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The deformed exponential function F (x, y) =

∞∑

n=0

xn

n!
yn(n−1)/2

• Defined for complex x and y satisfying |y| ≤ 1

• Analytic in C × D, continuous in C × D

• F ( · , y) is entire for each y ∈ D

• Valiron (1938): “from a certain viewpoint the simplest entire

function after the exponential function”

Applications:

• Statistical mechanics: Partition function of one-site lattice gas

• Combinatorics: Enumeration of connected graphs,

generating function for Tutte polynomials on Kn

(also acyclic digraphs, inversions of trees, . . . )

• Functional-differential equation: F ′(x) = F (yx) where ′ = ∂/∂x

• Complex analysis: Whittaker and Goncharov constants
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Application to enumeration of connected graphs

• Let an,m = # graphs with n labelled vertices and m edges

• Generating polynomial An(v) =
∑
m

an,m vm

• Exponential generating function A(x, v) =
∞∑

n=0

xn

n!
An(v)

• Of course an,m =
(
n(n−1)/2

m

)
=⇒ An(v) = (1 + v)n(n−1)/2 =⇒

∞∑

n=0

xn

n!
An(v) = F (x, 1 + v)

• Now let cn,m = # connected graphs with n labelled vertices

and m edges

• Generating polynomial Cn(v) =
∑
m

cn,m vm

• Exponential generating function C(x, v) =
∞∑

n=1

xn

n!
Cn(v)

• No simple explicit formula for Cn(v) is known, but . . .

• The exponential formula tells us that C(x, v) = log A(x, v), i.e.
∞∑

n=1

xn

n!
Cn(v) = log F (x, 1 + v)

[see Tutte (1967) and Scott–A.D.S., arXiv:0803.1477 for generalizations

to the Tutte polynomials of the complete graphs Kn]

• Usually considered as formal power series

• But series are convergent if |1 + v| ≤ 1

[see also Flajolet–Salvy–Schaeffer (2004)]
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Elementary analytic properties of F (x, y) =

∞∑

n=0

xn

n!
yn(n−1)/2

• y = 0: F (x, 0) = 1 + x

• 0 < |y| < 1: F ( · , y) is a nonpolynomial entire function

of order 0:

F (x, y) =
∞∏

k=0

(
1 −

x

xk(y)

)

where
∑

|xk(y)|−α < ∞ for every α > 0

• y = 1: F (x, 1) = ex

• |y| = 1 with y 6= 1: F ( · , y) is an entire function of order 1

and type 1:

F (x, y) = ex
∞∏

k=0

(
1 −

x

xk(y)

)
ex/xk(y) .

where
∑

|xk(y)|−α < ∞ for every α > 1

[see also Ålander (1914) for y a root of unity; Valiron (1938) and

Eremenko–Ostrovskii (2007) for y not a root of unity]

• |y| > 1: The series F ( · , y) has radius of convergence 0
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Consequences for Cn(v)

• Make change of variables y = 1 + v:

Cn(y) = Cn(y − 1)

• Then for |y| < 1 we have

∞∑

n=1

xn

n!
Cn(y) = log F (x, y) =

∑

k

log
(
1 −

x

xk(y)

)

and hence

Cn(y) = −(n − 1)!
∑

k

xk(y)−n for all n ≥ 1

(also holds for n ≥ 2 when |y| = 1)

• This is a convergent expansion for Cn(y)

• In particular, gives large-n asymptotic behavior

Cn(y) = −(n − 1)! x0(y)−n
[
1 + O(e−ǫn)

]

whenever F ( · , y) has a unique root x0(y) of minimum modulus

Question: What can we say about the roots xk(y)?
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Small-y expansion of roots xk(y)

• For small |y|, we have F (x, y) = 1 + x + O(y), so we expect a

convergent expansion

x0(y) = −1 −

∞∑

n=1

any
n

(easy proof using Rouché: valid for |y| . 0.441755)

• More generally, for each integer k ≥ 0, write x = ξy−k and

study

Fk(ξ, y) = yk(k+1)/2F (ξy−k, y) =
∞∑

n=0

ξn

n!
y(n−k)(n−k−1)/2

Sum is dominated by terms n = k and n = k + 1; gives root

xk(y) = −(k + 1)y−k

[
1 +

∞∑

n=1

a(k)
n yn

]

Rouché argument valid for |y| . 0.207875 uniformly in k:

all roots are simple and given by convergent expansion xk(y)

• Can also use theta function in Rouché (Eremenko)
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Might these series converge for all |y| < 1?

