Computational

 complexity and
3-manifolds and zombies

Eric G. Samperton

UC Davis

14 December, 2017

Joint with Greg Kuperberg. Based on arXiv:1707.03811 and work in preparation.

Outline

(1) Results
(2) Circuit reductions
(3) Alphabet

4 Universality
(5) Outlook

Results
000000

Outline

(2) Circuit reductions
(3) Alphabet

4 Universality
(5) Outlook

Enumerative/coloring invariants

G: a finite group, fixed once and for all.
X : a space with some computable description, e.g. a simplicial complex, triangulated 3-manifold or knot diagram.

$$
H(X, G):=\left\{\pi_{1}(X) \rightarrow G\right\}
$$

\square

Enumerative/coloring invariants

G: a finite group, fixed once and for all.

X: a space with some computable description, e.g. a simplicial complex, triangulated 3-manifold or knot diagram.

$$
H(X, G):=\left\{\pi_{1}(X) \rightarrow G\right\}
$$

What is the complexity of the problem of computing $\# H(X, G)$?

Counting kernels

Related invariant:

$$
Q(X, G):=\left\{\Gamma \triangleleft \pi_{1}(X) \mid \pi_{1}(X) / \Gamma \cong G\right\}
$$

The relation to $\# H(X, G)$:

$$
\# H(X, G)=\sum_{J \leq G} \# \operatorname{Aut}(J) \cdot \# Q(X, J)
$$

Knots

$c \in G$: a group element, fixed once and for all.
K : knot diagram
$\gamma \in \pi_{1}(K):$ meridian

Invariants:

$$
\begin{aligned}
& \# H(K, \gamma, G, c)=\#\left\{f: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow G \mid f(\gamma)=c\right\} \\
& \# Q(K, \gamma, G, c)=\#\left\{\Gamma \triangleleft \pi_{1}\left(S^{3} \backslash K\right) \mid \exists \alpha: \pi_{1} / \Gamma \cong G \mathrm{w} / \alpha(\gamma)=c\right\}
\end{aligned}
$$

Main theorems

Fix G a finite, nonabelian simple group, and a nontrivial group element $c \in G$.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought of as computational input. Then the problem of computing $\# Q(M, G)$ is $\# P$-complete via parsimonious reduction. Moreover, the reduction guarantees that $\# Q(M, J)=0$ for all nontrivial, proper subgroups $J<G$.

Main theorems

Fix G a finite, nonabelian simple group, and a nontrivial group element $c \in G$.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought of as computational input. Then the problem of computing $\# Q(M, G)$ is \#P-complete via parsimonious reduction. Moreover, the reduction guarantees that $\# Q(M, J)=0$ for all nontrivial, proper subgroups $J<G$.

Theorem (Knots, Kuperberg-S)

Let K be a knot diagram with a meridian γ, thought of as computational input. Then the problem of computing $\# Q(K, \gamma, G, c)$ is \#P-complete via parsimonious reduction. Moreover, the reduction guarantees that $\# Q(K, \gamma, J, c)=0$ for all noncyclic, proper subgroups $\langle c\rangle \lesseqgtr J \lesseqgtr G$.

Note for M in the image of our reduction,

$$
\# H(M, G)=1+\# \operatorname{Aut}(G) \cdot \# Q(M, G)
$$

Corollary

Each of the following decision problems is NP-complete via Karp reduction.

```
- #Q(M,G)>0?
- #H(M,G)> 1?
- #Q(K,\gamma,G,c)>0?
- #H(K,\gamma,G,c)>1?
```


Corollary

For each fixed $n \geq 5$, it is NP-complete to decide whether a
homology 3-sphere M has a connected n-sheeted cover, even with
the promise that it has no connected k-sheeted cover with
\square

Note for M in the image of our reduction,

$$
\# H(M, G)=1+\# \operatorname{Aut}(G) \cdot \# Q(M, G)
$$

Corollary

Each of the following decision problems is NP-complete via Karp reduction:

- $\# Q(M, G)>0$?
- $\# H(M, G)>1$?
- \# $Q(K, \gamma, G, c)>0$?
- \#H(K, $\gamma, G, c)>1$?

