THE UNIVERSITY OF WARWICK

Combinatorics Seminar

Friday November 9, 2012 at 2PM

Room MS.03

Matthew Yancey

(University of Illinois at Urbana-Champaign)

Ore's conjecture on color-critical graphs is almost true

A graph *G* is *k*-critical if it has chromatic number *k*, but every proper subgraph of *G* is (k-1)-colorable. Let $f_k(n)$ denote the minimum number of edges in an *n*-vertex *k*-critical graph. We give a lower bound, $f_k(n) \ge F(k,n)$, that is sharp for every $n = 1 \pmod{k-1}$. It is also sharp for k = 4 and every $n \ge 6$. The result improves the classical bounds by Gallai and Dirac and subsequent bounds by Krivelevich and Kostochka and Stiebitz. It establishes the asymptotics of $f_k(n)$ for every fixed *k*. It also proves that the conjecture by Ore from 1967 that for every $k \ge 4$ and $n \ge k+2$, $f_k(n+k-1) = f(n) + \frac{k-1}{2}(k-\frac{2}{k-1})$ holds for each $k \ge 4$ for all but at most $k^3/12$ values of *n*. This is joint work with Alexandr Kostochka.

warwick.ac.uk/combinatorics