
ON THE GEOMETRY OF OUTER SPACE

YAEL ALGOM-KFIR

1. Outer Space

Culler and Vogtmann introduced Outer Space in [CV86] as a topological model
for the group Out(Fn). Points of Outer Space are “marked metric graphs.”

Definition 1.1 (Graph, positive edges). A graph will mean a connected 1-dimensional
cell complex. V (G) will denote the vertex set and E(G) the set of unoriented edges.
The degree of a vertex v ∈ V (G) will be denoted degG(v), or deg(v) when G is clear.

For each edge, one may choose an orientation. Once the orientation is fixed that
oriented edge e will be called positive and the edge with the reverse orientation E will
be called negative. Given an oriented edge e, i(e) will denote its initial vertex and
ter(e) its terminal vertex. A directed graph is a graph G with a choice of orientation
on each edge.

Given a free group Fn of rank n ≥ 2, we choose once and for all a free basis
A = {a1, . . . , an}. Let Rn = ∨ri=1S1 denote the graph with one vertex and r edges,
we call this graph an n-petaled rose. We choose once and for all an orientation on
Rr and identify each positive edge of Rn with an element of the chosen free basis.
Thus, a cyclically reduced word in the basis corresponds to an immersed loop in Rn.
Moreover, the set of automorphism Φ of Fn are in 1-1 correspondence with homotopy
equivalences of Rn that send the vertex to itself modulo homotopy relative to the
vertex.

Definition 1.2 (Marked metric Fn-graph). A marked Fn-graph is a pair x = (Γ,m)
where:

• Γ is a graph such that deg(v) ≥ 3 for each vertex v ∈ V (Γ).
• m : Rn → Γ is a homotopy equivalence, called a marking.

A marked metric graph is a triple (Γ,m, `) so that (Γ,m) is a marked graph and:

• The map ` : E(Γ)→ R+ is an assignment of lengths to the edges. We require
(sometimes) that

∑
e∈E(Γ) `(e) = 1. The quantity vol(Γ) =

∑
e∈E(Γ) `(e) is

called the volume of G (when we don’t require this then we shall say that the
graph is unnormalized).
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Remark 1.3 (Implicit linear structure). For some applications, for example when
talking about maps, we need more structure. A linear atlas for a metric graph
(Γ,m) is a collection of maps {jα}α∈A, with

(1) there exists an edge e of Γ such that jα : [0, d]→ e with d ≤ `(e) and which
restricts to a homeomorphism on (0, d),

(2) the images of the collection of map {jα} cover Γ, and
(3) the transition maps are linear.

As usuall two atlasses are equivalent if their union is an atlas. Given a linear atlas
on a metric graph (Γ, `) one can then describe linear edge paths and more generally
linear maps between two such graphs. We shall supress this information from now
on.

Define an equivalence relation on marked metric graphs by (Γ,m, `) ∼ (Γ′,m′, `′)
when there exists an isometry ϕ : (Γ, `)→ (Γ′, `′) so that m′ is homotopic to ϕ ◦m.

Definition 1.4 (Underlying set of Outer Space). As a set, the (rank-n) Outer Space
Xn is the set of equivalence classes of marked metric Fn-graphs.

Exercise 1.5. Prove that this definition is equivalent to the following definition
using minimal free simplicial Fn-trees.

An Fn-tree is a tree T along with a homomorphism ρ : Fn → Aut(T ). It is minimal
if there is no Fn-invariant subtree. It is simplicial if T is simplicial or equivalently,
if the translation length elements in Fn are bounded away from zero. It is free if for
all g ∈ Fn, ρ(g) has no fixed point.

The Fn trees (T, ρ), (S, τ) are equivalent if there exists an Fn equivariant homothety
h : T → S.

Prove there exists a bijective correspondence between the set of marked metric
graphs and the set of equivalence classes of minimal simplicial free metric Fn-trees.

Definition 1.6. The (open) simplex σ in Xn corresponding to the marked graph
(G,m) is

σ(Γ,m) = {(Γ,m, `) ∈ Xn | vol(Γ) = 1}.
By enumerating the edges of Γ, we can identify σ(Γ,m) with the open simplex

S|E| =

−→v ∈ R|E|+

∣∣∣∣∣∣
|E|∑
i=1

vi = 1

 .