For each fixed $n \geq 5$, it is NP-complete to decide whether a homology 3-sphere M has a connected n-sheeted cover, even with the promise that it has no connected k-sheeted cover with

Note for M in the image of our reduction,

$$
\# H(M, G)=1+\# \operatorname{Aut}(G) \cdot \# Q(M, G)
$$

Corollary

Each of the following decision problems is NP-complete via Karp reduction:

- $\# Q(M, G)>0$?
- $\# H(M, G)>1$?
- \# $Q(K, \gamma, G, c)>0$?
- \#H(K, $\gamma, G, c)>1$?

Corollary

For each fixed $n \geq 5$, it is NP-complete to decide whether a homology 3-sphere M has a connected n-sheeted cover, even with the promise that it has no connected k-sheeted cover with $1<k<n$.

Remarks

- We say our reduction to $\# H(-, G)$ is "almost parsimonious," i.e. parsimonious up to the unavoidable trivial homomorphism and $\operatorname{Aut}(J)$ multiplicities.
- Krovi-Russell proved $\# H\left(L, A_{5}, c\right)$ is \#P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple G wasn't known for finitely presented groups (much less 3-manifold groups)
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Exnect "decounling" results for \#H(-,-,G, c) and $\# H\left(-,-, G, c^{\prime}\right)$ when c and c^{\prime} are not outer automorphic.

Remarks

- We say our reduction to $\# H(-, G)$ is "almost parsimonious," i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved $\# H\left(L, A_{5}, c\right)$ is \#P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple G wasn't known for finitely presented groups (much less 3-manifold groups)
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Fxnect "decounling" results for \#H(-,-,G, c) and $\# H\left(-,-, G, c^{\prime}\right)$ when c and c^{\prime} are not outer automorphic.

Remarks

- We say our reduction to $\# H(-, G)$ is "almost parsimonious," i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved $\# H\left(L, A_{5}, c\right)$ is \#P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple G wasn't known for finitely presented groups (much less 3-manifold groups).

Remarks

- We say our reduction to $\# H(-, G)$ is "almost parsimonious," i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved $\# H\left(L, A_{5}, c\right)$ is \#P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple G wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.

Remarks

- We say our reduction to $\# H(-, G)$ is "almost parsimonious," i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved $\# H\left(L, A_{5}, c\right)$ is \#P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple G wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for $\# H(-,-, G, c)$ and $\# H\left(-,-, G, c^{\prime}\right)$ when c and c^{\prime} are not outer automorphic.

Outline

(1) Results
(2) Circuit reductions
(3) Alphabet

4 Universality
(5) Outlook

CSAT and \#CSAT

Decision problem CSAT
Input: a Boolean circuit Z (see board)
Output:

$$
\begin{cases}\text { YES } & \exists x: Z(x)=1 \\ \text { NO } & \text { otherwise }\end{cases}
$$

Counting analogue \#CSAT
Input: a Boolean circuit Z
Output:

$$
\#\{x \mid Z(x)=1\}
$$

\#CSAT is \#P-complete via parsimonious reduction.

Basic idea

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_{Z} so that

$$
\# Q\left(M_{Z}, G\right)=\# \operatorname{CSAT}(Z)
$$

and

$$
\# Q\left(M_{Z}, J\right)=0
$$

for all nontrivial, proper $J<G$.
How? Gadget construction via combinatorial TQFT. (see board)

There are two issues with this.

Basic idea

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_{Z} so that

$$
\# Q\left(M_{Z}, G\right)=\# \operatorname{CSAT}(Z)
$$

and

$$
\# Q\left(M_{Z}, J\right)=0
$$

for all nontrivial, proper $J<G$.
How? Gadget construction via combinatorial TQFT. (see board)

There are two issues with this.

