Volume function for character varieties

Antonin Guilloux

December 12, 2017

8-knot complement

The 8-knot complement M_{8}.

8-knot complement

The 8-knot complement M_{8}. Its fundamental group is $\Gamma_{8}=\left\langle a, b \mid a b^{3} a b^{-1} a^{-2} b^{-1}\right\rangle$.

Peripheral torus

Peripheral torus

The peripheral torus has a fundamental group \mathbf{Z}^{2}. There is an injection $\mathbf{Z}^{2} \rightarrow \Gamma_{8}$, whose image is generated by $m=a b$ and $I=a b a^{-1} b^{-1} a b^{-1} a^{-1} b$.

Triangulation of M_{8}

Triangulation of M_{8}

$M_{8} \simeq$ gluing of the tetrahedra with vertex removed (2 tetrahedra, 4 faces, 2 edges, 1 'ideal vertex")

Parametrization

Parametrization

Take a complex parameter for each tetrahedron.

z

w

Parametrization

Take a complex parameter for each tetrahedron.

z

w

There is a gluing equations :

$$
z^{2} w^{2} \frac{1}{(1-z)(1-w)}=1
$$

Parametrization

Take a complex parameter for each tetrahedron.

The deformation veriety

$$
\operatorname{Defor}_{2}\left(M_{8}\right)=\left\{z, w \in \mathbf{C} \text { such that } z^{2} w^{2} \frac{1}{(1-z)(1-w)}=1\right\}
$$

Parametrization

Take a complex parameter for each tetrahedron.

The deformation veriety

$$
\operatorname{Defor}_{2}\left(M_{8}\right)=\left\{z, w \in \mathbf{C} \text { such that } z^{2} w^{2} \frac{1}{(1-z)(1-w)}=1\right\}
$$

Peripheral holonomy

$$
L=\frac{w^{2}}{z^{2}} \text { and } M=\frac{z w}{1-w}
$$

Parametrization

Take a complex parameter for each tetrahedron.

The deformation veriety

$$
\operatorname{Defor}_{2}\left(M_{8}\right)=\left\{z, w \in \mathbf{C} \text { such that } z^{2} w^{2} \frac{1}{(1-z)(1-w)}=1\right\}
$$

Peripheral holonomy

$$
L=\frac{w^{2}}{z^{2}} \text { and } M=\frac{z w}{1-w}
$$

