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I Introduction: random walks and cover time
I How to estimate ’un-visit probability’ and some examples

I Vacant set definition and main results
I Vacant set in Gn,p

I Vacant set in random r -regular graphs



Discrete random walk on a finite graph
I G = (V ,E) is a finite graph with n vertices and m edges.

(|V | = n, |E | = m)
I Assume that G is connected, so that all vertices in G have

at least one neighbour vertex,

I Simple random walk: move to a randomly chosen
neighbour at each step

I A simple random walk is a (unbiased) Markov process
I Suppose that at step t the walk is at vertex X (t) = v

Let d(v) = |N(v)| be the degree of vertex v , then for
w ∈ N(v)

Pr(X (t + 1) = w) =
1

d(v)



Cover time: Introduction

I G = (V ,E) is a connected graph. (|V | = n, |E | = m)

I Random walk Wv on G starting at v ∈ V
Let Cv be the expected time taken for Wv to visit every
vertex of G

I The cover time of G is defined as Tcov = maxv∈V Cv

I Starting vertex matters
I Graph with vertices u, v ,w Cv = Cu + 1

u v w



Brief history
I AKLLR1 For any connected graph Tcov ≤ 4mn

I Application: Is there a path connecting vertex s to t?
Test graph connectivity by random walk, in O(n3) steps
with O(log n) storage.

I Good for exploring large networks.
This led to increased interest in cover time

I Feige (1995). Bounds for any connected G:

(1− o(1))n log n ≤ Tcov ≤ (1 + o(1))
4

27
n3

1Aleliunas, Karp, Lipton, Lovász and Rackoff. Random Walks, Universal
Traversal Sequences, and the Complexity of Maze Problems. (1979)



Matthews bound for cover time
Hitting time from x to y , ExTy , the expected time to reach
destination vertex y , from start vertex x

Tcov ≤ Hmax

(
1 +

1
2

+ · · ·+ 1
n

)
= O(Hmax log n)

where Hmax = max ExTy is the maximum expected hitting time
over all pairs (x , y)

e.g. Complete graph Kn, Hmax = n − 1, Tcov ∼ n log n

Geometric waiting time, probability visit y at next step 1/(n − 1)



Convergence of random walk to stationarity
I Transition matrix of walk P = (pi,j),

where pi,j is probability a walk at vertex i moves to vertex j
I Assume: graph connected, walk not periodic

P t → Π where Πi,j = πj

I For a random walk, stationary distribution

πj =
d(j)
2|E |

I The rate of convergence of the walk to π is given by

|P t
u(x)− πx | ≤ (πx/πu)1/2λt

2,

λ2 is the second eigenvalue of the transition matrix P
I Many random graphs are expanders (0 < λ2 < 1)

Walk is Rapidly Mixing. After t = O(log n) steps

|P(t)
u (v)− πv | ≤ n−c



Un-visit probability

I Estimate the un-visit probability of states
The probability a given state has has not been visited after
t steps of the process

I Related quantity
The probability a given state has has not been visited after
t steps of the process, starting from stationarity

I The expected hitting time of state v from stationarity can
be approximated by

EπHv ∼ Rv/πv

where Rv is expected number of returns to v during a
suitable mixing time

I (Informally) Waiting time of first visit to v tends to
geometric distn, success probability pv ∼ πv/Rv
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Estimate of Unvisit Probability
Tmix , a suitable mixing time of the walk.
πv , the stationary distribution of v .
Rv , the expect number of returns to v by the walk in time Tmix .

Unvisit Probability

Pr(Wu(τ) 6= v : τ = Tmix , . . . , t) ∼ e−tπv/Rv

True under assumptions that hold for many e.g. random graph
models. Asymptotics of generating function

If the walk is rapidly mixing Tmix = O(log n), we can ’ignore’
effect of visits during the mixing time when calculating Tcov

For random graphs we can estimate Rv from the graph
structure for most vertices, (and bound it for all vertices)



Example: r -regular random graphs
How to calculate Rv for random r -regular graphs ?
If v is tree-like (not near any short cycles) then Rv ∼ r−1

r−2

Same as: biassed random walk on the half line (0,1,2, ....)