Basic idea

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_{Z} so that

$$
\# Q\left(M_{Z}, G\right)=\# \operatorname{CSAT}(Z)
$$

and

$$
\# Q\left(M_{Z}, J\right)=0
$$

for all nontrivial, proper $J<G$.
How? Gadget construction via combinatorial TQFT. (see board)

There are two issues with this.

Issue 1: Our MCG circuits are reversible. So we need a \#P-complete problem for reversible circuits. This is standard enough. (see board)

\#RSAT

Issue 1: Our MCG circuits are reversible.

So we need a \#P-complete problem for reversible circuits.

This is standard enough. (see board)

\#RSAT

Issue 1: Our MCG circuits are reversible.

So we need a \#P-complete problem for reversible circuits.

This is standard enough. (see board)

\#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on $\hat{R}_{2 g}$.

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A
z : the only fixed point (all other orbits free). The "zombie digit." $I \subset A$: initialization constraints $F \subset A$: finalization constraints
$\#_{Z S A T}^{A, K, I, F}{ }$
Input: a planar, K-equivariant reversible circuit Z, over the alphabet A, with gates in $\operatorname{Rub}_{K}\left(A^{2}\right)$.
Output:
$\neq\left\{x \in(/ \cup\{z\})^{n} \mid Z(x) \in(F \cup\{z\})^{n}\right\}$

\#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut (G) action on $\hat{R}_{2 g}$.

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A

z : the only fixed point (all other orbits free). The "zombie digit."

$I \subset A$: initialization constraints
$F \subset A$: finalization constraints

\#ZSAT

Issue 2: Our MCG circuits are equivariant w.r.t. Aut (G) action on $\hat{R}_{2 g}$.

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.
A: alphabet (large finite set)
K : finite group, acts on A
z : the only fixed point (all other orbits free). The "zombie digit." $I \subset A$: initialization constraints
$F \subset A$: finalization constraints
$\#_{Z S A T}^{A, K, I, F} 1$
Input: a planar, K-equivariant reversible circuit Z, over the alphabet A, with gates in $\operatorname{Rub}_{K}\left(A^{2}\right)$.
Output:

$$
\#\left\{x \in(I \cup\{z\})^{n} \mid Z(x) \in(F \cup\{z\})^{n}\right\}
$$

The strategy

Lemma

As long as A, I and F aren't too big or too small, $\# Z S A T_{A, K, I, F}$ is \#P-complete via almost parsimonious reduction.

Take $K=\operatorname{Aut}(G)$ and pick $I, F \subset A \subset \hat{R}_{g}$ so that the reduction

$$
\# \mathrm{ZSAT}_{A, K, I, F} \rightarrow \# H(-, G)
$$

is "obvious."

Outline

(1) Results
(2) Circuit reductions
(3) Alphabet

4 Universality
(5) Outlook

Schur invariant of a homomorphism

Orient Σ_{g}.
Then every $f \in R_{g}$ yields a $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$-invariant:

$$
\operatorname{sch}(f)=f_{*}\left[\Sigma_{g}\right] \in H_{2}(G)
$$

Key property [Livingston]: Suppose f_{1} and f_{2} are surjective. Then $\operatorname{sch}\left(f_{1}\right)=\operatorname{sch}\left(f_{2}\right)$ if and only if f_{1} and f_{2} are stably equivalent. (G can be any finite group here.)

Schur invariant of a homomorphism

Orient Σ_{g}.
Then every $f \in R_{g}$ yields a $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$-invariant:

$$
\operatorname{sch}(f)=f_{*}\left[\Sigma_{g}\right] \in H_{2}(G)
$$

Key property [Livingston]: Suppose f_{1} and f_{2} are surjective. Then $\operatorname{sch}\left(f_{1}\right)=\operatorname{sch}\left(f_{2}\right)$ if and only if f_{1} and f_{2} are stably equivalent. (G can be any finite group here.)

