Results 000000

Circuit reduction

Alphabet

Universality 000000 Outlook 0

Computational complexity and 3-manifolds and zombies

Eric G. Samperton

UC Davis

14 December, 2017

Joint with Greg Kuperberg. Based on arXiv:1707.03811 and work in preparation.

Pride and Prejudice and Zombies

BY JANE AUSTEN AND SETH GRAHAME-SMITH

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
Outline				

2 Circuit reductions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results	Circuit reductions	Alphabet 0000	Universality 000000	Outlook O
Outline				

- 2 Circuit reductions
- 3 Alphabet

Results	Circuit reductions	Alphabet	Universality	Outlook
●00000		0000	000000	O
Enumerati	ve/coloring inv	variants		

G: a finite group, fixed once and for all.

X: a space with some computable description, e.g. a simplicial complex, triangulated 3-manifold or knot diagram.

$$H(X,G):=\{\pi_1(X)\to G\}$$

What is the complexity of the problem of computing #H(X, G)?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Results	Circuit reductions	Alphabet	Universality	Outlook	
●00000		0000	000000	0	
Enumerative/coloring invariants					

G: a finite group, fixed once and for all.

X: a space with some computable description, e.g. a simplicial complex, triangulated 3-manifold or knot diagram.

$$H(X,G):=\{\pi_1(X)\to G\}$$

What is the complexity of the problem of computing #H(X, G)?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Results	Circuit reductions	Alphabet	Universality	Outlook
0●0000		0000	000000	O
Counting	g kernels			

Related invariant:

$$Q(X,G) := \{ \ \Gamma \lhd \pi_1(X) \ | \ \pi_1(X) / \Gamma \cong G \}.$$

The relation to #H(X,G):

$$\#H(X,G) = \sum_{J \leq G} \#\operatorname{Aut}(J) \cdot \#Q(X,J)$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Results	Circuit reductions	Alphabet	Universality	Outlook
00●000		0000	000000	0
Knots				

- $c \in G$: a group element, fixed once and for all.
- K: knot diagram
- $\gamma \in \pi_1(K)$: meridian

Invariants:

$$\begin{split} & \# H(K,\gamma,G,c) = \# \{ f : \pi_1(S^3 \setminus K) \to G \mid f(\gamma) = c \} \\ & \# Q(K,\gamma,G,c) = \# \{ \Gamma \lhd \pi_1(S^3 \setminus K) \mid \exists \alpha : \pi_1/\Gamma \cong G \text{ w} / \alpha(\gamma) = c \} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main the	eorems			
Results	Circuit reductions	Alphabet	Universality	Outlook
000●00		0000	000000	O

Fix G a finite, nonabelian simple group, and a nontrivial group element $c \in G$.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought of as computational input. Then the problem of computing #Q(M, G) is #P-complete via parsimonious reduction. Moreover, the reduction guarantees that #Q(M, J) = 0 for all nontrivial, proper subgroups J < G.

Theorem (Knots, Kuperberg-S)

Let K be a knot diagram with a meridian γ , thought of as computational input. Then the problem of computing $\#Q(K,\gamma,G,c)$ is #P-complete via parsimonious reduction. Moreover, the reduction guarantees that $\#Q(K,\gamma,J,c) = 0$ for all noncyclic, proper subgroups $\langle c \rangle \leq J \leq G$.

Main the	Porems			
Results	Circuit reductions	Alphabet	Universality	Outlook
000●00		0000	000000	0

Fix G a finite, nonabelian simple group, and a nontrivial group element $c \in G$.

Theorem (Homology 3-spheres, Kuperberg-S)

Let M be a triangulation of an integer homology 3-sphere, thought of as computational input. Then the problem of computing #Q(M, G) is #P-complete via parsimonious reduction. Moreover, the reduction guarantees that #Q(M, J) = 0 for all nontrivial, proper subgroups J < G.

