# Logical Complexity of Graphs 

## Oleg Verbitsky

Combinatorics Seminar, University of Warwick November 23, 2012


## Outline

(1) Logical depth, width, and length of a graph
(2) Relevance to Graph Isomorphism
(3) Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
© How succinct are the most succinct definitions?

## Outline

(1) Logical depth, width, and length of a graph
(2) Relevance to Graph Isomorphism
(3) Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
© How succinct are the most succinct definitions?

## Our language

Vocabulary:
$=$ equality of vertices
$\sim$ adjacency of vertices

First-order logic: quantification over vertices; no quantification over sets.

Example: We can say that vertices $x$ any $y$ lie at distance no more than $n$ :

$$
\begin{aligned}
\Delta_{1}(x, y) & \stackrel{\text { def }}{=} \\
\Delta_{n}(x, y) & \sim y \vee x=y \\
\stackrel{\text { def }}{=} \exists z_{1} & \ldots \exists z_{n-1}\left(\Delta_{1}\left(x, z_{1}\right) \wedge \Delta_{1}\left(z_{1}, z_{2}\right)\right. \\
& \left.\wedge \ldots \wedge \Delta_{1}\left(z_{n-2}, z_{n-1}\right) \wedge \Delta_{1}\left(z_{n-1}, y\right)\right)
\end{aligned}
$$

## Succinctness measures of a formula $\Phi$

## Definition

The width $W(\Phi)$ is the number of variables used in $\Phi$ (different occurrences of the same variable are not counted).

Example: $W\left(\Delta_{n}\right)=n+1$ but we can economize by recycling just three variables:

$$
\begin{aligned}
\Delta_{1}^{\prime}(x, y) & \stackrel{\text { def }}{=} \Delta_{1}(x, y) \\
\Delta_{n}^{\prime}(x, y) & \stackrel{\text { def }}{=} \exists z\left(\Delta_{1}^{\prime}(x, z) \wedge \Delta_{n-1}^{\prime}(z, y)\right)
\end{aligned}
$$

where $\Delta_{n-1}^{\prime}(z, y)=\exists x(\ldots)$ getting
$W\left(\Delta_{n}^{\prime}\right)=3$.

## Succinctness measures of a formula $\Phi$

## Definition

The depth $D(\Phi)$ (or quantifier rank) is the maximum number of nested quantifiers in $\Phi$.

Example: $D\left(\Delta_{n}^{\prime}\right)=n-1$ but we can economize using the halving strategy:
$\Delta_{1}^{\prime \prime}(x, y) \stackrel{\text { def }}{=} \Delta_{1}(x, y)$ $\Delta_{n}^{\prime \prime}(x, y) \stackrel{\text { def }}{=} \exists z\left(\Delta_{\lfloor n / 2\rfloor}^{\prime \prime}(x, z) \wedge \Delta_{\lceil n / 2\rceil}^{\prime \prime}(z, y)\right)$, getting $D\left(\Delta_{n}^{\prime \prime}\right)=\lceil\log n\rceil$ while keeping $W\left(\Delta_{n}^{\prime \prime}\right)=3$.

## Succinctness measures of a formula $\Phi$

## Definition

The length $L(\Phi)$ is the total number of symbols in $\Phi$ (each variable symbol contributes 1 ).

Example: $L\left(\Delta_{n}\right)=O(n)$ and $L\left(\Delta_{n}^{\prime \prime}\right)=O(n)$ but we can economize

$$
\begin{aligned}
\Delta_{2 n+1}^{\prime \prime \prime}(x, y) & \stackrel{\text { def }}{=} \exists z\left(\Delta_{1}(x, z) \wedge \Delta_{2 n}(z, y)\right) \\
\Delta_{2 n}^{\prime \prime \prime}(x, y) & \stackrel{\text { def }}{=} \exists z \forall u(u=x \vee u=y \\
& \left.\rightarrow \Delta_{n}^{\prime \prime \prime}(u, z)\right)
\end{aligned}
$$

getting $L\left(\Delta_{n}^{\prime \prime \prime}\right)=O(\log n)$ and still keeping $D\left(\Delta_{n}^{\prime \prime \prime}\right) \leq 2 \log n$ and $W\left(\Delta_{n}^{\prime \prime \prime}\right)=4$.

## Definition

A statement $\Phi$ defines a graph $G$ if $\Phi$ is true on $G$ but false on every non-isomorphic graph $H$.