Two ways that xk(y) could fail to be analytic for |y| < 1:

1. Collision of roots (→ branch point)

2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in

the open unit disc D (except of course at y = 0).

In fact, for any compact subset K ⊂ D and any ǫ > 0, there exists

an integer k0 such that for all y ∈ K r {0} we have:

(a) The function F ( · , y) has exactly k0 zeros (counting multiplicity)

in the disc |x| < k0|y|
−(k0−

1

2
), and

(b) In the region |x| ≥ k0|y|
−(k0−

1

2
), the function F ( · , y) has a

simple zero within a factor 1+ ǫ of −(k +1)y−k for each k ≥ k0,

and no other zeros.

• Proof is based on comparison with a theta function (whose roots

are known by virtue of Jacobi’s product formula)

• Conjecture that roots cannot escape to infinity even in the closed

unit disc except at y = 1

Big Conjecture #1. All roots of F ( · , y) are simple for |y| < 1.

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. Each root xk(y) is

analytic in |y| < 1.
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But I conjecture more . . .

Big Conjecture #2. The roots of F ( · , y) are non-crossing

in modulus for |y| < 1:

|x0(y)| < |x1(y)| < |x2(y)| < . . .

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually

separated in modulus by a factor at least |y|, i.e.

|xk(y)| < |y| |xk+1(y)| for all k ≥ 0

Proof. Apply the Schwarz lemma to xk(y)/xk+1(y).

Consequence for the zeros of Cn(y)

Recall

Cn(y) = −(n − 1)!
∑

k

xk(y)−n

and use a variant of the Beraha–Kahane–Weiss theorem [A.D.S.,

arXiv:cond-mat/0012369, Theorem 3.2] =⇒ the limit points of

zeros of Cn are the values y for which the zero of minimum modulus

of F ( · , y) is nonunique .

So if F ( · , y) has a unique zero of minimum modulus for all y ∈ D

(a weakened form of Big Conjecture #2), then the zeros of Cn do

not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to n ≈ 80):

Big Conjecture #3. For each n, Cn(y) has no zeros with |y| < 1.

[and, I suspect, no zeros with |y| = 1 except the point y = 1]
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What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 ≤ y < 1, all the roots of F ( · , y)

are simple and negative real.

Corollary: Each root xk(y) is analytic in a complex neighborhood

of the interval [0, 1).

[Real-variables methods give further information about the roots

xk(y) for 0 ≤ y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series xk(y) . . . [algorithms to be discussed later]
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Let Mathematica run for a weekend . . .

−x0(y) = 1 + 1
2
y + 1

2
y2 + 11

24
y3 + 11

24
y4 + 7

16
y5 + 7

16
y6

+ 493
1152

y7 + 163
384

y8 + 323
768

y9 + 1603
3840

y10 + 57283
138240

y11

+ 170921
414720

y12 + 340171
829440

y13 + 22565
55296

y14

+ . . . + terms through order y899

and all the coefficients (so far) are nonnegative!

• Very recently I have computed x0(y) through order y16383.

• I also have shorter series for xk(y) for k ≥ 1.

Big Conjecture #4. For each k, the series −xk(y) has all

nonnegative coefficients.

Combine this with the known analyticity for 0 ≤ y < 1, and

Pringsheim gives:

Consequence of Big Conjecture #4. Each root xk(y) is

analytic in the open unit disc.

NEED TO DO: Extended computations for k = 1, 2, . . . and for

symbolic k.
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But more is true . . .

Look at the reciprocal of x0(y):

−
1

x0(y)
= 1 − 1

2y − 1
4y

2 − 1
12y

3 − 1
16y

4 − 1
48y

5 − 7
288y

6

− 1
96

y7 − 7
768

y8 − 49
6912

y9 − 113
23040

y10 − 17
4608

y11

− 293
92160y

12 − 737
276480y

13 − 3107
1658880y

14

− . . . − terms through order y899

and all the coefficients (so far) beyond the constant term are nonpositive !

Big Conjecture #5. For each k, the series −(k + 1)y−k/xk(y)

has all nonpositive coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.]

• Relative simplicity of the coefficients of −1/x0(y) compared to

those of −x0(y) −→ simpler combinatorial interpretation?

• Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).

So 1/xk(y) → 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coeffi-

cients (after the constant term) in the series −(k + 1)y−k/xk(y) are

the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture #5?