Theorem (Knots, Kuperberg-S)

Let K be a knot diagram with a meridian γ , thought of as computational input. Then the problem of computing $\#Q(K,\gamma,G,c)$ is #P-complete via parsimonious reduction. Moreover, the reduction guarantees that $\#Q(K,\gamma,J,c) = 0$ for all noncyclic, proper subgroups $\langle c \rangle \leq J \leq G$.

Results C	ircuit reductions	Alphabet	Universality	Outlook
000000 0	0000			

Note for M in the image of our reduction,

 $\#H(M,G) = 1 + \#\operatorname{Aut}(G) \cdot \#Q(M,G).$

Corolla<u>ry</u>

Each of the following decision problems is NP-complete via Karp reduction:

- #Q(M,G) > 0?
- #H(M,G) > 1?
- $\#Q(K, \gamma, G, c) > 0?$
- $#H(K, \gamma, G, c) > 1?$

Corollary

For each fixed $n \ge 5$, it is NP-complete to decide whether a homology 3-sphere M has a connected n-sheeted cover, even with the promise that it has no connected k-sheeted cover with 1 < k < n.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	00000	0000	000000	0

Note for M in the image of our reduction,

 $\#H(M,G) = 1 + \#\operatorname{Aut}(G) \cdot \#Q(M,G).$

Corollary

Each of the following decision problems is NP-complete via Karp reduction:

- #Q(M,G) > 0?
- #H(M,G) > 1?
- $\#Q(K, \gamma, G, c) > 0?$
- $#H(K, \gamma, G, c) > 1?$

Corollary

For each fixed $n \ge 5$, it is NP-complete to decide whether a homology 3-sphere M has a connected n-sheeted cover, even with the promise that it has no connected k-sheeted cover with 1 < k < n.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	00000	0000	000000	0

Note for M in the image of our reduction,

 $\#H(M,G) = 1 + \#\operatorname{Aut}(G) \cdot \#Q(M,G).$

Corollary

Each of the following decision problems is NP-complete via Karp reduction:

- #Q(M,G) > 0?
- #H(M,G) > 1?
- $\#Q(K, \gamma, G, c) > 0?$
- $#H(K, \gamma, G, c) > 1?$

Corollary

For each fixed $n \ge 5$, it is NP-complete to decide whether a homology 3-sphere M has a connected n-sheeted cover, even with the promise that it has no connected k-sheeted cover with 1 < k < n.

Results	Circuit reductions	Alphabet	Universality	Outlook
00000●		0000	000000	0
Remarks				

- We say our reduction to #H(-, G) is "almost parsimonious,"
 i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved #H(L, A₅, c) is #P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple *G* wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for #H(-, -, G, c) and #H(-, -, G, c') when c and c' are not outer automorphic.

Results	Circuit reductions	Alphabet	Universality	Outlook
00000●		0000	000000	0
Remarks				

- We say our reduction to #H(-, G) is "almost parsimonious,"
 i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved #H(L, A₅, c) is #P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple *G* wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for #H(-, -, G, c) and #H(-, -, G, c') when c and c' are not outer automorphic.

Results	Circuit reductions	Alphabet	Universality	Outlook
00000●		0000	000000	O
Remarks				

- We say our reduction to #H(-, G) is "almost parsimonious,"
 i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved #H(L, A₅, c) is #P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple *G* wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for #H(-, -, G, c) and #H(-, -, G, c') when c and c' are not outer automorphic.

Results	Circuit reductions	Alphabet	Universality	Outlook
00000●		0000	000000	O
Remarks				

- We say our reduction to #H(-, G) is "almost parsimonious,"
 i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved #H(L, A₅, c) is #P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple *G* wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for #H(-, -, G, c) and #H(-, -, G, c') when c and c' are not outer automorphic.

