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Enumerative/coloring invariants

G : a finite group, fixed once and for all.

X : a space with some computable description, e.g. a simplicial
complex, triangulated 3-manifold or knot diagram.

H(X ,G ) := {π1(X )→ G}

What is the complexity of the problem of computing #H(X ,G )?
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Counting kernels

Related invariant:

Q(X ,G ) := { ΓC π1(X ) | π1(X )/Γ ∼= G }.

The relation to #H(X ,G ):

#H(X ,G ) =
∑
J≤G

# Aut(J) ·#Q(X , J)
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Knots

c ∈ G : a group element, fixed once and for all.

K : knot diagram

γ ∈ π1(K ): meridian

Invariants:

#H(K , γ,G , c) = #{f : π1(S3 \ K )→ G | f (γ) = c}
#Q(K , γ,G , c) = #{ΓC π1(S3 \ K ) | ∃α : π1/Γ ∼= G w/ α(γ) = c}
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Main theorems

Fix G a finite, nonabelian simple group, and a nontrivial group
element c ∈ G .

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought
of as computational input. Then the problem of computing
#Q(M,G ) is #P-complete via parsimonious reduction. Moreover,
the reduction guarantees that #Q(M, J) = 0 for all nontrivial,
proper subgroups J < G .

Theorem (Knots, Kuperberg-S)

Let K be a knot diagram with a meridian γ, thought of as
computational input. Then the problem of computing
#Q(K , γ,G , c) is #P-complete via parsimonious reduction.
Moreover, the reduction guarantees that #Q(K , γ, J, c) = 0 for all
noncyclic, proper subgroups 〈c〉 � J � G .
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Note for M in the image of our reduction,

#H(M,G ) = 1 + # Aut(G ) ·#Q(M,G ).

Corollary

Each of the following decision problems is NP-complete via Karp
reduction:

#Q(M,G ) > 0?

#H(M,G ) > 1?

#Q(K , γ,G , c) > 0?

#H(K , γ,G , c) > 1?

Corollary

For each fixed n ≥ 5, it is NP-complete to decide whether a
homology 3-sphere M has a connected n-sheeted cover, even with
the promise that it has no connected k-sheeted cover with
1 < k < n.
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Remarks

We say our reduction to #H(−,G ) is “almost parsimonious,”
i.e. parsimonious up to the unavoidable trivial homomorphism
and Aut(J) multiplicities.

Krovi-Russell proved #H(L,A5, c) is #P-complete, where L is
a link and c is a conjugacy class with at least 4 fixed points.
Not a (weakly) parsimonious reduction.

Prior to our theorem, the hardness of counting/finding
homomorphisms to a finite, nonabelian simple G wasn’t known
for finitely presented groups (much less 3-manifold groups).

Our techniques extend to allow maps to any finite list of
nonabelian simple groups.

Expect “decoupling” results for #H(−,−,G , c) and
#H(−,−,G , c ′) when c and c ′ are not outer automorphic.
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CSAT and #CSAT

Decision problem CSAT
Input: a Boolean circuit Z (see board)
Output: {

YES ∃x : Z (x) = 1

NO otherwise

Counting analogue #CSAT
Input: a Boolean circuit Z
Output:

#{x | Z (x) = 1}

#CSAT is #P-complete via parsimonious reduction.
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Basic idea

Given Z , construct (in polynomial time) a triangulated homology
3-sphere MZ so that

#Q(MZ ,G ) = #CSAT(Z )

and
#Q(MZ , J) = 0

for all nontrivial, proper J < G .

How? Gadget construction via combinatorial TQFT. (see board)

There are two issues with this.
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#RSAT

Issue 1: Our MCG circuits are reversible.

So we need a #P-complete problem for reversible circuits.

This is standard enough. (see board)
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#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G ) action on
R̂2g .

So we contrive a model to
account for this, and to look like
what our later theorems about
the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A
z : the only fixed point (all other
orbits free). The “zombie digit.”
I ⊂ A: initialization constraints
F ⊂ A: finalization constraints

#ZSATA,K ,I ,F

Input: a planar, K -equivariant
reversible circuit Z , over the
alphabet A, with gates in
RubK (A2).
Output:

#{x ∈ (I∪{z})n | Z (x) ∈ (F∪{z})n}



Results Circuit reductions Alphabet Universality Outlook

#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G ) action on
R̂2g .

So we contrive a model to
account for this, and to look like
what our later theorems about
the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A
z : the only fixed point (all other
orbits free). The “zombie digit.”
I ⊂ A: initialization constraints
F ⊂ A: finalization constraints

#ZSATA,K ,I ,F

Input: a planar, K -equivariant
reversible circuit Z , over the
alphabet A, with gates in
RubK (A2).
Output:

#{x ∈ (I∪{z})n | Z (x) ∈ (F∪{z})n}



Results Circuit reductions Alphabet Universality Outlook

#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G ) action on
R̂2g .