AGAIN NEED TO DO: Extended computations for k = 1, 2, . . .

and for symbolic k.
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But I conjecture that even more is true . . .

Define Dn(y) =
Cn(y)

(−1)n−1(n − 1)!
and recall that−x0(y) = lim

n→∞
Dn(y)−1/n

Big Conjecture #6. For each n,

(a) the series Dn(y)−1/n has all nonnegative coefficients,

and even more strongly,

(b) the series Dn(y)1/n has all nonpositive coefficients after the

constant term 1.

Since Dn(y) > 0 for 0 ≤ y < 1, Pringsheim shows that

Big Conjecture #6a implies Big Conjecture #3:

For each n, Cn(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b =⇒ for each n, the coefficients

(after the constant term) in the series Dn(y)1/n are the probabilities

for a positive-integer-valued random variable.

Such a random variable would generalize the one for −1/x0(y) in

roughly the same way that the binomial generalizes the Poisson.
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When stumped, generalize . . . !

Consider a formal power series

f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2

normalized to α0 = α1 = 1, or more generally

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1;

(b) an(0) = 0 for n ≥ 2; and

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞.

Examples:

• The “partial theta function”

Θ0(x, y) =

∞∑

n=0

xn yn(n−1)/2

• The “deformed exponential function”

F (x, y) =
∞∑

n=0

xn

n!
yn(n−1)/2

• More generally, consider

R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1)

which reduces to Θ0 when q = 0, and to F when q = 1.

• “Deformed binomial” and “deformed hypergeometric” series (see below).
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A general approach to the leading root x0(y)

• Start from a formal power series

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1

(b) an(0) = 0 for n ≥ 2

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞

and coefficients lie in a commutative ring-with-identity-element R.

• By (c), each power of y is multiplied by only finitely many

powers of x.

• That is, f is a formal power series in y whose coefficients are

polynomials in x, i.e. f ∈ R[x][[y]].

• Hence, for any formal power series X(y) with coefficients in R

[not necessarily with zero constant term], the composition f(X(y), y)

makes sense as a formal power series in y.

• Not hard to see (by the implicit function theorem for formal

power series or by a direct inductive argument) that there exists a

unique formal power series x0(y) ∈ R[[y]] satisfying f(x0(y), y) = 0.

• We call x0(y) the leading root of f .

• Since x0(y) has constant term −1, we will write x0(y) = −ξ0(y)

where ξ0(y) = 1 + O(y).
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How to compute ξ0(y)?

1. Elementary method: Insert ξ0(y) = 1 +
∞∑

n=1
bny

n into

f(−ξ0(y), y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula (see below).

3. Method based on the exponential formula and expansion of log f(x, y).

• Method #3 is computationally very efficient. (It’s what I used above.)

• Method #2 gives an explicit formula for the coefficients of ξ0(y) . . .

• Can it also be used to give proofs?
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The explicit implicit function formula

• See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59

• (Almost trivial) generalization of Lagrange inversion formula

• Comes in analytic-function and formal-power-series versions

• Recall Lagrange inversion: If f(x) =
∑∞

n=1 anx
n with a1 6= 0

(as either analytic function or formal power series), then

f−1(y) =
∞∑

m=1

ym

m
[ζm−1]

(
ζ

f(ζ)

)m

where [ζn]g(ζ) denotes the coefficient of ζn in the power series g(ζ).

More generally, if h(x) =
∑∞

n=0 bnx
n, we have

h(f−1(y)) = h(0) +
∞∑

m=1

ym

m
[ζm−1] h′(ζ)

(
ζ

f(ζ)

)m

• Rewrite this in terms of g(x) = x/f(x): then f(x) = y becomes

x = g(x)y, and its solution x = ϕ(y) = f−1(y) is given by the

power series

ϕ(y) =

∞∑

m=1

ym

m
[ζm−1]g(ζ)m

and

h(ϕ(y)) = h(0) +

∞∑

m=1

ym

m
[ζm−1]h′(ζ)g(ζ)m
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The explicit implicit function formula, continued

• Generalize x = g(x)y to x = G(x, y), where

– G(0, 0) = 0 and |(∂G/∂x)(0, 0)| < 1 (analytic-function version)

– G(0, 0) = 0 and (∂G/∂x)(0, 0) = 0 (formal-power-series version)

• Then there is a unique ϕ(y) with zero constant term satisfying

ϕ(y) = G(ϕ(y), y), and it is given by

ϕ(y) =
∞∑

m=1

1

m
[ζm−1]G(ζ, y)m

More generally, for any H(x, y) we have

H(ϕ(y), y) = H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ
G(ζ, y)m

• Proof imitates standard proof of the Lagrange inversion formula:

the variables y simply “go for the ride”.