Results	Circuit reductions	Alphabet	Universality	Outlook
00000●		0000	000000	O
Remarks				

- We say our reduction to #H(-, G) is "almost parsimonious,"
 i.e. parsimonious up to the unavoidable trivial homomorphism and Aut(J) multiplicities.
- Krovi-Russell proved #H(L, A₅, c) is #P-complete, where L is a link and c is a conjugacy class with at least 4 fixed points. Not a (weakly) parsimonious reduction.
- Prior to our theorem, the hardness of counting/finding homomorphisms to a finite, nonabelian simple *G* wasn't known for finitely presented groups (much less 3-manifold groups).
- Our techniques extend to allow maps to any finite list of nonabelian simple groups.
- Expect "decoupling" results for #H(-, -, G, c) and #H(-, -, G, c') when c and c' are not outer automorphic.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	o
Outline				

2 Circuit reductions

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	•0000	0000	000000	o
CSAT an	d #CSAT			

Decision problem CSAT Input: a Boolean circuit Z (see board) Output:

 $\begin{cases} \mathsf{YES} & \exists x : Z(x) = 1 \\ \mathsf{NO} & \mathsf{otherwise} \end{cases}$

Counting analogue #CSAT Input: a Boolean circuit Z Output:

$$\#\{x \mid Z(x) = 1\}$$

#CSAT is #P-complete via parsimonious reduction.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	0●000	0000	000000	0
Basic idea				

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_Z so that

$$\#Q(M_Z,G)=\#\mathrm{CSAT}(Z)$$

and

$$\#Q(M_Z,J)=0$$

for all nontrivial, proper J < G.

How? Gadget construction via combinatorial TQFT. (see board)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

There are two issues with this.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	0●000	0000	000000	0
Basic idea				

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_Z so that

$$\#Q(M_Z,G)=\#\mathrm{CSAT}(Z)$$

and

$$\#Q(M_Z,J)=0$$

for all nontrivial, proper J < G.

How? Gadget construction via combinatorial TQFT. (see board)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

There are two issues with this.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	0●000	0000	000000	0
Basic idea				

Given Z, construct (in polynomial time) a triangulated homology 3-sphere M_Z so that

$$\#Q(M_Z,G)=\#\mathrm{CSAT}(Z)$$

and

$$\#Q(M_Z,J)=0$$

for all nontrivial, proper J < G.

How? Gadget construction via combinatorial TQFT. (see board)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

There are two issues with this.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
#RSAT				

Issue 1: Our MCG circuits are reversible.

So we need a #P-complete problem for reversible circuits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This is standard enough. (see board)

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
#RSAT				

Issue 1: Our MCG circuits are reversible.

So we need a #P-complete problem for reversible circuits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is standard enough. (see board)

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
#RSAT				

Issue 1: Our MCG circuits are reversible.

So we need a #P-complete problem for reversible circuits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is standard enough. (see board)

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on \hat{R}_{2g} .

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.

A: alphabet (large finite set) K: finite group, acts on A z: the only fixed point (all other orbits free). The "zombie digit." $I \subset A$: initialization constraints $F \subset A$: finalization constraints

$#ZSAT_{A,K,I,F}$

Input: a planar, K-equivariant reversible circuit Z, over the alphabet A, with gates in Rub_K(A^2). Output:

 $\#\{x \in (I \cup \{z\})^n \mid Z(x) \in (F \cup \{z\})^n\}$

・ロト・西ト・西ト・西・ うらの

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	o
#ZSAT				

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on \hat{R}_{2g} .

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.

A: alphabet (large finite set) K: finite group, acts on A z: the only fixed point (all other orbits free). The "zombie digit." $I \subset A$: initialization constraints $F \subset A$: finalization constraints

$\#ZSAT_{A,K,I,F}$

Input: a planar, K-equivariant reversible circuit Z, over the alphabet A, with gates in $\operatorname{Rub}_{\mathcal{K}}(A^2)$. Output:

 $\#\{x \in (I \cup \{z\})^n \mid Z(x) \in (F \cup \{z\})^n\}$

・ロト ・ 理ト ・ モト ・ モー ・ つへぐ

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	000●0	0000	000000	o
#ZSAT				

Issue 2: Our MCG circuits are equivariant w.r.t. Aut(G) action on \hat{R}_{2g} .

