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Enumerative/coloring invariants

G: a finite group, fixed once and for all.

X: a space with some computable description, e.g. a simplicial
complex, triangulated 3-manifold or knot diagram.

H(X, G) := {m(X) — G}

What is the complexity of the problem of computing #H(X, G)?‘
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Counting kernels

Related invariant:

QX,6) :={Tam(X) | m(X)/T=6G }.

The relation to #H(X, G):

H(X,G) = Z#Aut )-#Q(X, )

J<G
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Knots

c € G: a group element, fixed once and for all.
K: knot diagram
v € m1(K): meridian

Invariants:

#H(Ka’% G7C)=#{f:771(53\K)_> G ’ f(’)’) = C}
#Q(K,"}/, G7C):#{r<]7r1(53\K) ’ EIO‘:T"l/rg GW/ O‘('-Y):C}
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Main theorems

Fix G a finite, nonabelian simple group, and a nontrivial group
element c € G.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought
of as computational input. Then the problem of computing
#Q(M, G) is #P-complete via parsimonious reduction. Moreover,
the reduction guarantees that #Q(M,J) = 0 for all nontrivial,
proper subgroups J < G.




Results
[ee]eY Tole}

\YF}

in theorems

Fix G a finite, nonabelian simple group, and a nontrivial group
element c € G.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought
of as computational input. Then the problem of computing
#Q(M, G) is #P-complete via parsimonious reduction. Moreover,
the reduction guarantees that #Q(M,J) = 0 for all nontrivial,
proper subgroups J < G.

Theorem (Knots, Kuperberg-S)

Let K be a knot diagram with a meridian ~y, thought of as
computational input. Then the problem of computing

#Q(K,~, G, c) is #P-complete via parsimonious reduction.
Moreover, the reduction guarantees that #Q(K,~,J,c) =0 for all
noncyclic, proper subgroups (c) < J < G.
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#H(M, G) = 1+ # Aut(G) - #Q(M, G).

Corollary

Each of the following decision problems is NP-complete via Karp

reduction:
o #Q(M,G) > 07
o #H G)>1?

(M
° #Q(K ,%G c)>07
o #H(K,v,G,c)>17?




Results
Note for M in the image of our reduction,

#H(M, G) = 1+ # Aut(G) - #Q(M, G).

Corollary

Each of the following decision problems is NP-complete via Karp

reduction:
o #Q(M,G) > 07
o #H(M,G) > 17
o #Q(K ,V,G c)>07?
o #H(K,v,G,c)>17

| A\

Corollary

For each fixed n > 5, it is NP-complete to decide whether a
homology 3-sphere M has a connected n-sheeted cover, even with
the promise that it has no connected k-sheeted cover with

1< k<n.

A\
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and Aut(J) multiplicities.
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RENES

e We say our reduction to #H(—, G) is “almost parsimonious,”
i.e. parsimonious up to the unavoidable trivial homomorphism
and Aut(J) multiplicities.

e Krovi-Russell proved #H(L, As, ¢) is #P-complete, where L is
a link and c is a conjugacy class with at least 4 fixed points.
Not a (weakly) parsimonious reduction.

@ Prior to our theorem, the hardness of counting/finding
homomorphisms to a finite, nonabelian simple G wasn't known
for finitely presented groups (much less 3-manifold groups).

@ Our techniques extend to allow maps to any finite list of
nonabelian simple groups.

o Expect “decoupling” results for #H(—,—, G, ¢) and
#H(—,—, G, c’) when ¢ and ¢’ are not outer automorphic.
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Circuit reductions
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CSAT and #CSAT

Decision problem CSAT
Input: a Boolean circuit Z (see board)
Output:

YES 3dx:Z(x)=1
NO  otherwise

Counting analogue #CSAT

Input: a Boolean circuit Z

Output:

#{x | Z(x) =1}

#CSAT is #P-complete via parsimonious reduction.
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Basic idea

Given Z, construct (in polynomial time) a triangulated homology
3-sphere Mz so that

#Q(Mz,G) = #CSAT(Z)

and

#Q(Mz,J) =0

for all nontrivial, proper J < G.
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for all nontrivial, proper J < G.