Example: $P_{n}$, the path on $n$ vertices, is defined by

$$
\begin{array}{r}
\forall x \forall y \Delta_{n-1}(x, y) \wedge \neg \forall x \forall y \Delta_{n-2}(x, y) \\
\quad \% \text { diameter }=n-1 \\
\wedge \forall x \forall y_{1} \forall y_{2} \forall y_{3}\left(x \sim y_{1} \wedge x \sim y_{2} \wedge x \sim y_{3}\right. \\
\left.\rightarrow y_{1}=y_{2} \vee y_{2}=y_{3} \vee y_{3}=y_{1}\right) \\
\quad \% \text { max degree }<3 \\
\wedge \exists x \exists y \forall z(x \sim y \wedge(z \sim x \rightarrow z=y)) \\
\quad \% \text { min degree }=1
\end{array}
$$

The logical length, depth, and width of a graph

Definition
$L(G)$ (resp. $D(G), W(G)$ ) is the minimum $L(\Phi)$ (resp. $D(\Phi), W(\Phi))$ over all $\Phi$ defining $G$.

## Remark

$$
W(G) \leq D(G)<L(G)
$$

## Theorem (Pikhurko, Spencer, V. 06)

$L(G)<\operatorname{Tower}\left(D(G)+\log ^{*} D(G)+2\right)$. This bound is tight in the sence that $L(G) \geq \operatorname{Tower}(D(G)-7)$ for infinitely many $G$.

## Example (a path)

- $W\left(P_{n}\right) \leq 4$ (in fact, $W\left(P_{n}\right)=3$ if $n \geq 2$ )
- $D\left(P_{n}\right)<\log n+3\left(\right.$ and $\left.D\left(P_{n}\right) \geq \log n-2\right)$.

How to determine $W(G)$ or $D(G)$ ?
(1) $D(G)=\max _{H \neq G} D(G, H)$, where $D(G, H)$ is the minimum quantifier depth needed to distinguish between $G$ and $H$. Similarly for $W(G)$.
(2) $D(G, H)$ and $W(G, H)$ are characterized in terms of a combinatorial game.

## The Ehrenfeucht game

Barwise; Immerman 82; Poizat 82: $G$ and $H$ are distinguishable with $k$ variables and quantifier depth $r$ iff Spoiler wins the $k$-pebble Ehrenfeucht game in $r$ rounds.


## Rules of the game

Players: Spoiler and Duplicator Resources: $k$ pebbles, each in duplicate A round:
Spoiler puts a pebble on a vertex in $G$ or $H$. Duplicator puts the other copy in the other graph. Duplicator's objective: after each round the pebbling should determine a partial isomorphism between $G$ and $H$.

## Example (a path) <br> $L\left(P_{n}\right)=O(\log n)$

Remark: This is tight up to a multiplicative constant because $L\left(P_{n}\right)>D\left(P_{n}\right) \geq \log n-2$.

## Variations of logic: bounded number of variables

$D^{k}(G)$ denotes the logical depth of $G$ in the $k$-variable logic (assuming $W(G) \leq k$ ).

Example (a path)

- $D^{3}\left(P_{n}\right) \leq \log n+3$
- $L^{4}\left(P_{n}\right)=O(\log n)$

Theorem (Grohe, Schweikardt 05)
$L^{3}\left(P_{n}\right)>\sqrt{n}$

## Variations of logic: counting quantifiers

$\exists^{m} x \Psi(x)$ means that there are at least $m$ vertices $x$ having property $\Psi$.
The counting quantifier $\exists^{m}$ contributes 1 in the quantifier depth whatever $m$.
$D_{\#}(G)$ and $W_{\#}(G)$ denote the logical depth and width of a graph $G$ in the counting logic.
$D_{\#}^{k}(G)$ denotes the variant of $D^{k}(G)$ for the $k$-variable counting logic.

## Counting move in the Ehrenfeucht game

- Spoiler exhibits a set $A \subset V(G)$ of "good" vertices.
- Duplicator responds with $B \subset V(H)$ such that $|B|=|A|$.
- Spoiler selects $b \in B$ and puts a pebble on it.
- Duplicator selects $a \in A$ and puts the other pebble on it.


## Power of counting

## Example

$W_{\#}\left(K_{n}\right)=2$ while $W\left(K_{n}\right)=n+1$.