Here E = E(Γ). We denote this identification by n : σ(Γ,m) → S|E|.

A face of σ(Γ,m) is the simplex σ(Γ′,m′), where (Γ′,m′) is obtained by collapsing a
forest F in Γ. Note that

σ(Γ′,m′) = {(Γ,m, `) ∈ Xn | ` : E(Γ)→ R≥0, vol(Γ) = 1, and ∀e ∈ E(F ) `(e) = 0}.
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Outer Space has the structure of an ideal simplicial complex built from open simplices
(see [Vog02])

Exercise 1.7. Prove that Outer Space is a complex made of open simplicies, i.e. for
any two simplicies σ1, σ2, we have σ1 ∩ σ2 is an open simplex. Moreover, show it is
locally finite. What are the maximal and minimal dimensions of simplicies?

The simplicial structure endows Outer Space with a simplicial topology. We shall
see in subsequent lectures that topology has two other descriptions as the axes topol-
ogy and the Gromov-Hausdorff topologies which become distinct from the simplicial
topology on the compactification of Outer Space.

As mentioned before, Outer Space is a good topological (and metric) model for
Out(Fn).

Definition 1.8 (Out(Fn) action). If Φ ∈ Aut(Fn) is an automorphism, let fΦ : Rn →
Rn be a homotopy equivalence corresponding to Φ via the identification of E(Rn)
with the chosen free basis A of Fn. We define a right action of Out(Fn) on Xn. An
outer automorphism [Φ] ∈ Out(Fn) acts by [Γ,m, `] · [Φ] = [Γ,m ◦ fΦ, `].

Clearly, each outer automorphism preserves the simplicial structure of Outer Space
and therefore, acts by homeomorphisms.

Definition 1.9 (Reduced Outer Space Rn). The (rank-n) reduced Outer Space Rn

is the subcomplex of Xn consisting of precisely those simplices σ(Γ,m) such that Γ
contains no separating edges. This space is connected and an Out(Fn)-equivariant
deformation retract of Xn.

Exercise 1.10. (1) Show that for n = 2 the kernel of the Out(Fn) action is the
outer class of the automorphism x→ x−1, y → y−1.

(2) Show that for n ≥ 3 the Out(Fn) action is faithful.
(3) Show that the stabilizer of a point in Outer Space is finite.

Using Stallings’ theorem [] that any infinite ended group acts by isometries on a
simplicial tree one can show,

Theorem 1.11 (Neilsen Realization Theorem for Out(Fn)). Every finite subgroup
of Out(Fn) fixes a point in Outer Space.

The first theorem proved about Outer Space was

Theorem 1.12. [CV86] For n ≥ 2 Outer Space is contractible.

Corollary 1.13. Out(Fn) is finitely presented.

There is a much stronger corollary:
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Definition 1.14 (vcd). Let G be a group. The cohomological dimension of G,
cd(G) = m if m is the minimal length of a projective ZG resolution of Z. If G
acts free and properly discontinuously on a contractible simplicial complex X then
cd(G) ≤ dim(X). If H < G then cd(H) ≤ cd(G). Moreover, if H is finite then
cd(H) =∞. The virtual cohomological dimension of G is the cd(H) for any (every)
H that is a finite index subgroup and torsion free.

Exercise 1.15. (1) Show that Out(Fn) has torsion.
(2) Show that the kernel of the homomorphism Out(Fn)→ GL(n,Z/3) obtained

by abelianizing and then sending each entry to Z/3, is a finite index torsion
free subgroup of Out(Fn).

This contractibility proves that

Corollary 1.16. vcd(Out(Fn)) ≤ 2n− 3.

Remark 1.17. To get this inequality Culler and Vogtmann use the Out(Fn) action
on the spine of Xn see [CV86] or [Bes12] for more details.

For the other inequality one finds a free abelian subgroup H < Out(Fn) such that
rank(H) = 2n− 3.

