Combinatorics Seminar

Friday November 9, 2012 at 2PM
Room MS. 03

Matthew Yancey

(University of Illinois at Urbana-Champaign)

Ore's conjecture on color-critical graphs is almost true

A graph G is k-critical if it has chromatic number k, but every proper subgraph of G is $(k-1)$-colorable. Let $f_{k}(n)$ denote the minimum number of edges in an n vertex k-critical graph. We give a lower bound, $f_{k}(n) \geq F(k, n)$, that is sharp for every $n=1(\bmod k-1)$. It is also sharp for $k=4$ and every $n \geq 6$. The result improves the classical bounds by Gallai and Dirac and subsequent bounds by Krivelevich and Kostochka and Stiebitz. It establishes the asymptotics of $f_{k}(n)$ for every fixed k. It also proves that the conjecture by Ore from 1967 that for every $k \geq 4$ and $n \geq k+2$, $f_{k}(n+k-1)=f(n)+\frac{k-1}{2}\left(k-\frac{2}{k-1}\right)$ holds for each $k \geq 4$ for all but at most $k^{3} / 12$ values of n. This is joint work with Alexandr Kostochka.

warwick.ac.uk/combinatorics