## Question

Is it true that $W(G)=O\left(W_{\#}(G) \log n\right)$ if $G$ is asymmetric, i.e., has no nontrivial automorphism?

## Outline

(1) Logical depth, width, and length of a graph

2 Relevance to Graph Isomorphism

3 Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
(6) How succinct are the most succinct definitions?

## Color refinement algorithm



Initial coloring is monochromatic.

## Color refinement



New color of a vertex = old color + old colors of all neighbours.

## Next refinement


the graphs are non-isomorphic

## k-dimensional Weisfeiler-Lehman algorithm

- 1-dim WL = the color refinement algorithm
- $k$-dim WL colors $V(G)^{k}$
- Initial coloring: $C^{1}(\bar{u})=$ the equality type of $\bar{u} \in V(G)^{k}$ and the isomorphism type of the spanned subgraph
- Color refinement:
$C^{i}(\bar{u})=\left\{C^{i-1}(\bar{u}),\left\{\left(C^{i-1}\left(\bar{u}^{1, x}\right), \ldots, C^{i-1}\left(\bar{u}^{k, x}\right)\right)\right\}_{x \in V}\right\}$, where $\left(u_{1}, \ldots, u_{i}, \ldots, u_{k}\right)^{i, x}=\left(u_{1}, \ldots, x, \ldots, u_{k}\right)$


## The Weisfeiler-Lehman algorithm

- purports to decide if input graphs $G$ and $H$ are isomorphic,
- If $G \cong H$, the output is correct.
- If $G \neq H$, the output can be wrong.
- has two parameters: dimension and number of rounds.


## Theorem (Cai, Fürer, Immerman 92)

The r-round $k$-dim WL works correctly on any pair ( $G, H$ ) if

$$
k=W_{\#}(G)-1 \text { and } r=D_{\#}^{k+1}(G)-1
$$

On the other hand, it is wrong on $(G, H)$ for some $H$ if

$$
k<W_{\#}(G)-1, \text { whatever } r .
$$

## The Weisfeiler-Lehman algorithm

## Theorem (Cai, Fürer, Immerman 92)

Let $C$ be a class of graphs $G$ with $W_{\#}(G) \leq k$ for a constant $k$. Then Graph Isomorphism for $C$ is solvable in $P$.

## Theorem (Grohe, V. 06)

(1) Let $C$ be a class of graphs $G$ with

$$
D_{\#}^{k}(G)=O(\log n) .
$$

Then Graph Isomorphism for $C$ is solvable in $\mathrm{TC}^{1} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{AC}^{2}$.
(2) Let $C$ be a class of graphs $G$ with

$$
D^{k}(G)=O(\log n)
$$

Then Graph Isomorphism for C is solvable in $\mathrm{AC}^{1} \subseteq \mathrm{TC}^{1}$.

## Outline

(1) Logical depth, width, and length of a graph

2 Relevance to Graph Isomorphism

3 Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
(6) How succinct are the most succinct definitions?

## Trees

## Theorem (Immerman, Lander 90) $W_{\#}(T) \leq 2$ for every tree $T$.

Remark: $D_{\#}^{2}\left(P_{n}\right)=\frac{n}{2}-O(1)$
Speed-up: an extra variable $\rightarrow$ logarithmic depth

## Theorem

If $T$ is a tree on $n$ vertices, then $D_{\#}^{3}(T) \leq 3 \log n+2$.

## Proof-sketch

We can easily distinguish between $T$ and $T^{\prime} \not \neq T$ if $T^{\prime}$

- is disconnected;
- has different number of vertices;
- has the same number of vertices, is connected but has a cycle;
- has larger maximum degree.

It remains the case that $T^{\prime}$ is a tree with the same maximum degree. For simplicity, assume that the maximum degree is 3 (then no counting quantifiers are needed).

## Proof cont'd (a separator strategy)

We need to show that Spoiler wins the 3-pebble game on $T$ and $T^{\prime}$ in $3 \log n+2$ moves. Step 1. Spoiler pebbles a separator $v$ in $T$ (every component of $T-v$ has $\leq n / 2$ vertices). Step 2. Spoiler ensures pebbling $u \in N(v)$ and $u^{\prime} \in N\left(v^{\prime}\right)$ so that the corresponding components are non-isomorphic rooted trees.