Pr( go left ) = 1
r , Pr( go right ) = r−1

r

f = Pr( walk returns to origin ) = 1
r−1 Rv ∼ 1

1−f = r−1
r−2



Example: r -regular random graphs
I πv = 1/n
I Tmix the mixing time O(log n)

I Most vertices are locally tree-like
For such vertices Rv ∼ (r − 1)/(r − 2), expected number of
returns to start in infinite r -regular tree

Pr(v unvisited in Tmix , . . . , t) ∼ e−tπv/Rv

∼ e−t(r−2)/(r−1)n

I R(t) set of vertices not visited by walk at step t
I Size of set of unvisited vertices R(t) ∼ ne−t(r−2)/(r−1)n

I We know the size of R(t), the vacant set
I We can use this to calculate the cover time Tcov
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Cover time Tcov of random walk on graph G
Tcov is the maximum expected time, over all start vertices u, for
a random walkWu to visit all vertices of G.

We studied whp cover time of random walks on random graphs
1. Erdös-Renyi random graphs Gn,p

Let np = c log n and (c − 1) log n→∞ then

Tcov ∼ c log
(

c
c − 1

)
n log n.

2. Random regular graphs Gr , where 3 ≤ r = O(1) then

Tcov ∼
r − 1
r − 2

n log n

3. Web-graphs G(m,n) where m ≥ 2

Tcov ∼
2m

m − 1
n log n
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Directed graphs: random digraphs Dn,p

The main challenge for Dn,p, was to obtain the stationary
distribution

Theorem
Let np = d log n where d = d(n), and let m = n(n − 1)p

Let γ = np − log n, and assume γ = ω(log log n)

Then whp, for all v ∈ V,

πv ∼
deg−(v)

m
,

and

Tcov ∼ d log
(

d
d − 1

)
n log n



The vacant set of a random walk

Random walk on 600× 600 toriodal grid. Black visited, white
unvisited.



What is the component structure of vacant set?



Notation
Finite graph G = (V ,E).

Wu Simple random walk on G, starting at u ∈ V

The vacant set. Vertices not yet visited by the walk

Can think of vacant set R(t) as coloured red,
and visited vertices B(t) as colored blue

R(t) Set of vertices not visited byWu up to time t
Γ(t) Sub-graph of G induced by vacant set R(t)

How large is R(t)?
What is the likely component structure of Γ(t)?



Evolution of vacant set graph Γ(t)

It is a sort of random graph process in reverse
As the walk progresses the vacant set Γ(t) is reduced from the
whole graph G to a graph with no vertices

In the context of sparse random graphs, as the unvisited vertex
set R(t) gets smaller, the edges inside Γ(t) will get sparser and
sparser.

Small sets of vertices don’t induce many edges
One might expect that at some time Γ(t) will break up into small
components
This is basically what we prove



We say that Γ(t) is sub-critical at step t , if all of its components
are of size O(log n)

We say that Γ(t) is super-critical at step t , if it has a unique
giant component, (of size Θ(R(t)) ) and all other components
are of size O(log n)

In the cases we consider there is a t∗, which is a (whp)
threshold for transition from super-criticality to sub-criticality



Vacant set of Gn,p

We assume that
p =

c log n
n

where (c − 1) log n→∞ with n, and c = no(1). Let

t(ε) = n (log log n + (1 + ε) log c)

Theorem
Let ε > 0 be a small constant
Then whp we have
(i) Γ(t) is super-critical for t ≤ t(−ε)
(ii) Γ(t) is sub-critical for t ≥ t(ε)

Giant component of R(t) until t > n log log n
For c > 1 constant, Cover time Tcov of Gn,p is Tcov ∼ n log n



Random graphs Gn,r

For r ≥ 3, constant, let

t∗ =
r(r − 1) log(r − 1)

(r − 2)2 n

Theorem
Let ε > 0 be a small constant. Then whp we have

(i) Γ(t) is super-critical for t ≤ (1− ε)t∗

(ii) For t ≤ (1− ε)t∗, size of giant component is Ω(n)

(iii) Γ(t) is sub-critical for t ≥ (1 + ε)t∗

e.g. for 3-regular random graphs r = 3, and t∗ = (6 log 2) n
Giant component for about t∗ = (6 log 2)n steps
Cover time Tcov ∼ 2n log n