How? Gadget construction via combinatorial TQFT. (see board)
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Basic idea

Given Z, construct (in polynomial time) a triangulated homology
3-sphere Mz so that

#Q(Mz,G) = #CSAT(Z)

and

#Q(Mz,J) =0

for all nontrivial, proper J < G.
How? Gadget construction via combinatorial TQFT. (see board)

There are two issues with this.
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Issue 1: Our MCG circuits are reversible.
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Issue 1: Our MCG circuits are reversible.
So we need a #P-complete problem for reversible circuits.

This is standard enough. (see board)
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Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on
Rog.

So we contrive a model to
account for this, and to look like
what our later theorems about
the TQFT provide.

A: alphabet (large finite set)

K: finite group, acts on A

z: the only fixed point (all other
orbits free). The “zombie digit.”
I C A: initialization constraints
F C A: finalization constraints
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Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on
Rog.

So we contrive a model to H#ZSATa K 1.F
account for this, and to look like Input: a planar, K-equivariant
what our later theorems about reversible circuit Z, over the

the TQFT provide. alphabet A, with gates in
A: alphabet (large finite set) Ruby (A?).
K: finite group, acts on A Output:

z: the only fixed point (all other

orbits free). The “zombie digit.” #{x € (JU{z})" | Z(x) € (FU{z})"}
I C A: initialization constraints

F C A: finalization constraints
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The strategy

As long as A, | and F aren't too big or too small, #ZSATx k 1.F is
#P-complete via almost parsimonious reduction.

Take K = Aut(G) and pick I, F C AC /i’g so that the reduction
#ZSATAJ(JJ: — #H(—, G)

is “obvious.”
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Schur invariant of a homomorphism

Orient X,.

Then every f € Rg yields a MCG,(Xg)-invariant:

sch(f) = f[Xg] € Ho(G).
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Schur invariant of a homomorphism

Orient X,.

Then every f € R, yields a MCG, (X )-invariant:

sch(f) = f[Xg] € Ho(G).

Key property [Livingston]: Suppose f; and f; are surjective. Then
sch(f1) = sch(f) if and only if f; and f, are stably equivalent. (G
can be any finite group here.)
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The alphabet

Let
RY = {f : m(Zg) - G | sch(f) = 0}.

0 -
Rg is a free Aut(G)-set.
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The alphabet

Let
RY = {f : m(Zg) - G | sch(f) = 0}.

Rg is a free Aut(G)-set.

Our zombie symbol is the trivial homomorphism
z:m(Xg) = G,

which is indeed fixed by every element in Aut(G).

Our alphabet is

A={z} URD

where g is “large enough.”
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Remark on the knot case: Schur-type invariants for

branched covers

Let C be the conjugacy class of c. Following Brand and
Ellenberg-Venkatesh-Westerland, there exists a classifying space for
(concordance classes of) C-branched G-covers of smooth
manifolds:

BGc = BG |_| L¢BG x D2
ev:LCBGxS1—BG
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Remark on the knot case: Schur-type invariants for

branched covers

Let C be the conjugacy class of c. Following Brand and
Ellenberg-Venkatesh-Westerland, there exists a classifying space for
(concordance classes of) C-branched G-covers of smooth
manifolds:

BGc = BG |_| L¢BG x D2
ev:LCBGxS1—BG

If S is an oriented surface and f : m1(S \ {n points}) — G a
homomorphism with f(puncture) € C U C~1, then there is a
corresponding C-branched Schur invariant

SChc(f) = f*[S] S HQ(BG(_‘).
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After that aside, let's remind ourselves:
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= {trivial homomorphism} U {surjections with sch = 0}
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@ Show the image of the Torelli subgroup under
MCG,(X2g) — SymAut(G)(Az) contains Rubpe(g) A%.
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= {trivial homomorphism} U {surjections with sch = 0}

@ Show the image of the Torelli subgroup under
MCG,(X2g) — SymAut(G)(Az) contains Ruba(c) A2