$T$

$T^{\prime}$

Spoiler forces further play on these components and applies the same strategy again.

## Proof cont'd

A complication: the strategy is now applied to a graph with one vertex pebbled and we may need more than 3 pebbles. Assume that $u_{0}$ and $u_{0}^{\prime}$ were pebbled earlier and $T-v$ and $T^{\prime}-v^{\prime}$ differ only by the components containing $u_{0}$ and $u_{0}^{\prime}$. Suppose that $d\left(v, u_{0}\right)=d\left(v^{\prime}, u_{0}^{\prime}\right)$.



Step 3. Spoiler pebbles $v_{1}$ in the $v-u_{0}{ }^{-}$ path such that $T$ $v_{1}$ and $T^{\prime}-v_{1}^{\prime}$ differ by components with no pebble (assuming that $\left.d\left(v, v_{1}\right)=d\left(v^{\prime}, v_{1}^{\prime}\right)\right)$.

## Isomorphism of trees (history revision)

## Theorem

If $T$ is a tree on $n$ vertices, then $D_{\#}^{3}(T) \leq 3 \log n+2$.

Testing isomorphism of trees is

- in Log-Space

Lindell 92

- in $\mathrm{AC}^{1}$

Miller-Reif 91

- in $\mathrm{AC}^{1}$ if $\Delta=O(\log n)$
- in Lin-Time by 1-WL $\left(W_{\#}(T)=2\right) \quad$ Edmonds 65 Miller and Reif [SIAM J. Comput. 91]: "No polylogarithmic parallel algorithm was previously known for isomorphism of unbounded-degree trees." However, the $3 \log n$-round $2-\mathrm{WL}$ solves it in $\mathrm{TC}^{1}$ and is known since 68 !


## Graphs of bounded tree-width

## Theorem

For a graph $G$ of tree-width $k$ on $n$ vertices $W_{\#}(G) \leq k+2 \quad$ [Grohe, Mariño 99]; $D_{\#}^{4 k+4}(G)<2(k+1) \log n+8 k+9 \quad$ [Grohe, V. 06].

## Planar graphs

## Theorem

For a planar graph $G$ on $n$ vertices
$W_{\#}(G)=O(1) \quad$ [Grohe 98].
If $G$ is, moreover, 3-connected, then
$D^{15}(G)<11 \log n+45 \quad[V .07]$.

## Interval graphs

## Theorem

For an interval graph $G$ on $n$ vertices
$W_{\#}(G) \leq 4 \quad$ [Evdokimov et al. 00, Laubner 10];
$D_{\#}^{15}(G)<9 \log n+8$ [Köbler, Kuhnert, Laubner, V. 11].

## Our approach to interval graphs

- The clique hypergraph $\mathcal{C}(G)$ of a graph $G$ has vertices as in $G$ and the maxcliques in $G$ as hyperedges.
- $G=$ the Gaifman graph of $\mathcal{C}(G)$.
- $G \cong$ the intersection graph of the dual $\mathcal{C}(G)^{*}$.
- Laubner 10: If $G$ is interval, $\mathcal{C}(G)^{*}$ is constructible (definable) from $G$ because any maxclique is then the common neighborhood of some two vertices.
- If $G$ is interval, any minimal interval model of $G$ is isomorphic to $\mathcal{C}(G)^{*}$; hence, $\mathcal{C}(G)^{*}$ is an interval hypergraph.
- Then $\mathcal{C}(G)^{*}$ is decomposable into a tree, known in algorithmics as $P Q$-tree.


## Circular-arc graphs

## Question

Is the bound $W_{\#}(G)=O(1)$ true for circular-arc graphs?

The approach used for interval graphs fails because circular-arc graphs can have exponentially many maxcliques.

In fact, the status of the isomorphism problem for circular-arc graphs is open. Curtis et al. [arXiv, March 12] found a bug in the only known Hsu's algorithm.

## Graphs with an excluded minor

## Theorem (Grohe 11)

For each $H$, if $G$ excludes $H$ as a minor, then

$$
W_{\#}(G)=O(1) .
$$

## Question

Is it then true that $D_{\#}^{k}(G)=O(\log n)$ for some constant $k$ ?

## Theorem (a version of Dawar, Lindell, Weinstein 95)

If $W(G) \leq k$, then $D^{k}(G)<n^{k-1}+k$.