The alphabet

Let

$$
R_{g}^{0}=\left\{f: \pi_{1}\left(\Sigma_{g}\right) \rightarrow G \mid \operatorname{sch}(f)=0\right\} .
$$

R_{g}^{0} is a free $\operatorname{Aut}(G)$-set.
Our zombie symbol is the trivial homomorphism

$$
z: \pi_{1}\left(\Sigma_{g}\right) \rightarrow G,
$$

which is indeed fixed by every element in $\operatorname{Aut}(G)$.

Our alphabet is

$$
A=\{z\} \cup R_{g}^{0}
$$

where g is "large enough."

The alphabet

Let

$$
R_{g}^{0}=\left\{f: \pi_{1}\left(\Sigma_{g}\right) \rightarrow G \mid \operatorname{sch}(f)=0\right\} .
$$

R_{g}^{0} is a free $\operatorname{Aut}(G)$-set.
Our zombie symbol is the trivial homomorphism

$$
z: \pi_{1}\left(\Sigma_{g}\right) \rightarrow G
$$

which is indeed fixed by every element in $\operatorname{Aut}(G)$.
Our alphabet is

$$
A=\{z\} \cup R_{g}^{0}
$$

where g is "large enough."

Remark on the knot case: Schur-type invariants for branched covers

Let C be the conjugacy class of c. Following Brand and Ellenberg-Venkatesh-Westerland, there exists a classifying space for (concordance classes of) C-branched G-covers of smooth manifolds:

$$
B G_{C}=B G \bigsqcup_{e v: L C} \bigsqcup_{B G \times S^{1} \rightarrow B G} L^{C} B G \times D^{2} .
$$

If S is an oriented surface and $f: \pi_{1}(S \backslash\{n$ points $\}) \rightarrow G$ a homomorphism with f (puncture) $\in C \cup C^{-1}$, then there is a corresponding C-branched Schur invariant

$$
\operatorname{sch}_{C}(f)=f_{*}[S] \in H_{2}\left(B G_{C}\right) .
$$

Remark on the knot case: Schur-type invariants for

 branched coversLet C be the conjugacy class of c. Following Brand and Ellenberg-Venkatesh-Westerland, there exists a classifying space for (concordance classes of) C-branched G-covers of smooth manifolds:

$$
B G_{C}=B G \bigsqcup_{\text {ev:LC}} \bigsqcup_{B G \times S^{1} \rightarrow B G} L^{C} B G \times D^{2} .
$$

If S is an oriented surface and $f: \pi_{1}(S \backslash\{n$ points $\}) \rightarrow G$ a homomorphism with f (puncture) $\in C \cup C^{-1}$, then there is a corresponding C-branched Schur invariant

$$
\operatorname{sch}_{C}(f)=f_{*}[S] \in H_{2}\left(B G_{C}\right)
$$

Two goals

After that aside, let's remind ourselves:

$$
\begin{aligned}
A & =\{z\} \cup R_{g}^{0} \\
& =\{\text { trivial homomorphism }\} \cup\{\text { surjections with sch }=0\}
\end{aligned}
$$

(1) Show the image of the Torelli subgroup under $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right) \rightarrow \operatorname{Sym}_{\text {Aut }(G)}\left(A^{2}\right)$ contains $\operatorname{Rub}_{\text {Aut }(G)} A^{2}$
(2) Do more work to ensure $\pi_{1}\left(M_{z}\right)$ has no spurious homomorphisms to G with "digits" in $\hat{R}_{g} \backslash A$, where \hat{R}_{g} is the set of all homomorphisms $\pi_{1}\left(\Sigma_{g}\right) \rightarrow G$ SPOILER ALERT: we make them zombies too.