1.1. The Lipschitz metric.

Definition 1.18 (Lipschitz distance). Let x = (G,m, `), y = (G′,m′, `′) be marked
metric graphs, a change of marking from x to y is a linear (see Remark 1.3) map
h : (G, `) → (G′, `′) so that m′ is homotopic to h ◦m. The Lipschitz constant of h,
Lip(h) is the maximal slope of h on any edge of G. Given x, y ∈ Xn then

d(x, y) = log min{Lip(h) | h is a change of marking from x to y}
The fact that the minimum in the distance is realized follows from Arzella-Ascolli’s

theorem. A change of marking h that realizes the minimum is called optimal.
The Lipshitz distance is an asymmetric metric, i.e.

(1) For all x, y ∈ Xn we have d(x, y) ≥ 0.
(2) If d(x, y) = 0 then x = y.
(3) For all x, y, z ∈ Xn we have d(x, z) ≤ d(x, y) + d(y, z).

Exercise 1.19. Prove the facts stated above.

Definition 1.20 (train track structure). A train track structure on a graph G is an
equivalence relation on its set of directions, which satisfies that if two directions are
equivalent then they are incident at the same vertex. The equivalence classes are
called “gates”.

Given a linear map h : (G, `) → (G′, `′) it induces the following structure: the
directions represented by the edges e, e′ ∈ E(G) with the same initial vertex are
equivalent if the first edge in h(e) and the first edge in h(e′) coincide.
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Definition 1.21. Given G with a train track structure a turn {e, e′} is called legal
if it is not contained in a gate. Otherwise it is called illegal. A path α in x is legal if
it does not map over any illegal turn. Otherwise it is illegal.

Definition 1.22 (The tension graph). Given a linear map h : x → y define xh to
be the subgraph of x that consists of all edges that are stretched by Lip(h) under h
(the maximally stretched edges). The tension graph xh can be equipped with a train
track structure induced from h.

Definition 1.23. Let α ∈ Fn or more generally, a conjugacy class in Fn, and let
x = (G,m, `) ∈ Xn. We denote by αx the immersed loop in x freely homotopic to
m(α) and by `x(α) the length of αx in x.

Lemma 1.24. (The tension graph lemma) If h : x → y is an optimal change of
marking such that among optimal maps it has a minimal tension graph, then each
vertex in xh has at least two gates.

Proof. Suppose xh has a vertex v with one gate γ. We perterb h to h′ where Lip(h′) ≤
Lip(h) and xh′ ⊂ xh. If γ contains only one edge then change h (to h′) locally at
v so that h′(v) is ε-close to h(v), the image of the single edge e of γ got shorter in
y by ε, and the images of e′ 6= e incedent at v got longer by ε. We choose ε small

enough so that `y(h′(e′))
`x(h(e′))

is still smaller than Lip(h). But now `y(h′(e))
`x(h(e))

< Lip(h). Then

either Lip(h′) < Lip(h) contradicting the fact that h was optimal or xh′ ⊂ xh − {e}
contradicting that xh was minimal.
If γ contains more than one edge then the perturbation is similar. Note that all
edges in γ start with the same initial path so the previous strategy will work in this
case as well. �

Definition 1.25. Given two points x, y ∈ Xn the stretch of α from x to y is

s(α, x, y) = `y(α)

`x(α)
.

Corollary 1.26 (alternative definition of Lipschitz distance).

d(x, y) = log max{s(α, x, y) | α ∈ Fn}
An α realizing this maximum is called a witness. Moreoevr, there exists a witness α
so that `x(α) ≤ 2.

Proof. Let h be optimal, i.e. Lip(h) = log d(x, y). Then for any loop α in x, `y(α) ≤
Lip(h)`x(α). Equality occurs iff α ⊂ hx and is legal. Thus,

d(x, y) ≥ log max{s(α, x, y) | α ∈ Fn}
Given h as in Lemma 1.24, find a loop α that is legal and crosses all edges once
except for possibly, one edge which is crossed twice (once in each direction). This α
satisfies the claim. �
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Exercise 1.27. Prove the claim in the proof of the Corollary 1.26.