Related Work

Benjamini and Sznitman; Windisch:
Considered the d-dimensional toroidal grids d ≥ 5.
Super-critical below C1n, sub-critical above C2n

Černy, Teixeira and Windisch:
Considered random r -regular graphs Gn,r
They showed sub-criticality for t ≥ (1 + ε)t∗

and existence of a unique giant component for t ≤ (1− ε)t∗
These proofs use the concept of random interlacements of
continuous time random walks



Our proof: Discrete time
I Simple. Based on established random graph results
I Gives results for Gn,p

I Completely characterizes the component structure
I Proves that in the super-critical phase t ≤ t∗, the second

largest component of Gn,r has size O(log n) whp
Gives the small tree structure of Γ(t)

Subsequent Work: Černy, Teixeira and Windisch:
Consider random r -regular graphs Gn,r
Investigate scaling window around t∗ using annealed model



Component structure of
vacant set of Gn,p



Distribution of edges in Γ(t)

Lemma
Consider a random walk on Gn,p
Conditional on N = |R(t)|, Γ(t) is distributed as GN,p.

Proof This follows easily from the principle of deferred
decisions. We do not have to expose the existence or absence
of edges between the unvisited vertices of R(t) �

Thus to find the super-critical/ sub-critical phases, we only need
high probability estimates of |R(t)| as t varies

This, we know how to do, from our work on cover time of
random graphs



Size of vacant set R(t) in Gn,p

Analysis of Gn,p for p = c log n/n

1. E(|R(t)|) ∼
∑

v e−tπv/Rv

2. Almost all vertices have ∼ average degree np = c log n
Thus πv ∼ 1/n

3. Probability of retracing an edge at next step 1/d(v) = o(1)
Thus Rv = 1 + o(1) for all v ∈ V

4. Size of vacant set E(|R(t)|) ∼ ne−(1+o(1))t/n.

5. We can use Chebyshev to show that |R(t)| is concentrated

If tθ = n(log log n + (1 + θ) log c) then

E(|R(t)|) ∼ n
c1+θ log n

=
1

cθp
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Size of ’giant’ component
I Recall that np = c log n,

If tθ = n(log log n + (1 + θ) log c) then E(|R(t)|) ∼ 1/(cθp)
So, at tθ,

E(|R(tθ)|p) ∼ 1
cθ

I Threshold criteria for random graph GN,p is Np ∼ 1
I When θ = 0, then E(|R(tθ)|p) ∼ 1
I The threshold t∗ occurs at around θ = 0 i.e.

t∗ ∼ n(log log n + log c)

I Size of giant is order |R(tθ)|. As t → t∗ from below, size of
’giant’ is order |R(t∗)| ∼ 1/p = n/(c log n)

I Above t∗ max component size collapses to O(log n)



Component structure of
vacant set of random

r -regular graphs
for r ≥ 3, constant.



Reminder: Vacant set of r -regular random graphs
I E(|R(t)|) ∼

∑
v e−tπv/Rv

I πv = 1/n
I Most vertices are locally tree-like

For such vertices Rv ∼ (r − 1)/(r − 2),
expected number of returns to start in infinite r -regular tree

I

Pr(v unvisited in Tmix , . . . , t) ∼ e−t(r−2)/(r−1)n

I A similar upper bound can be obtained for the o(n)
non-tree-like vertices

I Size of vacant set R(t) ∼ ne−t(r−2)/(r−1)n
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Threshold
Let

t∗ =
r(r − 1) log(r − 1)

(r − 2)2 n.

Theorem
Let ε > 0 be a small constant. Then whp we have

(i) Γ(t) is super-critical for t ≤ (1− ε)t∗,
(ii) For t ≤ (1− ε)t∗, size of giant component is Ω(n)

(iii) Γ(t) is sub-critical for t ≥ (1 + ε)t∗ and



Proof outline for r -regular random graph

I Generate the graph in the configuration model using the
random walk

I Graph Γ(t) induced by vacant set R(t) is random
I Estimate un-visit probability of vertices to find size of R(t)
I Estimate degree sequence d of Γ(t)in the configuration

model, using size of vacant set R(t), and number of
unvisited edges U(t)

I Given the degree sequence d of Γ(t), we can use
Molloy-Reed condition for existence of giant component in
a random graph with fixed degree sequence