Two goals

After that aside, let's remind ourselves:

$$
\begin{aligned}
A & =\{z\} \cup R_{g}^{0} \\
& =\{\text { trivial homomorphism }\} \cup\{\text { surjections with sch }=0\}
\end{aligned}
$$

(1) Show the image of the Torelli subgroup under $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right) \rightarrow \operatorname{Sym}_{\operatorname{Aut}(G)}\left(A^{2}\right)$ contains $\operatorname{Rub}_{\text {Aut }(G)} A^{2}$.
(2) Do more work to ensure $\pi_{1}\left(M_{Z}\right)$ has no spurious homomorphisms to G with "digits" in $\hat{R}_{g} \backslash A$, where \hat{R}_{g} is the set of all homomorphisms $\pi_{1}\left(\Sigma_{g}\right) \rightarrow G$. SPOILER ALERT; we make them zombies too.

Two goals

After that aside, let's remind ourselves:

$$
\begin{aligned}
A & =\{z\} \cup R_{g}^{0} \\
& =\{\text { trivial homomorphism }\} \cup\{\text { surjections with sch }=0\}
\end{aligned}
$$

(1) Show the image of the Torelli subgroup under $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right) \rightarrow \operatorname{Sym}_{\text {Aut }(G)}\left(A^{2}\right)$ contains $\operatorname{Rub}_{\text {Aut }(G)} A^{2}$.
(2) Do more work to ensure $\pi_{1}\left(M_{Z}\right)$ has no spurious homomorphisms to G with "digits" in $\hat{R}_{g} \backslash A$, where \hat{R}_{g} is the set of all homomorphisms $\pi_{1}\left(\Sigma_{g}\right) \rightarrow G$.

Two goals

After that aside, let's remind ourselves:

$$
\begin{aligned}
A & =\{z\} \cup R_{g}^{0} \\
& =\{\text { trivial homomorphism }\} \cup\{\text { surjections with sch }=0\}
\end{aligned}
$$

(1) Show the image of the Torelli subgroup under $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right) \rightarrow \operatorname{Sym}_{\text {Aut }(G)}\left(A^{2}\right)$ contains $\operatorname{Rub}_{\text {Aut }(G)} A^{2}$.
(2) Do more work to ensure $\pi_{1}\left(M_{Z}\right)$ has no spurious homomorphisms to G with "digits" in $\hat{R}_{g} \backslash A$, where \hat{R}_{g} is the set of all homomorphisms $\pi_{1}\left(\Sigma_{g}\right) \rightarrow G$. SPOILER ALERT: we make them zombies too.

Outline

Circuit reductions

4 Universality

An important theorem

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$ inside

$$
\operatorname{Sym}\left(R_{g}^{0} / \operatorname{Aut}(G)\right)
$$

contains $\operatorname{Alt}\left(R_{g}^{0} / \operatorname{Aut}(G)\right)$.
Great! But: need to understand the action on R_{g}^{0}, not its Aut (G)-quotient. Also want some control over the action on the spurious homomorphisms in $\hat{R}_{g} \backslash A$.

An important theorem

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$ inside

$$
\operatorname{Sym}\left(R_{g}^{0} / \operatorname{Aut}(G)\right)
$$

contains $\operatorname{Alt}\left(R_{g}^{0} / \operatorname{Aut}(G)\right)$.
Great! But: need to understand the action on R_{g}^{0}, not its Aut (G)-quotient. Also want some control over the action on the spurious homomorphisms in $\hat{R}_{g} \backslash A$.

Refining the Dunfield-Thurston theorem I

The two actions of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ and $\operatorname{Aut}(G)$ on

$$
\hat{R}_{g}=\left\{\pi_{1}\left(\Sigma_{g}\right) \rightarrow G\right\}
$$

commute. Equivalently, the image of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ is contained in

$$
\operatorname{Sym}_{\text {Aut }(G)}\left(\hat{R}_{g}\right)
$$

Similarly, the action on A is contained in
$\operatorname{Sym}_{\text {Aut }(G)}(A)$.