## Question

How tight is this bound?
We have $D^{k}(G)=O(\log n)$ or $D_{\#}^{k}(G)=O(\log n)$ for some classes of graphs. Can one formulate some general conditions under which this is true?

## Outline

(1) Logical depth, width, and length of a graph

2 Relevance to Graph Isomorphism

3 Bounds for particular classes of graphs

4 General bounds
(5) Random graphs
(6) How succinct are the most succinct definitions?

## Remark

Every finite graph $G$ is definable
by the following generic formula:

$$
\begin{array}{r}
\exists x_{1} \ldots \exists x_{n}\left(\operatorname{Distinct}\left(x_{1}, \ldots, x_{n}\right)\right. \\
\left.\wedge \operatorname{Adj}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{array}
$$

$\wedge \forall x_{1} \ldots \forall x_{n+1} \neg \operatorname{Distinct}\left(x_{1}, \ldots, x_{n+1}\right)$

Thus, for any $G$ on $n$ vertices

$$
W(G) \leq D(G) \leq n+1, \quad L(G)=O\left(n^{2}\right)
$$

Bad news: $W\left(K_{n}\right)=n+1$
Very bad news:

## Theorem (Cai, Fürer, Immerman 92)

There are graphs on $n$ vertices, even of maximum degree 3, such that

$$
W_{\#}(G)>0.004 n .
$$

## Any good news? Well,...

Exercise: $D(G) \leq n$ for all $G$ on $n$ vertices except $K_{n}$ and $\overline{K_{n}}$.
Exercise: $D(G) \leq n-1$ for all $G$ on $n$ vertices except $K_{n}, \overline{K_{n}}, K_{1, n-1}, \overline{K_{1, n-1}}, \ldots$, altogether 10 exceptional graphs (each having at least $n-2$ twins).

## Definition

Two vertices are twins if they are both adjacent or both non-adjacent to any third vertex.

## Theorem (Pikhurko, Veith, V. 06)

For a graph $G$ on $n$ vertices, it is easy to recognize whether or not

$$
D(G)>n-t,
$$

as long as $t \leq \frac{n-5}{2}$.

## Theorem (Pikhurko, Veith, V. 06)

If $G$ is a twin-free graph on $n$ vertices, then

$$
D(G) \leq \frac{n+5}{2} .
$$

Definition. Let $X \subset V(G)$ and $y \notin X$. The set $X$ sifts out $y$ if $N(y) \cap X \neq N(z) \cap X$ for any other $z \notin X$. $S(X)$ consists of $X$ and all $y$ sifted out by $X$. $X$ is a sieve if $S(X)=V(G)$.
$X$ is a weak sieve if $S(S(X))=V(G)$.
Exercise 1. Let $G \not \approx H$. If $X$ is a sieve in $G$, then Spoiler wins the Ehrenfeucht game on $G$ and $H$ in $|X|+2$ moves.
Exercise 2. If $X$ is a weak sieve in $G$, then Spoiler wins the Ehrenfeucht game on $G$ and $H$ in $|X|+3$ moves.
Exercise 3. Any twin-free graph $G$ on $n$ vertices has a weak sieve $X$ with $|X| \leq(n-1) / 2$.

By a similar argument:

## Theorem (Pikhurko, Veith, V. 06)

Any two non-isomorphic $G$ and $H$ on $n$ vertices can be distinguished by a statement of quantifier depth at most $\frac{n+3}{2}$.

## Corollary

$D_{\#}(G) \leq \frac{1}{2} n+3$ for any $G$ on $n$ vertices.

## Question

$W_{\#}(G) \leq\left(\frac{1}{2}-\epsilon\right) n$ for any $G$ on $n$ vertices?

## Question

$W_{\#}(G)=o(n)$ for any asymmetric $G$ on $n$ vertices??

## Outline

(1) Logical depth, width, and length of a graph

2 Relevance to Graph Isomorphism

3 Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
(6) How succinct are the most succinct definitions?

## Random graphs (counting logic)

## Theorem (Babai, Erdős, Selkow 80)

With probability more than $1-1 / \sqrt[7]{n}$, the 1-dim 3-round WL works correctly on a random graph $G_{n, 1 / 2}$ and all $H$. Therefore,

$$
D_{\#}^{2}\left(G_{n, 1 / 2}\right) \leq 4
$$

with this probability.