I Estimate number of small trees in configuration model



Degree sequence of Γ(t)

Vacant set size
|R(t)| = (1 + o(1))Nt where Nt = ne−

(r−2)t
(r−1)n

Vertex degree
Let Ds(t) the number of unvisited vertices of Γ(t) with r − s
visited neighbours and of degree s in Γ(t)
For 0 ≤ s ≤ r , and for ranges of t given below, whp

Ds(t) ∼ Nt

(
r
s

)
ps

t (1− pt )
r−s

where

pt = e−
(r−2)2

(r−1)r
t
n

Range of validity is o(n) ≤ t ≤ Θ(n log n)
Includes t∗



Uniformity

Lemma
Consider a random walk on Gr . Conditional on N = |R(t)| and
degree sequence d = dΓ(t)(v), v ∈ R(t), then Γ(t) is distributed
as GN,d, the random graph with vertex set [N] and degree
sequence d.

Proof Basic idea: Reveal Gr using the random walk.
Suppose that we condition on R(t) and the history of the walk,
H = (Wu(0),Wu(1), . . . ,Wu(t)). If G1,G2 are graphs with
vertex set R(t) and if they have the same degree sequence
then substituting G2 for G1 will not conflict with H.
Every extension of G1 is an extension of G2 and vice-versa. �

Thus we only need:
Good model of component structure of GN,d
High probability estimates of the degree sequence Ds(t) of Γ(t).



Main variables
By calculating un-visit probabilities in various ways, we can
estimate the size at step t of
I R(t) the set of unvisited vertices
I U(t) the set of unvisited edges
I Ds(t) the number of unvisited vertices of degree s in Γ(t)

ie number of unvisited vertices with r − s edges incident
with visited vertices B(t)



Annealed process
We use the random walk to generate the graph in the
configuration model as a random pairing F

I Bt blue conifg. points at step t
which form discovered pairing Ft

I Rt red conifg. points at step t
This will form un-generated pairing F − Ft

I Visited vertices may have config. points in Rt ,
corresponding to unexplored edges



Next configuration pairing

At step t walk located at vertex Xt ∈ B(t)
Probability walk moves to an unvisited vertex?
Given the walk selects a red config. point of Xt (if any), the
probability this is paired with an config. point in R(t) is

r |R(t)|
|Rt | − 1



Shrinking Vertices: First visit to a set of vertices S

S subset of vertices of G
γ(S) is S shrunk to a vertex

H(G) is G with S shrunk to γ(S)

PrG(S unvisited at step t) ∼ PrH(G)(γ(S) unvisited at step t)



Degree of unvisited vertex
Vertex v has 3 unvisited neighbours x , y , z and 2 visited
neighbours a,b, so s = 3, r − s = 2

Calculate probability that exactly {v , x , y , z} are unvisited, and
a,b visited from probability that {v , x , y , z} are unvisited,
{v , x , y , z,a} are unvisited etc. Contract e.g. {v , x , y , z} to a
single vertex γ of degree 20 with 3 loops



The degree sequence of R(t)

To analyse the degree sequence of Γ(t) we prove

Lemma
If the neighbours of v in G are w1,w2, . . . ,wr then

Pr(v ,w1, . . . ,ws ∈ Rt , ws+1, . . . ,wr ∈ B(t))

∼ e−
(r−2)t
(r−1)n ps

t (1− pt )
r−s

where pt = e−
t(r−2)2

n(r−1)r



We write

PrW({v ,w1, . . . ,ws} ⊆ R(t) and {ws+1, . . . ,wr} ⊆ B(t))

=
∑

X⊆[s+1,r ]

(−1)|X |PrW(({v ,w1, . . . ,ws} ∪ X ) ⊆ R(t))

∼
∑

X⊆[s+1,r ]

(−1)|X | e−tpγX ,

where
pγX ∼

((r − 2)(s + |X |) + r)(r − 2)

r(r − 1)n
.