Definition 1.28 (candidates). A candidate of x is a loop α in x that is embedded, or
in the shape of a figure 8 or is in the shape of a barbell. The same proof as in Corollary
1.26 shows that for all y ∈ Xn there exists a candidate α so that s(α, x, y) = ed(x,y)

Corollary 1.29 (computing distances).

d(x, y) = log max{s(α, x, y) | α ∈ Fn so that αx is a candidate in x}

Since the number of candidates is finite, this computation is finite.

1.2. Moving around in Outer Space. There are two natural ways to move around
in Outer Space. When one changes the lengths of edges, without changing the
homeomorphism type of the underlying graph or the marking, then the result is to
change the point in the simplex.

The other way of moving is called folding. Given a point x0 = (G, µ, `) let e1, e2 be
oriented edges in G initiating at the same vertex v. The set {e1, e2} is called a turn.
We describe the outcome of folding the turn {e1, e2} in x0. Parametrize the points
on these edges by (t, i) for 0 ≤ t ≤ `(ei) and i = 1, 2. The graph xt is obtained from
x0 by the quotienting the equivalence relation:

(s, 1) ∼ (s, 2) for 0 ≤ s ≤ t ≤ min{`(e1), `(e2)}.

This operation can be easily generalized to folding a set of turns, each with its own
speed, i.e. if the turn {e1, e2} is folded with speed a then the equivalence relation on
xt is

(as, 1) ∼ (as, 2), for 0 ≤ s ≤ t ≤ `(ei)

a
.

Note that for the maximal t satisfying the conditions above, the point xt lies in a
different simplex than xt′ for t′ < t. It may happen that x0 lies on a different simplex
than xt′ for t′ > 0.

Exercise 1.30. Let xt for 0 ≤ t ≤ τ be a path obtained from x0 by folding the turns
T1, . . . , Tk at speeds a1, . . . ak prove that the path xt is a Lipschitz geodesic, meaning,
for 0 ≤ r ≤ s ≤ u ≤ t we have

d(xr, xu) = d(xr, xt) + d(xt, xu)

(one can then reparametrize t so that xt has unit speed in Outer space).

Concatenating fold segments one after the other, if care is taken, produces a Lip-
schitz geodesic.
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Exercise 1.31. Let α be a conjugacy class in Fn and let {xt}t∈[0,L] be a concatenation
of fold segments. Denote by αt the immersed loop representing α in xt. If αt contains
no folded turn for all t then for 0 ≤ r ≤ s ≤ u ≤ t we have

d(xr, xu) = d(xr, xt) + d(xt, xu)

1.3. Convexity and Quasi-convexity in Outer Space.

Definition 1.32. A subset X ⊂ Y is (weakly) convex if for all x, x′ ∈ X there exists
a geodesic [x, x′] that is contained in X. It is quasi-convex if for all A,B there exists
an R so that any (or there exists an) (A,B)-quasi-geodesic α from x ∈ X to x′ ∈ X
is contained in the R-neighborhood of X.

Geometrically, if X is quasi-convex in Y then X is not very much distorted in
Y . A horocycle in the hyperbolic plane is not quasi-convex this copy of R is very
distorted in the whole space. While a geodesic is of course, convex.

There are many ways to get from x to y. Given a change of marking map h : x→ y,
let us assume that the tension graph is maximal xh = x. If there is more than one
illegal turn, we may chose at what relative speeds to fold them. For example, we may
choose to fold one illegal turn at a time. This is somehow the simplest type of fold
and the most combinatorial. Its advantage and disadvantage is that the produced
geodesic is very similar to the Stallings fold decomposition of h. It’s metric properties
are not ideal. For example one can show that if y, z are in the outgoing ball of radius
1 from x,

Bout(x, 1) = {w ∈ Xn | d(x,w) < 1}
then there exists such a geodesic that lies outside this ball. One may choose to fold
all turns at the same speed. This is called a “greedy” geodesic. Length functions
are quasi-convex along greedy geodesics, [] this means that these geodesics will not
travel far away from the outgoing ball.

Recently, Qing-Rafi [QR17] proved that outgoing balls are convex relative to “sta-
ble” geodesics. This means that there is a way to choose the relative speeds so that
`t(α) is convex for all time t along the geodesic [x, y]stable.
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