• Alternate interpretation: Solving fixed-point problem for the

family of maps x 7→ G(x, y) parametrized by y. Variables y

again “go for the ride”.
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Application to leading root of f(x, y)

• Start from a formal power series f(x, y) =
∑∞

n=0 an(y) xn satisfying

properties (a)–(c) above.

• Write out f(−ξ0(y), y) = 0 and add ξ0(y) to both sides:

ξ0(y) = a0(y) − [a1(y) − 1]ξ0(y) +
∞∑

n=2

an(y) (−ξ0(y))n

• Insert ξ0(y) = 1+ϕ(y) where ϕ(y) has zero constant term. Then

ϕ(y) = G(ϕ(y), y) where

G(z, y) =
∞∑

n=0

(−1)n ân(y) (1 + z)n

and

ân(y) =

{
an(y) − 1 for n = 0, 1

an(y) for n ≥ 2

And ϕ(y) is the unique formal power series with zero constant

term satisfying this fixed-point equation.

• Since this G satisfies G(0, 0) = 0 and (∂G/∂z)(0, 0) = 0 [indeed

it satisfies the stronger condition G(z, 0) = 0], we can apply the

explicit implicit function formula to obtain an explicit formula

for ξ0(y):

ξ0(y) = 1 +
∞∑

m=1

1

m
[ζm−1]

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m

More generally, for any formal power series H(z, y), we have

H(ξ0(y) − 1, y)

= H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m
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Application to leading root of f(x, y), continued

• In particular, by taking H(z, y) = (1 + z)β we can obtain an

explicit formula for an arbitrary power of ξ0(y):

ξ0(y)β = 1 +

∞∑

m=1

β

m

∑

n1,...,nm≥0

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

(−1)niâni
(y)

• Important special case: a0(y) = a1(y) = 1 and an(y) = αn yλn

(n ≥ 2) where λn ≥ 1 and lim
n→∞

λn = ∞. Then

[yN ]
ξ0(y)β − 1

β
=

∞∑

m=1

1

m

∑

n1, . . . , nm ≥ 2
m∑

i=1

λni
= N

(−1)
∑

ni

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

αni

• Can this formula be used for proofs of nonnegativity???

• Empirically I know that the RHS is ≥ 0 when λn = n(n−1)/2:

– For β ≥ −2 with αn = 1 (partial theta function)

– For β ≥ −1 with αn = 1/n! (deformed exponential function)

– For β ≥ −1 with αn = (1 − q)n/(q; q)n and q > −1

• And I can prove this (by a different method!) for the partial

theta function (but not yet for the others).

• How can we see these facts from this formula???

[open combinatorial problem]
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Some positivity properties of formal power series

• Consider formal power series with real coefficients

f(y) = 1 +
∞∑

m=1

am ym

• For α ∈ R, define the class Sα to consist of those f for which

f(y)α − 1

α
=

∞∑

m=1

bm(α) ym

has all nonnegative coefficients (with a suitable limit when α = 0).

• In other words:

– For α > 0 (resp. α = 0), the class Sα consists of those f for

which fα (resp. log f) has all nonnegative coefficients.

– For α < 0, the class Sα consists of those f for which fα has

all nonpositive coefficients after the constant term 1.

• Containment relations among the classes Sα are given by the

following fairly easy result:

Proposition (Scott–A.D.S., unpublished):

Let α, β ∈ R. Then Sα ⊆ Sβ if and only if either

(a) α ≤ 0 and β ≥ α, or

(b) α > 0 and β ∈ {α, 2α, 3α, . . .}.

Moreover, the containment is strict whenever α 6= β.

20



Application to deformed exponential function F

As shown earlier, it seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + 1
2
y + 1

2
y2 + 11

24
y3 + 11

24
y4 + 7

16
y5 + 7

16
y6

+ 493
1152y

7 + 163
384y

8 + 323
768y

9 + 1603
3840y

10 + 57283
138240y

11

+ 170921
414720y

12 + 340171
829440y

13 + 22565
55296y

14

+ . . . + terms through order y899

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − 1
2
y − 1

4
y2 − 1

12
y3 − 1

16
y4 − 1

48
y5 − 7

288
y6

− 1
96y

7 − 7
768y

8 − 49
6912y

9 − 113
23040y

10 − 17
4608y

11

− 293
92160

y12 − 737
276480

y13 − 3107
1658880

y14

− . . . − terms through order y899

But I have no proof of either of these conjectures!!!

