between the set of isomorphism classes of Riemann surfaces homeomorphic to Sg,

and the set of isometry classes of hyperbolic surfaces homeomorphic to Sg.

Conformal maps. A map f : X → Y between two Riemann surfaces X,Y is a conformal map if

it is bijective and holomorphic. Note that conformal maps also have holomorphic inverses.

Complex dilatation. Let U, V be open subsets of C, and let f : U → V be a homeomorphism

that is smooth except at a finite number of points. Let p ∈ U be a point where f is differentiable.

Then the complex dilatation of f is given by µf = fz̄/fz; recall that f is holomorphic if and only if

µf ≡ 1 and that f is orientation-preserving if and only if |µf | < 1.
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Other kinds of dilatation. Let f : U → V and p ∈ U be as above, and assume further that f is

orientation-preserving. The dilatation of f at p is given by:

Kf (p) =
|fz(p)|+ |fz̄(p)|
|fz(p)| − |fz̄(p)|

=
1 + |µf (p)|
1− |µf (p)|

.

The dilatation of the map f is given by

Kf = sup{Kf (p)}

where we take the supremum over all points p at which f is differentiable. Note that Kf satisfies

1 ≤ Kf ≤ ∞.

Quasi-conformal maps. A map f as above is quasiconformal, or Kf -quasiconformal, if Kf <∞.

It is a relatively straightforward exercise to show that if f : X → Y is a homeomorphism of Riemann

surfaces, then Kf = 1 if and only if f is conformal.

Holomorphic quadratic differentials.. A holomorphic quadratic differential on a Riemann

surface X with atlas {zi | Ui → C} is given by {φi(zi)dz2
i } such that

(1) each map φi is holomorphic with finitely many zeros;

(2) the atlas is invariant under change of local coordinates, that is, φj(zj)

(
dzi
dzj

)2

= φi(zi) for

any two coordinate charts zi, zj .

The set of all holomorphic quadratic differentials QD(X) on a Riemann surface X is a vector space

over C.
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