Volume function for character varieties

Antonin Guilloux

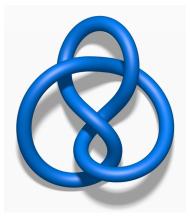
December 12, 2017

Antonin Guilloux

December 12, 2017 1 / 5

Image: Image:

8-knot complement

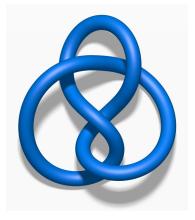


The 8-knot complement M_8 .

8-knot complement

The 8-knot complement M_8 . Its fundamental group is $\Gamma_8 = \langle a, b \mid ab^3ab^{-1}a^{-2}b^{-1} \rangle$.

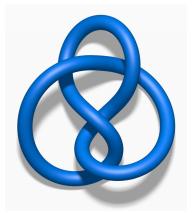
Peripheral torus



э

<ロト <回ト < 回ト

Peripheral torus



The peripheral torus has a fundamental group \mathbb{Z}^2 . There is an injection $\mathbb{Z}^2 \to \Gamma_8$, whose image is generated by m = ab and $l = aba^{-1}b^{-1}ab^{-1}a^{-1}b$.

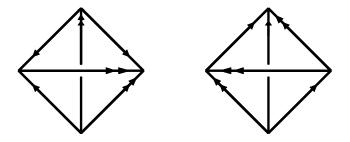
Triangulation of M_8

Antonin Guilloux

э

< □ > < □ > < □

Triangulation of M_8



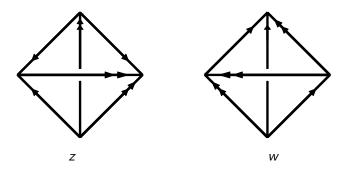
 $M_8 \simeq$ gluing of the tetrahedra with vertex removed (2 tetrahedra, 4 faces, 2 edges, 1 "ideal vertex")

-

э

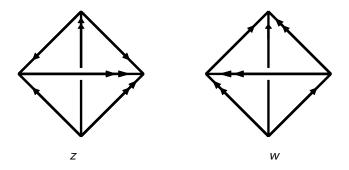
・ロト ・ 日 ト ・ ヨ ト ・

Take a complex parameter for each tetrahedron.



- (日)

Take a complex parameter for each tetrahedron.



There is a *gluing equations* :

$$z^2 w^2 \frac{1}{(1-z)(1-w)} = 1.$$

Take a complex parameter for each tetrahedron.

The deformation veriety

$$\operatorname{Defor}_2(M_8) = \left\{ z, w \in \mathbf{C} \text{ such that } z^2 w^2 \frac{1}{(1-z)(1-w)} = 1 \right\}$$

Image: A matrix and a matrix

Take a complex parameter for each tetrahedron.

The deformation veriety

$$\operatorname{Defor}_2(M_8) = \left\{ z, w \in \mathbf{C} \text{ such that } z^2 w^2 \frac{1}{(1-z)(1-w)} = 1 \right\}$$

Peripheral holonomy

$$L = \frac{w^2}{z^2}$$
 and $M = \frac{zw}{1-w}$

Image: A = 1 = 1

Take a complex parameter for each tetrahedron.

The deformation veriety

$$\operatorname{Defor}_2(M_8) = \left\{ z, w \in \mathbf{C} \text{ such that } z^2 w^2 \frac{1}{(1-z)(1-w)} = 1 \right\}$$

Peripheral holonomy

$$L = \frac{w^2}{z^2}$$
 and $M = \frac{zw}{1-w}$

< A□ > < ∃</p>