So we contrive a model to account for this, and to look like what our later theorems about the TQFT provide.

A: alphabet (large finite set) K: finite group, acts on A z: the only fixed point (all other orbits free). The "zombie digit." $I \subset A$: initialization constraints $F \subset A$: finalization constraints $\#ZSAT_{A,K,I,F}$

Input: a planar, K-equivariant reversible circuit Z, over the alphabet A, with gates in $\operatorname{Rub}_{K}(A^{2})$. Output:

 $\#\{x \in (I \cup \{z\})^n \mid Z(x) \in (F \cup \{z\})^n\}$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	0
The stra	tegv			

Lemma

As long as A, I and F aren't too big or too small, $\#ZSAT_{A,K,I,F}$ is #P-complete via almost parsimonious reduction.

Take $K = \operatorname{Aut}(G)$ and pick $I, F \subset A \subset \hat{R}_g$ so that the reduction

$$\#$$
ZSAT_{*A*,*K*,*I*,*F* \rightarrow $\#$ *H*($-$, *G*)}

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

is "obvious."

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
Outline				

 Results
 Circuit reductions
 Alphabet
 Universality
 Outlook

 Schur invariant of a homomorphism

Orient Σ_g .

Then every $f \in R_g$ yields a MCG_{*}(Σ_g)-invariant:

 $\operatorname{sch}(f) = f_*[\Sigma_g] \in H_2(G).$

Key property [Livingston]: Suppose f_1 and f_2 are surjective. Then $sch(f_1) = sch(f_2)$ if and only if f_1 and f_2 are <u>stably equivalent</u>. (G can be any finite group here.)

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

 Results
 Circuit reductions
 Alphabet
 Universality
 Outlook

 Schur invariant of a homomorphism

Orient Σ_g .

Then every $f \in R_g$ yields a MCG_{*}(Σ_g)-invariant:

 $\operatorname{sch}(f) = f_*[\Sigma_g] \in H_2(G).$

Key property [Livingston]: Suppose f_1 and f_2 are surjective. Then $sch(f_1) = sch(f_2)$ if and only if f_1 and f_2 are <u>stably equivalent</u>. (G can be any finite group here.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Results	Circuit reductions	Alphabet	Universality	Outlook
000000	00000	⊙●⊙⊙	000000	O
The alph	abet			

Let

$$R_g^0 = \{f: \pi_1(\Sigma_g) \twoheadrightarrow G \mid \mathsf{sch}(f) = 0\}.$$

 R_g^0 is a free Aut(G)-set.

Our zombie symbol is the trivial homomorphism

 $z:\pi_1(\Sigma_g)\to G,$

which is indeed fixed by every element in Aut(G).

Our alphabet is

$$A = \{z\} \cup R_g^0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シッペ?

where g is "large enough."

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0●00	000000	O
The alphab	et			

Let

$$R_g^0 = \{f: \pi_1(\Sigma_g) \twoheadrightarrow G \mid \mathsf{sch}(f) = 0\}.$$

 R_g^0 is a free Aut(G)-set.

Our zombie symbol is the trivial homomorphism

$$z:\pi_1(\Sigma_g)\to G,$$

which is indeed fixed by every element in Aut(G).

Our alphabet is

$$A = \{z\} \cup R_g^0$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where g is "large enough."

Let C be the conjugacy class of c. Following Brand and Ellenberg-Venkatesh-Westerland, there exists a classifying space for (concordance classes of) C-branched G-covers of smooth manifolds:

$$BG_C = BG \bigsqcup_{ev: L^C BG \times S^1 \to BG} L^C BG \times D^2.$$

If S is an oriented surface and $f : \pi_1(S \setminus \{n \text{ points}\}) \to G$ a homomorphism with $f(\text{puncture}) \in C \cup C^{-1}$, then there is a corresponding C-branched Schur invariant

$$\operatorname{sch}_C(f) = f_*[S] \in H_2(BG_C).$$

Let C be the conjugacy class of c. Following Brand and Ellenberg-Venkatesh-Westerland, there exists a classifying space for (concordance classes of) C-branched G-covers of smooth manifolds:

$$BG_C = BG \bigsqcup_{ev: L^C BG \times S^1 \to BG} L^C BG \times D^2.$$

If S is an oriented surface and $f : \pi_1(S \setminus \{n \text{ points}\}) \to G$ a homomorphism with $f(\text{puncture}) \in C \cup C^{-1}$, then there is a corresponding C-branched Schur invariant

$$\operatorname{sch}_{C}(f) = f_{*}[S] \in H_{2}(BG_{C}).$$

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		000●	000000	O
Two goals				

 $A = \{z\} \cup R_g^0$ = {trivial homomorphism} \cup {surjections with sch = 0}

- Show the image of the Torelli subgroup under $MCG_*(\Sigma_{2g}) \rightarrow Sym_{Aut(G)}(A^2)$ contains $Rub_{Aut(G)}A^2$.
- ② Do more work to ensure $\pi_1(M_Z)$ has no spurious homomorphisms to *G* with "digits" in $\hat{R}_g \setminus A$, where \hat{R}_g is the set of <u>all</u> homomorphisms $\pi_1(\Sigma_g) \to G$. SPOILER ALERT: we make them zombies too.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		000●	000000	o
Two goals				

 $A = \{z\} \cup R_g^0$ = {trivial homomorphism} \cup {surjections with sch = 0}

Show the image of the Torelli subgroup under MCG_{*}(Σ_{2g}) → Sym_{Aut(G)}(A²) contains Rub_{Aut(G)} A².

② Do more work to ensure $\pi_1(M_Z)$ has no spurious homomorphisms to *G* with "digits" in $\hat{R}_g \setminus A$, where \hat{R}_g is the set of <u>all</u> homomorphisms $\pi_1(\Sigma_g) \to G$. SPOILER ALERT: we make them zombies too.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		000●	000000	o
Two goals				

$$egin{aligned} A &= \{z\} \cup R_g^0 \ &= \{ ext{trivial homomorphism}\} \cup \{ ext{surjections with sch} = 0\} \end{aligned}$$

- Show the image of the Torelli subgroup under MCG_{*}(Σ_{2g}) → Sym_{Aut(G)}(A²) contains Rub_{Aut(G)} A².
- ② Do more work to ensure $\pi_1(M_Z)$ has no spurious homomorphisms to *G* with "digits" in $\hat{R}_g \setminus A$, where \hat{R}_g is the set of <u>all</u> homomorphisms $\pi_1(\Sigma_g) \to G$. SPOILER ALERT: we make them zombies too.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		000●	000000	o
Two goals				

$$egin{aligned} A &= \{z\} \cup R_g^0 \ &= \{ ext{trivial homomorphism}\} \cup \{ ext{surjections with sch} = 0\} \end{aligned}$$

- Show the image of the Torelli subgroup under MCG_{*}(Σ_{2g}) → Sym_{Aut(G)}(A²) contains Rub_{Aut(G)} A².
- **②** Do more work to ensure $\pi_1(M_Z)$ has no spurious homomorphisms to *G* with "digits" in $\hat{R}_g \setminus A$, where \hat{R}_g is the set of <u>all</u> homomorphisms $\pi_1(\Sigma_g) \to G$. SPOILER ALERT: we make them zombies too.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
Outline				

3 Alphabet

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	●00000	O
An impo	ortant theorem			

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of $MCG_*(\Sigma_g)$ inside $Sym(R^0_{\sigma}/Aut(G))$

contains $Alt(R_g^0 / Aut(G))$.

Great! But: need to understand the action on R_g^0 , not its Aut(*G*)-quotient. Also want some control over the action on the spurious homomorphisms in $\hat{R}_g \setminus A$.

< ロ ト < 回 ト < 三 ト < 三 ト 三 の < ○</p>

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	●00000	O
An impo	ortant theorem			

Theorem (Dunfield-Thurston)

Let g be large enough (depends on G). Then the image of $MCG_*(\Sigma_g)$ inside $Sym(R^0_{\sigma}/Aut(G))$

contains $Alt(R_g^0 / Aut(G))$.