So we contrive a model to
account for this, and to look like
what our later theorems about
the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A
z : the only fixed point (all other
orbits free). The “zombie digit.”
I ⊂ A: initialization constraints
F ⊂ A: finalization constraints

#ZSATA,K ,I ,F

Input: a planar, K -equivariant
reversible circuit Z , over the
alphabet A, with gates in
RubK (A2).
Output:

#{x ∈ (I∪{z})n | Z (x) ∈ (F∪{z})n}



Results Circuit reductions Alphabet Universality Outlook

The strategy

Lemma

As long as A, I and F aren’t too big or too small, #ZSATA,K ,I ,F is
#P-complete via almost parsimonious reduction.

Take K = Aut(G ) and pick I ,F ⊂ A ⊂ R̂g so that the reduction

#ZSATA,K ,I ,F → #H(−,G )

is “obvious.”
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Schur invariant of a homomorphism

Orient Σg .

Then every f ∈ Rg yields a MCG∗(Σg )-invariant:

sch(f ) = f∗[Σg ] ∈ H2(G ).

Key property [Livingston]: Suppose f1 and f2 are surjective. Then
sch(f1) = sch(f2) if and only if f1 and f2 are stably equivalent. (G
can be any finite group here.)
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The alphabet

Let
R0
g = {f : π1(Σg )� G | sch(f ) = 0}.

R0
g is a free Aut(G )-set.

Our zombie symbol is the trivial homomorphism

z : π1(Σg )→ G ,

which is indeed fixed by every element in Aut(G ).

Our alphabet is

A = {z} ∪ R0
g

where g is “large enough.”
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Remark on the knot case: Schur-type invariants for
branched covers

Let C be the conjugacy class of c . Following Brand and
Ellenberg-Venkatesh-Westerland, there exists a classifying space for
(concordance classes of) C -branched G -covers of smooth
manifolds:

BGC = BG
⊔

ev :LCBG×S1→BG

LCBG × D2.

If S is an oriented surface and f : π1(S \ {n points})→ G a
homomorphism with f (puncture) ∈ C ∪ C−1, then there is a
corresponding C -branched Schur invariant

schC (f ) = f∗[S ] ∈ H2(BGC ).
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Two goals

After that aside, let’s remind ourselves:

A = {z} ∪ R0
g

= {trivial homomorphism} ∪ {surjections with sch = 0}

1 Show the image of the Torelli subgroup under
MCG∗(Σ2g )→ SymAut(G)(A

2) contains RubAut(G) A
2.

2 Do more work to ensure π1(MZ ) has no spurious
homomorphisms to G with “digits” in R̂g \ A, where R̂g is the
set of all homomorphisms π1(Σg )→ G . SPOILER ALERT:
we make them zombies too.
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An important theorem

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G ). Then the image of
MCG∗(Σg ) inside

Sym(R0
g/Aut(G ))

contains Alt(R0
g/Aut(G )).

Great! But: need to understand the action on R0
g , not its

Aut(G )-quotient. Also want some control over the action on the
spurious homomorphisms in R̂g \ A.
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Refining the Dunfield-Thurston theorem I

The two actions of MCG∗(Σg ) and Aut(G ) on

R̂g = {π1(Σg )→ G}

commute. Equivalently, the image of MCG∗(Σg ) is contained in

SymAut(G)(R̂g ).

Similarly, the action on A is contained in

SymAut(G)(A).
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Refining the Dunfield-Thurston theorem II

Let
Rg = {π1(Σg )� G}.

We don’t need to worry about elements of

Rg \ R0
g ,

because they will never factor through a handlebody.
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Refining the Dunfield-Thurston theorem III

So, we consider the action of MCG∗(Σg ) on

R0
g t R̂g \ Rg t H1(Σg ).

Theorem

Let g be large enough. Then the image of MCG∗(Σg ) inside

SymAut(G)(R
0
g )× SymAut(G)(R̂g \ Rg )× Sp(2g ,Z)

contains RubAut(G) A.
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Gadgets

We now apply our theorem to construct Torelli mapping classes
that serve as gadgets for the binary gates in

RubAut(G)(A
2).

Importantly: Our theorem allows us to treat all spurious
homomorphisms as zombies, not just the zombie digit.
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Final reduction

Take K = Aut(G ), A as above, let I ⊂ A be the H0

constraint, F ⊂ A the H1 constraint.

Check these A, I and F aren’t too big or too small to
guarantee #P-hardness.

Given Z , replace every gate with the appropriate MCG∗(Σ2g )
gadget. Call the wired up mapping class φZ ∈ MCG∗(Σng ).

Let MZ = H0 tφZ H1. Triangulate.

Everything we’ve done guarantees:

MZ is a homology sphere.

MZ is constructed in linear time.

Treating spurious digits as zombies ensures they can’t both
initialize and finalize, hence

#H(MZ ,G ) = 1 + # Aut(G ) ·#Q(MZ ,G )

= #ZSAT(Z ).
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Questions

hyperbolic?

3-sheeted covers? 4-sheeted covers?

solvable vs. unsolvable?

How large is large enough?

Effective residual finiteness?

Is 3-MANIFOLD GENUS hard for the second level of the
polynomial hierarchy?
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