## Theorem

With high probability,

$$
D_{\#}^{2}\left(G_{n, 1 / 2}\right)=4 \text { and } 3 \leq D_{\#}\left(G_{n, 1 / 2}\right) \leq 4
$$

## Question

What is the typical value of $D_{\#}\left(G_{n, 1 / 2}\right)$ ?

## Random graphs (no counting)

## Theorem (Kim, Pikhurko, Spencer, V. 05)

With high probability

$$
\begin{aligned}
\log n-2 \log \log n+1 & <W\left(G_{n, 1 / 2}\right) \\
& \leq D\left(G_{n, 1 / 2}\right) \leq \log n-\log \log n+\omega,
\end{aligned}
$$

for each (arbitrarily slowly) increasing function $\omega=\omega(n)$.

## Theorem (Kim, Pikhurko, Spencer, V. 05)

For infinitely many $n$

$$
D\left(G_{n, 1 / 2}\right) \leq \log n-2 \log \log n+5+\log \log \mathrm{e}+o(1)
$$

with high probability.

## An application to the 0-1-law

$$
\text { Let } p_{n}(\Phi)=\mathbb{P}\left[G_{n, 1 / 2} \vDash \Phi\right] \text {. }
$$

## Theorem (Glebskii et al. 69, Fagin 76)

$p_{n}(\Phi) \rightarrow p(\Phi)$ as $n \rightarrow \infty$, where $p(\Phi) \in\{0,1\}$.
Define the convergence rate function by

$$
R(k, n)=\max _{\Phi}\left\{\left|p_{n}(\Phi)-p(\Phi)\right|: D(\Phi) \leq k\right\} .
$$

Thus, $R(k, n) \rightarrow 0$ as $n \rightarrow \infty$ for any fixed $k$.

## Theorem

Let $k(n)=\log n-2 \log \log n+c$.
(1) Set $c=1$. Then $R(k(n), n) \rightarrow 0$ as $n \rightarrow \infty$.
(2) The claim does not hold true for $c=6$.

## Remark

With high probability,

$$
\Omega\left(\frac{n^{2}}{\log n}\right) \leq L\left(G_{n, 1 / 2}\right) \leq O\left(n^{2}\right) .
$$

## Question

Where is $L\left(G_{n, 1 / 2}\right)$ concentrated?

## Outline

(1) Logical depth, width, and length of a graph

2 Relevance to Graph Isomorphism

3 Bounds for particular classes of graphs
(4) General bounds
(5) Random graphs
(6) How succinct are the most succinct definitions?

## The most succinct definitions

## Definition (succinctness function) <br> $s(n)=\min \{D(G): G$ has $n$ vertices $\}$

$s(n) \rightarrow \infty$ as $n \rightarrow \infty$ but its values can be inconceivably small if compared to $n$.

## Theorem (Pikhurko, Spencer, V. 06)

There is no total recursive function $f$ such that

$$
f(s(n)) \geq n \text { for all } n \text {. }
$$

## Nevertheless ...

## Definition (smoothed succinctness function)

$s^{*}(n)=\max _{m \leq n} s(m)$, the least monotone nondecreasing function bounding $s(n)$ from above.

## Theorem (Pikhurko, Spencer, V. 06)

$$
\log ^{*} n-\log ^{*} \log ^{*} n-2 \leq s^{*}(n) \leq \log ^{*} n+4
$$

## Succinctness function over trees

Let $t(n)=\min \{D(T): T$ is a tree on $n$ vertices $\}$.

## Theorem (Pikhurko, Spencer, V. 06)

$$
\log ^{*} n-\log ^{*} \log ^{*} n-4 \leq t(n) \leq \log ^{*} n+4
$$

Theorem (Dawar, Grohe, Kreutzer, Schweikardt 07)
For infinitely many $n$, there is a tree $T$ on $n$ vertices with $L(T)=O\left(\left(\log ^{*} n\right)^{4}\right)$.

Conjecture. The first-order theory of a class of graphs $\mathcal{C}$ is decidable iff the succinctness function over $\mathcal{C}$ admits a total recursive lower bound.

A more detailed exposition can be found in:
O. Pikhurko and O. Verbitsky. Logical complexity of graphs: a survey. In: Model Theoretic Methods in Finite
Combinatorics, J. Makowsky and M. Grohe Eds. Contemporary Mathematics, vol. 558, Amer. Math. Soc., Providence, RI, pp. 129-179 (2011).