Great! But: need to understand the action on R_g^0 , not its Aut(*G*)-quotient. Also want some control over the action on the spurious homomorphisms in $\hat{R}_g \setminus A$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

 Results
 Circuit reductions
 Alphabet
 Universality
 Outlook

 Nonoo
 Nonoo
 Nonoo
 Nonoo
 Nonoo

The two actions of $MCG_*(\Sigma_g)$ and Aut(G) on

$$\hat{R}_g = \{\pi_1(\Sigma_g) \to G\}$$

commute. Equivalently, the image of ${\rm MCG}_*(\Sigma_g)$ is contained in ${\rm Sym}_{{\rm Aut}(G)}(\hat{R}_g).$

Similarly, the action on A is contained in

 $\operatorname{Sym}_{\operatorname{Aut}(G)}(A).$

 Results
 Circuit reductions
 Alphabet
 Universality
 Outlook

 Nonoo
 Nonoo
 Nonoo
 Nonoo
 Nonoo

The two actions of $MCG_*(\Sigma_g)$ and Aut(G) on

$$\hat{R}_{g} = \{\pi_{1}(\Sigma_{g}) \rightarrow G\}$$

commute. Equivalently, the image of $MCG_*(\Sigma_g)$ is contained in

 $\operatorname{Sym}_{\operatorname{Aut}(G)}(\hat{R}_g).$

Similarly, the action on A is contained in

 $\operatorname{Sym}_{\operatorname{Aut}(G)}(A).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Results
000000Circuit reductions
00000Alphabet
0000Universality
00000Outlook
0Refining the Dunfield-Thurston theorem II

Let

$$R_g = \{\pi_1(\Sigma_g) \twoheadrightarrow G\}.$$

We don't need to worry about elements of

 $R_g \setminus R_g^0$,

because they will never factor through a handlebody.

So, we consider the action of $\mathsf{MCG}_*(\Sigma_g)$ on

$$R_g^0 \sqcup \hat{R}_g \setminus R_g \sqcup H_1(\Sigma_g).$$

Theorem

Let g be large enough. Then the image of $MCG_*(\Sigma_g)$ inside $Sym_{Aut(G)}(R_g^0) \times Sym_{Aut(G)}(\hat{R}_g \setminus R_g) \times Sp(2g, \mathbb{Z})$ contains $Rub_{Aut(G)}A$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

So, we consider the action of $\mathsf{MCG}_*(\Sigma_g)$ on

$$R_g^0 \sqcup \hat{R}_g \setminus R_g \sqcup H_1(\Sigma_g).$$

Theorem

Let g be large enough. Then the image of $MCG_*(\Sigma_g)$ inside

$$\mathsf{Sym}_{\mathsf{Aut}(G)}(R^0_g) imes \mathsf{Sym}_{\mathsf{Aut}(G)}(\hat{R}_g \setminus R_g) imes \mathsf{Sp}(2g, \mathbb{Z})$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

contains Rub_{Aut(G)} A.

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	0000●0	0
Gadgets				

We now apply our theorem to construct Torelli mapping classes that serve as gadgets for the binary gates in

 $\operatorname{Rub}_{\operatorname{Aut}(G)}(A^2).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Importantly: Our theorem allows us to treat <u>all</u> spurious homomorphisms as zombies, not just the zombie digit.

- Take K = Aut(G), A as above, let I ⊂ A be the H⁰ constraint, F ⊂ A the H¹ constraint.
- Check these A, I and F aren't too big or too small to guarantee #P-hardness.
- Given Z, replace every gate with the appropriate MCG_{*}(Σ_{2g}) gadget. Call the wired up mapping class φ_Z ∈ MCG_{*}(Σ_{ng}).
- Let $M_Z = H_0 \sqcup_{\phi_Z} H_1$. Triangulate.