@ Do more work to ensure 71(Mz) has no spurious
homomorphisms to G with “digits” in R, \ A, where Rg is the
set of all homomorphisms 71(X,;) — G.
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Two goals

After that aside, let's remind ourselves:

A={z}UR]

= {trivial homomorphism} U {surjections with sch = 0}

@ Show the image of the Torelli subgroup under
MCG,(X2g) — SymAut(G)(Az) contains Ruba(c) A2

@ Do more work to ensure 71(Mz) has no spurious
homomorphisms to G with “digits” in R, \ A, where Rg is the
set of all homomorphisms 71(X,) — G. SPOILER ALERT:

we make them zombies too.



Universality

Outline

@ Universality



Universality
900000

An important theorem

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of
MCG,(Xg) inside

Sym(Rg/ Aut(G))
contains Alt(RY/ Aut(G)).
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An important theorem

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of
MCG,(Xg) inside

Sym(Rg/ Aut(G))
contains Alt(RY/ Aut(G)).

Great! But: need to understand the action on Rg, not its
Aut(G)-quotient. Also want some control over the action on the
spurious homomorphisms in R, \ A.
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Refining the Dunfield-Thurston theorem |

The two actions of MCG,(Xz) and Aut(G) on
Re = {m1(Zg) — G}
commute. Equivalently, the image of MCG,(Xz) is contained in

Symaui(c)(Re)-
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Refining the Dunfield-Thurston theorem |

The two actions of MCG,(Xz) and Aut(G) on
Re = {m(Zg) = G}
commute. Equivalently, the image of MCG,(Xz) is contained in
Symaui(c)(Re)-

Similarly, the action on A is contained in

Symaue(c)(A)-
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Refining the Dunfield-Thurston theorem ||

Let
Re = {m(%) = G}.

We don't need to worry about elements of
Ry \ R,

because they will never factor through a handlebody.
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Refining the Dunfield-Thurston theorem IlI

So, we consider the action of MCG,(Xgz) on

RO U Rg\ Ry U Hi(%g).
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Refining the Dunfield-Thurston theorem IlI

So, we consider the action of MCG,(Xgz) on

RO U Rg\ Ry U Hi(%g).

Let g be large enough. Then the image of MCG,(X,) inside

Symaut(c)(RS) x Symayi(c)(Re \ Rg) x Sp(2g,Z)

contains Rubpy(g) A
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Gadgets

We now apply our theorem to construct Torelli mapping classes
that serve as gadgets for the binary gates in

Rubaue(c)(A).

Importantly: Our theorem allows us to treat all spurious
homomorphisms as zombies, not just the zombie digit.
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Final reduction

o Take K = Aut(G), A as above, let | C A be the H°
constraint, F C A the H! constraint.
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guarantee #P-hardness.
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Final reduction

o Take K = Aut(G), A as above, let | C A be the H°
constraint, F C A the H' constraint.

@ Check these A,/ and F aren’t too big or too small to
guarantee #P-hardness.

o Given Z, replace every gate with the appropriate MCG,(X2g)
gadget. Call the wired up mapping class ¢z € MCG,(X,g).
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Final reduction

o Take K = Aut(G), A as above, let | C A be the H°
constraint, F C A the H! constraint.

@ Check these A,/ and F aren’t too big or too small to
guarantee #P-hardness.

o Given Z, replace every gate with the appropriate MCG,(X2g)
gadget. Call the wired up mapping class ¢z € MCG,(X,g).
o Let Mz = Hg Uy, Hy. Triangulate.
Everything we've done guarantees:
@ My is a homology sphere.
@ My is constructed in linear time.
o Treating spurious digits as zombies ensures they can't both

initialize and finalize, hence
#H(Mz,G) =1+ #Aut(G) - #Q(Mz, G)
= #ZSAT(Z).
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Outlook
°

Questions
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hyperbolic?

3-sheeted covers? 4-sheeted covers?
solvable vs. unsolvable?

How large is large enough?
Effective residual finiteness?

Is 3-MANIFOLD GENUS hard for the second level of the
polynomial hierarchy?
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