TEICHMÜLLER SPACE AND MAPPING CLASS GROUPS

SOME EXERCISES

Key exercise from hyperbolic geometry.

(1) Show that the length of three alternating sides determines a right-angled hexagon up to orientation-preserving isometry.

Mapping class group basics.

- (2) Prove **Alexander's Lemma**, which states that the mapping class group of a disk is trivial.
- (3) Find a counterexample to the following, which could be viewed as a (false) generalisation of Alexander's Lemma to higher genus surfaces: if C is a collection of simple closed curves on a closed surface S_g with the property that $S \setminus C$ is a collection of disks, and if f is a mapping class that fixes each curve in C, then f is the identity in $\text{Mod}(S_g)$. (A slightly harder exercise is to find a counterexample to the following: if f fixes every isotopy class of curves in a surface, then f must be the identity in the mapping class group of that surface.)
- (4) Find examples of mapping classes that are both periodic and reducible.

Teich(S).

- (5) Prove that length functions are continuous. More precisely, show that if S is any hyperbolic surface and if c is a fixed isotopy class of simple closed curves in S, then the function $\text{Teich}(S) \to \mathbb{R}$ given by $\mathcal{X} \mapsto \ell_{\mathcal{X}}(c)$ is continuous.
- (6) Recover the bijective correspondence between $\operatorname{Teich}(T^2)$ and \mathbb{H}^2 using the set of orientation-preserving maps from \mathbb{R}^2 to \mathbb{R}^2 , up to rotations and dilations, as an intermediary.
- (7) In the map from $\operatorname{Teich}(S)$ to $\operatorname{DF}(\pi_1(S),\operatorname{PSL}(2,\mathbb{R}))/\operatorname{PGL}(2,\mathbb{R})$, identify all four choices made here and explain why they don't matter.
- (8) In the notation of the proof of the (9g-9)-Theorem, show carefully that $A(s+2\pi)=B(s)$. Do the two remaining cases: $s=2\pi$ and $s>2\pi$.

Measured foliations.

- (9) Sketch the measured foliations corresponding to the following (multi-)curves on the surface S_2 :
 - (a) a separating curve;
 - (b) a separating curve together with a (disjoint) nonseparating curve.
- (10) Show that the following two spines of a pair of pants give rise to equivalent foliations:
 - (a) a boundary component b together with a separating arc joining b to itself, where the other two boundary components lie on different sides of b;
 - (b) two boundary components joined by a nonseparating arc.

- (11) Let p be a singular point in a measured foliation, and let m_p denote the number of prongs in the singularity at p. Verify directly (in other words, without citing the Euler-Poincaré formula) that the sum $(2 m_p)$ taken over all singularities p in a measured foliation is preserved under Whitehead moves.
- (12) Explain carefully why a quadratic differential with local expression $q(z) = z^k dz^2$ corresponds to a (k+2)-prong singularity in the corresponding measured foliation. One starting point is to consider the case k=0 and consider when a complex number α satisfies $\alpha^2>0$ and $\alpha^2<0$.

Miscellaneous.

- (13) Show that the set of all $(m, s, t) \in \mathbb{R}^3_{\geq 0}$ satisfying a degenerate triangle inequality forms a cone homeomorphic to \mathbb{R}^2 .
- (14) Consider a hyperelliptic involution ι of the surface S_g . Show that the canonical reduction system for ι is empty.
- (15) There is a natural map from $Mod(S_g)$ to the group of simplicial automorphisms of the curve graph. Show that this map is injective using the action of $Mod(S_g)$ on $PMF(S_g)$.