ON THE GEOMETRY OF OUTER SPACE - PROBLEM SET 1

YAEL ALGOM-KFIR, WARWICK RESEARCH SCHOOL 2017

- (1) Prove that the two marked metric graphs in Example 1 describe the same point in Outer Space.
- (2) Prove that the action of $Out(F_n)$ on Outer Space as defined in Lecture 1 is well defined:
 - (a) If (Γ, m, ℓ) , (Γ', m', ℓ') are equivalent and $\Phi \in \text{Aut}(F_n)$ then their images $(\Gamma, m, \ell)\Phi$, $(\Gamma', m', \ell')\Phi$ are equivalent.
 - (b) Prove that the action of $Inn(F_n)$ on Outer Space is trivial.
- (3) Let $\{a, b, c\}$ be a basis of F_3 , let R_3 be the rose with 3 pettals which are labeled by this basis. Consider the automorphism $\Phi(a) = ab$, $\Phi(b) = bab$, $\Phi(c) = ca$. Let x be the marked graph (R, id) with edge lengths $\frac{1}{6}$, $\frac{1}{5}$, $\frac{19}{30}$ and let y be the marked graph (R, Φ) with edge lengths $\frac{1}{5}$, $\frac{1}{20}$, $\frac{3}{4}$. Construct a path in Outer Space between these points.
- (4) Compute the maximal dimension and minimal dimension of a simplex in Outer Space.
- (5) Show that Outer Space is a locally finite simplicial complex.
- (6) Show that the stabilizer of a point in Outer Space is finite.
- (7) Prove that if d(x, y) = 0 then x = y.
- (8) Prove that if $h \colon \Gamma \to \Gamma'$ is a homotopy equivalence which is locally injective then h is a homeomorphism. (Hint: try to extend h to a convering of Γ').
- (9) Prove that reduced Outer Space \mathcal{X}_n^R equivariantly deformation retracts to \mathcal{X}_n .
- (10) Let K_n be the simplicial complex whose simplicies corresond to marked F_n -graphs, with the equivalence relation $(\Gamma, m) \sim (\Gamma', m')$ if there exists a homeomorphism $h \colon \Gamma \to \Gamma'$ so that m' is freely homotopic to m. Faces of a simplex correspond to forest collapse. There is an $\operatorname{Out}(F_n)$ action on $K_n \colon (\Gamma, m)\phi = (\Gamma, m \circ \phi)$. Prove that there is an equivariant deformation retract of \mathcal{X}_n to K_n . $(K_n$ is called the spine of \mathcal{X}_n). The spine was used to get the "right" virtual cohomological dimension for $\operatorname{Out}(F_n)$.

Date: September 12, 2017.