Refining the Dunfield-Thurston theorem I

The two actions of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ and $\operatorname{Aut}(G)$ on

$$
\hat{R}_{g}=\left\{\pi_{1}\left(\Sigma_{g}\right) \rightarrow G\right\}
$$

commute. Equivalently, the image of $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$ is contained in

$$
\operatorname{Sym}_{\operatorname{Aut}(G)}\left(\hat{R}_{g}\right)
$$

Similarly, the action on A is contained in

$$
\operatorname{Sym}_{\text {Aut }(G)}(A)
$$

Refining the Dunfield-Thurston theorem II

Let

$$
R_{g}=\left\{\pi_{1}\left(\Sigma_{g}\right) \rightarrow G\right\}
$$

We don't need to worry about elements of

$$
R_{g} \backslash R_{g}^{0}
$$

because they will never factor through a handlebody.

Refining the Dunfield-Thurston theorem III

So, we consider the action of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ on

$$
R_{g}^{0} \sqcup \hat{R}_{g} \backslash R_{g} \sqcup H_{1}\left(\Sigma_{g}\right) .
$$

Theorem
Let g be large enough. Then the image of $\mathrm{MCG}_{*}\left(\Sigma_{g}\right)$ inside

$$
\operatorname{Sym}_{\operatorname{Aut}(G)}\left(R_{g}^{0}\right) \times \operatorname{Sym}_{\operatorname{Aut}(G)}\left(\hat{R}_{g} \backslash R_{g}\right) \times \operatorname{Sp}(2 g, \mathbb{Z})
$$

contains $\operatorname{Rub}_{\text {Aut }}(G) A$.

Refining the Dunfield-Thurston theorem III

So, we consider the action of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ on

$$
R_{g}^{0} \sqcup \hat{R}_{g} \backslash R_{g} \sqcup H_{1}\left(\Sigma_{g}\right) .
$$

Theorem

Let g be large enough. Then the image of $\operatorname{MCG}_{*}\left(\Sigma_{g}\right)$ inside

$$
\operatorname{Sym}_{\operatorname{Aut}(G)}\left(R_{g}^{0}\right) \times \operatorname{Sym}_{\operatorname{Aut}(G)}\left(\hat{R}_{g} \backslash R_{g}\right) \times \operatorname{Sp}(2 g, \mathbb{Z})
$$

contains $\operatorname{Rub}_{\text {Aut }}(G) A$.

Gadgets

We now apply our theorem to construct Torelli mapping classes that serve as gadgets for the binary gates in

$$
\operatorname{Rub}_{\mathrm{Aut}(G)}\left(A^{2}\right)
$$

Importantly: Our theorem allows us to treat all spurious homomorphisms as zombies, not just the zombie digit.

Final reduction

- Take $K=\operatorname{Aut}(G), A$ as above, let $I \subset A$ be the H^{0} constraint, $F \subset A$ the H^{1} constraint.
- Check these A, I and F aren't too big or too small to guarantee \#P-hardness.
- Given Z, replace every gate with the appropriate $\mathrm{MCG}_{*}\left(\Sigma_{2 g}\right)$ gadget. Call the wired up mapping class $\phi_{Z} \in \operatorname{MCG}_{*}\left(\Sigma_{n g}\right)$.
- Let $M_{Z}=H_{0} \sqcup_{\phi_{Z}} H_{1}$. Triangulate.

Everything we've done guarantees:

- M_{z} is a homology sphere.
- M_{Z} is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$
\begin{aligned}
\# H\left(M_{Z}, G\right) & =1+\# \operatorname{Aut}(G) \cdot \# Q\left(M_{Z}, G\right) \\
& =\# \operatorname{ZSAT}(Z) .
\end{aligned}
$$

Final reduction

- Take $K=\operatorname{Aut}(G), A$ as above, let $I \subset A$ be the H^{0} constraint, $F \subset A$ the H^{1} constraint.
- Check these A, I and F aren't too big or too small to guarantee \#P-hardness.
- Given Z, replace every gate with the appropriate $\mathrm{MCG}_{*}\left(\Sigma_{2 g}\right)$ gadget. Call the wired up mapping class $\phi_{Z} \in \operatorname{MCG}_{*}\left(\Sigma_{n g}\right)$.
- Let $M_{Z}=H_{0} \sqcup_{\phi_{Z}} H_{1}$. Triangulate.