- M_Z is a homology sphere.
- M_Z is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$#H(M_Z, G) = 1 + #\operatorname{Aut}(G) \cdot #Q(M_Z, G)$$
$$= #ZSAT(Z).$$

- Take K = Aut(G), A as above, let I ⊂ A be the H⁰ constraint, F ⊂ A the H¹ constraint.
- Check these A, I and F aren't too big or too small to guarantee #P-hardness.
- Given Z, replace every gate with the appropriate MCG_{*}(Σ_{2g}) gadget. Call the wired up mapping class φ_Z ∈ MCG_{*}(Σ_{ng}).
- Let $M_Z = H_0 \sqcup_{\phi_Z} H_1$. Triangulate.

- M_Z is a homology sphere.
- M_Z is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$#H(M_Z, G) = 1 + #\operatorname{Aut}(G) \cdot #Q(M_Z, G)$$
$$= #ZSAT(Z).$$

- Take K = Aut(G), A as above, let I ⊂ A be the H⁰ constraint, F ⊂ A the H¹ constraint.
- Check these A, I and F aren't too big or too small to guarantee #P-hardness.
- Given Z, replace every gate with the appropriate MCG_{*}(Σ_{2g}) gadget. Call the wired up mapping class φ_Z ∈ MCG_{*}(Σ_{ng}).
- Let $M_Z = H_0 \sqcup_{\phi_Z} H_1$. Triangulate.

- *M_Z* is a homology sphere.
- M_Z is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$#H(M_Z, G) = 1 + #\operatorname{Aut}(G) \cdot #Q(M_Z, G)$$
$$= #ZSAT(Z).$$

- Take K = Aut(G), A as above, let I ⊂ A be the H⁰ constraint, F ⊂ A the H¹ constraint.
- Check these A, I and F aren't too big or too small to guarantee #P-hardness.
- Given Z, replace every gate with the appropriate MCG_{*}(Σ_{2g}) gadget. Call the wired up mapping class φ_Z ∈ MCG_{*}(Σ_{ng}).
- Let $M_Z = H_0 \sqcup_{\phi_Z} H_1$. Triangulate.

- *M_Z* is a homology sphere.
- *M_Z* is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$#H(M_Z, G) = 1 + #\operatorname{Aut}(G) \cdot #Q(M_Z, G)$$
$$= #ZSAT(Z).$$

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

- Take K = Aut(G), A as above, let I ⊂ A be the H⁰ constraint, F ⊂ A the H¹ constraint.
- Check these A, I and F aren't too big or too small to guarantee #P-hardness.
- Given Z, replace every gate with the appropriate MCG_{*}(Σ_{2g}) gadget. Call the wired up mapping class φ_Z ∈ MCG_{*}(Σ_{ng}).
- Let $M_Z = H_0 \sqcup_{\phi_Z} H_1$. Triangulate.

- M_Z is a homology sphere.
- M_Z is constructed in linear time.
- Treating spurious digits as zombies ensures they can't both initialize and finalize, hence

$$#H(M_Z, G) = 1 + #\operatorname{Aut}(G) \cdot #Q(M_Z, G)$$
$$= #ZSAT(Z).$$

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	O
Outline				

- 2 Circuit reductions
- 3 Alphabet

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	●
Questions				

• hyperbolic?

- 3-sheeted covers? 4-sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	•
Questions				

hyperbolic?

• 3-sheeted covers? 4-sheeted covers?

- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	•
Questions				

- hyperbolic?
- 3-sheeted covers? 4-sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	●
Questions				

- hyperbolic?
- 3-sheeted covers? 4-sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	●
Questions				

- hyperbolic?
- 3-sheeted covers? 4-sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

Results	Circuit reductions	Alphabet	Universality	Outlook
000000		0000	000000	●
Questions				

- hyperbolic?
- 3-sheeted covers? 4-sheeted covers?
- solvable vs. unsolvable?
- How large is large enough?
- Effective residual finiteness?
- Is 3-MANIFOLD GENUS hard for the second level of the polynomial hierarchy?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○