CHEAT SHEET

SOME USEFUL BACKGROUND MATERIAL

Unique perpendiculars. Given any two disjoint geodesics in the hyperbolic plane \mathbb{H}^2 with distinct endpoints at infinity, there is a unique geodesic that is perpendicular to both.

Isometries of the hyperbolic plane. The group of orientation-preserving isometries of \mathbb{H}^2 is isomorphic to $\mathrm{PSL}(2,\mathbb{R})$. In the upper half-plane model for \mathbb{H} we can think of an element of $\mathrm{PSL}(2,\mathbb{R})$ as a Möbius transformation $z\mapsto \frac{az+b}{cz+d}$. We have the following classification of isometries:

- (1) **Elliptic.** An element of Isom⁺(\mathbb{H}^2) is *elliptic* if it fixes a point in \mathbb{H}^2 . In this case the map will be a rotation about the fixed point, and the map has no fixed points on $\partial \mathbb{H}^2$. In PSL(2, \mathbb{R}), the absolute value of the trace of an elliptic element is strictly less than 2.
- (2) **Parabolic.** An element of Isom⁺(\mathbb{H}^2) is *parabolic* if it fixes exactly one point in $\partial \mathbb{H}^2$. In this case the map is conjugate to $z \mapsto z+1$ in the upper half-plane model. In PSL(2, \mathbb{R}), the absolute value of the trace of a parabolic element is precisely 2. (Note: we do not count the identity map as parabolic.)
- (3) **Hyperbolic.** An element of $\operatorname{Isom}^+(\mathbb{H}^2)$ is hyperbolic if it fixes two points in $\partial \mathbb{H}^2$. In this case the map is a translation along an invariant geodesic, so we can think of one of the two fixed points on $\partial \mathbb{H}^2$ as an attracting fixed point and the other as a repelling fixed point. In $\operatorname{PSL}(2,\mathbb{R})$, the absolute value of the trace of a hyperbolic element is strictly greater than 2. Hyperbolic isometries of \mathbb{H}^2 are sometimes called loxodromic.

Hyperbolic surface. A surface S admits a hyperbolic metric if there exists a complete, finite-area Riemannian metric on S of constant curvature -1 and if ∂S is totally geodesic, that is, geodesics in ∂S are geodesics in S. A surface endowed with a hyperbolic metric is a hyperbolic surface. Any surface with negative Euler characteristic admits a hyperbolic metric.

Alternatively, we can define a (closed) hyperbolic surface S in terms of charts. Then we say that a closed surface S is hyperbolic if there is an open cover (U_i) of S with maps $\phi_i: U_i \to \mathbb{H}^2$ where each ϕ_i is an orientation-preserving homeomorphism onto its image, and satisfying the condition that whenever U_i and U_j have nonempty intersection, then the restriction of $\phi_j \circ \phi_i^{-1}$ to each connected component of $\phi_i(U_i \cap U_j)$ is the restriction of an orientation-preserving isometry of \mathbb{H}^2 .

Recall that a *Riemannian metric* is a smoothly varying choice of inner product on the tangent space of a smooth manifold. On a surface, we can specify a Riemannian metric on an open set $U \subset \mathbb{R}^2$ via four smooth functions $g_{ij}: U \to \mathbb{R}$ satisfying two properties:

- (1) $g_{12}(p) = g_{21}(p)$ for all $p \in U$, and
- (2) for all $p \in U$, the matrix $\begin{bmatrix} g_{11}(p) & g_{12}(p) \\ g_{21}(p) & g_{22}(p) \end{bmatrix}$ is positive definite.

The universal cover of any closed hyperbolic surface S_g is isometric to \mathbb{H}^2 , and hence any hyperbolic surface S_g is isometric to the quotient of \mathbb{H}^2 by a free, properly discontinuous action by isometries of $\pi_1(S_g)$. A deck transformation corresponding corresponding to a nontrivial element of $\pi_1(S_g)$ that is not homotopic into a puncture is a hyperbolic isometry of \mathbb{H}^2 .

One can also construct a surface of genus $g \ge 2$ with a hyperbolic metric by taking a geodesic 4g-gon in \mathbb{H}^2 with interior angle sum 2π and then identifying opposite sides.

Geodesic representatives of curves. We will rely heavily on the following important property of hyperbolic surfaces: if α is a closed curve in a hyperbolic surface S (and α is not homotopic to a puncture on S), then there is a unique geodesic closed curve γ in the homotopy class of α . This can be proved by examining the lift of α to the universal cover of S.

Hyperbolic structure. A hyperbolic structure on a surface S is a diffeomorphism $\phi: S \to X$, where X is a hyperbolic surface. The map ϕ is called the marking, and we will use the notation (X, ϕ) , or simply X, to denote the marked hyperbolic surface.

Riemann surface. A Riemann surface X is a 1-dimensional complex manifold. Another way to say this is that there is an atlas of charts, called *coordinate maps*:

$$(U_{\alpha}, \ \phi_{\alpha}: U_{\alpha} \to \mathbb{C})$$

where the transition maps $\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \mathbb{C}$ are biholomorphic. Two Riemann surfaces are isomorphic if there is a biholomorphic homeomorphism from one to the other.

It is useful to note that, if S_g is a closed surface of genus $g \geq 2$, then there is a bijective correspondence between the set of isomorphism classes of Riemann surfaces homeomorphic to S_g , and the set of isometry classes of hyperbolic surfaces homeomorphic to S_g .

Conformal maps. A map $f: X \to Y$ between two Riemann surfaces X, Y is a *conformal map* if it is bijective and holomorphic. Note that conformal maps also have holomorphic inverses.

Complex dilatation. Let U, V be open subsets of \mathbb{C} , and let $f: U \to V$ be a homeomorphism that is smooth except at a finite number of points. Let $p \in U$ be a point where f is differentiable. Then the *complex dilatation* of f is given by $\mu_f = f_{\bar{z}}/f_z$; recall that f is holomorphic if and only if $\mu_f \equiv 1$ and that f is orientation-preserving if and only if $|\mu_f| < 1$.

Other kinds of dilatation. Let $f: U \to V$ and $p \in U$ be as above, and assume further that f is orientation-preserving. The *dilatation of* f *at* p is given by:

$$K_f(p) = \frac{|f_z(p)| + |f_{\bar{z}}(p)|}{|f_z(p)| - |f_{\bar{z}}(p)|} = \frac{1 + |\mu_f(p)|}{1 - |\mu_f(p)|}.$$

The dilatation of the map f is given by

$$K_f = \sup\{K_f(p)\}$$

where we take the supremum over all points p at which f is differentiable. Note that K_f satisfies $1 \le K_f \le \infty$.

Quasi-conformal maps. A map f as above is quasiconformal, or K_f -quasiconformal, if $K_f < \infty$. It is a relatively straightforward exercise to show that if $f: X \to Y$ is a homeomorphism of Riemann surfaces, then $K_f = 1$ if and only if f is conformal.

Holomorphic quadratic differentials.. A holomorphic quadratic differential on a Riemann surface X with atlas $\{z_i \mid U_i \to \mathbb{C}\}$ is given by $\{\phi_i(z_i)dz_i^2\}$ such that

- (1) each map ϕ_i is holomorphic with finitely many zeros;
- (2) the atlas is invariant under change of local coordinates, that is, $\phi_j(z_j) \left(\frac{dz_i}{dz_j}\right)^2 = \phi_i(z_i)$ for any two coordinate charts z_i, z_j .

The set of all holomorphic quadratic differentials QD(X) on a Riemann surface X is a vector space over \mathbb{C} .