Everything we've done guarantees:

- M_{Z} is a homology sphere.
- M_{Z} is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$
\begin{aligned}
\# H\left(M_{Z}, G\right) & =1+\# \operatorname{Aut}(G) \cdot \# Q\left(M_{z}, G\right) \\
& =\# \operatorname{ZSAT}(Z)
\end{aligned}
$$

Final reduction

- Take $K=\operatorname{Aut}(G), A$ as above, let $I \subset A$ be the H^{0} constraint, $F \subset A$ the H^{1} constraint.
- Check these A, I and F aren't too big or too small to guarantee \#P-hardness.
- Given Z, replace every gate with the appropriate $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right)$ gadget. Call the wired up mapping class $\phi_{Z} \in \operatorname{MCG}_{*}\left(\Sigma_{n g}\right)$.

Everything we've done guarantees:

- M_{Z} is a homology sphere.
- M_{Z} is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$
\begin{aligned}
\# H\left(M_{Z}, G\right) & =1+\# \operatorname{Aut}(G) \cdot \# Q\left(M_{Z}, G\right) \\
& =\# \operatorname{ZSAT}(Z)
\end{aligned}
$$

Final reduction

- Take $K=\operatorname{Aut}(G), A$ as above, let $I \subset A$ be the H^{0} constraint, $F \subset A$ the H^{1} constraint.
- Check these A, I and F aren't too big or too small to guarantee \#P-hardness.
- Given Z, replace every gate with the appropriate $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right)$ gadget. Call the wired up mapping class $\phi_{Z} \in \operatorname{MCG}_{*}\left(\Sigma_{n g}\right)$.
- Let $M_{Z}=H_{0} \sqcup_{\phi_{Z}} H_{1}$. Triangulate.

Everything we've done guarantees:

- M_{Z} is a homology sphere.
- M_{7} is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$
\# H\left(M_{z}, G\right)=1+\# \operatorname{Aut}(G) \cdot \# Q\left(M_{z}, G\right)
$$

Final reduction

- Take $K=\operatorname{Aut}(G), A$ as above, let $I \subset A$ be the H^{0} constraint, $F \subset A$ the H^{1} constraint.
- Check these A, I and F aren't too big or too small to guarantee \#P-hardness.
- Given Z, replace every gate with the appropriate $\operatorname{MCG}_{*}\left(\Sigma_{2 g}\right)$ gadget. Call the wired up mapping class $\phi_{Z} \in \operatorname{MCG}_{*}\left(\Sigma_{n g}\right)$.
- Let $M_{Z}=H_{0} \sqcup_{\phi_{Z}} H_{1}$. Triangulate.

Everything we've done guarantees:

- M_{Z} is a homology sphere.
- M_{Z} is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$
\begin{aligned}
\# H\left(M_{Z}, G\right) & =1+\# \operatorname{Aut}(G) \cdot \# Q\left(M_{Z}, G\right) \\
& =\# \operatorname{ZSAT}(Z) .
\end{aligned}
$$

Outline

(1) Results
(2) Circuit reductions
(3) Alphabet

4 Universality
(5) Outlook

Questions

- hyperbolic?
- 3-sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Questions

- hyperbolic?
- 3-sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Questions

- hyperbolic?
- 3-sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Questions

- hyperbolic?
- 3 -sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Questions

- hyperbolic?
- 3 -sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Questions

- hyperbolic?
- 3-sheeted covers? 4 -sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