• Note that ξ0(y) is analytic on 0 ≤ y < 1 and diverges as y ↑ 1

like 1/[e(1 − y)].

• It follows that ξ0(y) /∈ Sα for α < −1.
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Application to partial theta function Θ0

It seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + 52y6 + 133y7 + 351y8

+948y9 + 2610y10 + . . . + terms through order y6999

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − y − y2 − y3 − 2y4 − 4y5 − 10y6 − 25y7 − 66y8

−178y9 − 490y10 − . . . − terms through order y6999

and indeed that ξ0(y) ∈ S−2:

ξ0(y)−2 = 1 − 2y − y2 − y4 − 2y5 − 7y6 − 18y7 − 50y8

−138y9 − 386y10 − . . . − terms through order y6999

Here I do have a proof of these properties (see below).

• Note that

ξ0(y)α − 1

α
= y +

α + 3

2
y2 +

(α + 2)(α + 7)

6
y3 + O(y4)

• So ξ0(y) /∈ Sα for α < −2.
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Application to R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q) · · · (1 + q + . . . + qn−1)

• Can use explicit implicit function formula to prove that

ξ0(y; q) = 1 +
∞∑

n=1

Pn(q)

Qn(q)
yn

where

Qn(q) =
∞∏

k=2

(1 + q + . . . + qk−1)⌊n/(k

2)⌋

and Pn(q) is a self-inversive polynomial in q with integer coefficients.

• Empirically Pn(q) has two interesting positivity properties:

(a) Pn(q) has all nonnegative coefficients. Indeed, all the

coefficients are strictly positive except [q1] P5(q) = 0.

(b) Pn(q) > 0 for q > −1.

• Empirically ξ0(y; q) ∈ S−1 for all q > −1:

2
3

4

5

6

7

q

Α

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

• Can any of this be proven for q 6= 0?
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The deformed binomial series

Here is an even simpler family that interpolates between the

partial theta function Θ0 and the deformed exponential function F :

• Start from the Taylor series for the binomial f(x) = (1−µx)−1/µ

[it is convenient to parametrize it in this way]

and introduce factors yn(n−1)/2 as usual:

Fµ(x, y) =
∞∑

n=0

(−µ)n
(
−1/µ

n

)
xn yn(n−1)/2

=
∞∑

n=0

1

n!

(n−1∏

j=0

(1 + jµ)

)
xn yn(n−1)/2

• We call Fµ(x, y) the deformed binomial function .

• For µ = 0 it reduces to the deformed exponential function.

• For µ = 1 it reduces to the partial theta function.

• For µ = −1/N (N = 1, 2, 3, . . .) it is a polynomial of degree N

that is the “y-deformation” of the binomial (1 + x/N)N
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The deformed binomial series, continued

• Can use explicit implicit function formula to prove that

ξ0(y; µ) = 1 +
∞∑

n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients

and dn are explicit integers.

• Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

• Empirically ξ0(y; µ) ∈ S−1 for all µ > −1:

2

3

3

4

5

6 7

-0.5 0.0 0.5 1.0 1.5 2.0
Μ

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0
Α

• Can any of this be proven for µ 6= 1?
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The deformed hypergeometric series

• Exponential (0F0) and binomial (1F0) are simplest cases of the

hypergeometric series pFq.

• Can apply “y-deformation” process to pFq:

pF
∗
q

(
µ1, . . . , µp

ν1, . . . , νq

∣∣∣∣ x, y

)
=

∞∑

n=0

(1; µ1)
n · · · (1; µp)

n

(1; ν1)n · · · (1; νq)n
xn

n!
yn(n−1)/2

where

(1; µ)n =
n−1∏

j=0

(1 + jµ)

• Note that setting µp = 0 reduces pF
∗
q to p−1F

∗
q (and likewise for νq).

• Empirically the two positivity properties for the deformed binomial

appear to extend to 2F
∗
0 (in the two variables µ1, µ2).

• I expect that this will generalize to all pF
∗
0 .

• But the cases pF
∗
q with q ≥ 1 are different, and I do not yet know

the complete pattern of behavior.
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Identities for the partial theta function

• Use standard notation for q-shifted factorials:

(a; q)n =
n−1∏

j=0

(1 − aqj)

(a; q)∞ =

∞∏

j=0

(1 − aqj) for |q| < 1

• A pair of identities for the partial theta function:

∞∑

n=0

xn yn(n−1)/2 = (y; y)∞ (−x; y)∞

∞∑

n=0

yn

(y; y)n (−x; y)n

∞∑

n=0

xn yn(n−1)/2 = (−x; y)∞

∞∑

n=0

(−x)n yn2

(y; y)n (−x; y)n

as formal power series and as analytic functions on (x, y) ∈ C × D

• Rewrite these as

∞∑

n=0

xn yn(n−1)/2 = (y; y)∞ (−xy; y)∞

[
1 + x +

∞∑

n=1

yn

(y; y)n (−xy; y)n−1

]

∞∑

n=0

xn yn(n−1)/2 = (−xy; y)∞

[
1 + x +

∞∑

n=1

(−x)n yn2

(y; y)n (−xy; y)n−1

]

• The first identity goes back to Heine (1847).

• The second identity can be found in Andrews and Warnaar

(2007) but is probably much older.
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Proof that ξ0 ∈ S1 for the partial theta function

• Let’s say we use the first identity:

Θ0(x, y) = (y; y)∞ (−xy; y)∞

[
1 + x +

∞∑

n=1

yn

(y; y)n (−xy; y)n−1

]

• So Θ0(x, y) = 0 is equivalent to “brackets = 0”.

• Insert x = −ξ0(y) and bring ξ0(y) to the LHS:

ξ0(y) = 1 +
∞∑

n=1

yn

n∏
j=1

(1 − yj)
n−1∏
j=1

[1 − yjξ0(y)]

• This formula can be used iteratively to determine ξ0(y),

and in particular to prove the strict positivity of its coefficients:

• Define the map F : Z[[y]] → Z[[y]] by

(Fξ)(y) = 1 +
∞∑

n=1

yn

n∏
j=1

(1 − yj)
n−1∏
j=1

[1 − yjξ(y)]

• Define a sequence ξ
(0)
0 , ξ

(1)
0 , . . . ∈ Z[[y]] by ξ

(0)
0 = 1 and ξ

(k+1)
0 = Fξ

(k)
0 .

• Then ξ
(0)
0 � ξ

(1)
0 � . . . � ξ0 and ξ

(k)
0 (y) = ξ0(y) + O(y3k+1).

• In particular, lim
k→∞

ξ
(k)
0 (y) = ξ0(y), and ξ0(y) has strictly positive

coefficients.

• Thomas Prellberg has a combinatorial interpretation of ξ0(y)

and ξ
(k)
0 (y).

• Proofs of ξ0 ∈ S−1 and ξ0 ∈ S−2 use second identity in a similar way.
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A conjectured big picture

I conjecture that there are three different things going on here:

• Positivity properties for the leading root ξ0(y):

– ξ0(y) in various classes Sβ for a fairly large class of series

f(x, y) =
∞∑

n=0
αn xn yn(n−1)/2

– Appears to include deformed hypergeometric pF
∗
0 ,

Rogers–Ramanujan R̃(x, y, q), probably others

– Find sufficient conditions on {αn}
∞
n=0??

• Positivity properties for the higher roots ξk(y):

– Some positivity for partial theta function and perhaps others

(needs further investigation)

– Positivity of all ξk(y) only for deformed exponential??

• Positivity properties for ratios ξk(y)/ξk+1(y):

– Holds for some unknown class of series f(x, y)

– Even for polynomials, class is unknown (cf. Calogero–Moser):

roots should be “not too unevenly spaced”

– Class appears to include at least deformed exponential

– Needs much further investigation
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Summary of open questions

• All the Big Conjectures concerning F (x, y) =
∞∑

n=0

xn

n!
yn(n−1)/2.

• For a formal power series

f(x, y) =

∞∑

n=0

αn xn yn(n−1)/2

with α0 = α1 = 1, find simple sufficient conditions to have

ξ0(y) � 0 or more generally ξ0(y) ∈ Sβ.

• In particular, want to handle αn = 1/n! or αn = (1−q)n/(q; q)n
or αn = (−µ)n

(
−1/µ

n

)
or hypergeometric generalizations.

• Can this be done using explicit implicit function formula?

(open combinatorial problem)

• Understand positivity properties for higher roots xk(y) and

ratios of roots xk(y)/xk+1(y).
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