To prove this we contract {v ,w1, . . . ,ws} ∪ X to a single vertex
γX creating ΓX (t).
We then estimate the probability that γX hasn’t been visited by
a random walk on ΓX (t). (Unvisit probability)



For this we argue that |{v ,w1, . . . ,ws} ∪ X | = s + |X |+ 1

πγX =
r(s + |X |+ 1)

rn
and

RγX ∼
(s + |X |+ 1)r(r − 1)

((r − 2)(s + |X |) + r)(r − 2)

Expression for RγX is obtained by considering the expected
number of returns to the origin in an infinite tree with branching
factor r − 1 at each non-root vertex. At the root there are
s + |X | loops and (r − 2)(s + |X |) + r branching edges..



Example



Reminder, Rv for random r -regular graphs
A transition on the loops returns to γX immediately, and a
transition on any other edge is (usually) like a walk in a tree

If v is tree-like (not near any short cycles) then Rv ∼ r−1
r−2

Same as: random walk on the line (0,1,2, ....)
Pr( go left ) = 1

r , Pr( go right ) = r−1
r



Molloy-Reed Condition

Theorem
Let λ0, λ1, . . . , λr ∈ [0,1] be such that λ0 + λ1 + · · ·+ λr = 1.
Suppose that d = (d1,d2, . . . ,dN) satisfies
|{j : dj = s}| = (1 + o(1))λsN for s = 0,1, . . . , r .
Let Gn,d be chosen randomly from graphs with vertex set [N]
and degree sequence d . Let

L =
r∑

s=0

s(s − 2)λs.

(a) If L < 0 then whp Gn,d is sub-critical.
(b) If L > 0 then whp Gn,d is super-critical.

Furthermore the unique giant component has size βn where β
is the solution to an equation derived from the degree sequence



Threshold for collapse of giant component
Degree sequence of Γ(t) is (approximately) binomial Bin(r ,pt )

where pt = e−
t(r−2)2

n(r−1)r

Once we know the degree sequence we can use the
Molloy-Reed criterion to see whether or not there is a giant
component. G has a giant component iff L > 0, where

L =
∑

v

dv (dv − 2).

Direct calculation gives t∗ = r(r−1) log(r−1)
(r−2)2 n as the critical value



Heuristically, t∗ = r(r−1) log(r−1)
(r−2)2 n can be obtained from the

degree sequence of unvisited vertices

Branching outward from an unvisited vertex
The probability an edge goes to another unvisited vertex:

pt = e−
(r−2)2t
(r−1)rn

We need branching factor (r − 1)pt > 1, to have a chance to
get a large component

At t∗ = r(r−1) log(r−1)
(r−2)2 n

(r − 1)pt = (r − 1)e−
(r−2)2t
(r−1)rn

= (r − 1)e− log(r−1)

= 1



Small component structure

Enumerating tree components
These are small subgraphs of the underlying graph

How to count subgraphs of a given graph?



Rooted subtrees of the infinite r -regular tree
How to count subgraphs of a given graph?
Number of rooted k -subtrees of the infinite r -regular tree

r
((r − 2)k + 2)

(
(r − 1)k

k − 1

)
Example r = 3, ; k = 3



Number of small components in Γ(t)

Nt = E|R(t)|. Expected size of vacant set
pt probability of a red edge
N(k , t): Number of unvisited tree components of Γ(t) with k
vertices

Theorem
Let ε be a small positive constant. Let 1 ≤ k ≤ ε log n and
εn ≤ t ≤ (1− ε)tk−1. Then whp:

N(k , t) ∼ r
k((r − 2)k + 2)

(
(r − 1)k

k − 1

)
Nt pk−1

t (1− pt )
k(r−2)+2



Vertices on small components of vacant set
Let

t∗ = n
r(r − 1)

(r − 2)2 log(r − 1).

Theorem
Let µ(t) be the expected proportion of vertices on small trees
The function µ(t) increases from 0 at t = 0,
to a maximum value µ∗ = 1/(r − 1)r/(r−2) as t → t∗,
and decreases to 0 as t → (r − 1)/(r − 2) n log n



Example: r = 3. Vacant set as a function of τ = t/n
Proportion of vertices in vacant set N(t)/n ∼ e−t/n((r−2)/(r−1))

Proportion of vertices in unvisited tree components



Threshold: r = 3, t∗ = 6 log 2

t∗ =
r(r − 1) log(r − 1)

(r − 2)2 n

Propn. of vertices in vacant set, and on small tree components

The cusp is at t∗ = 6 log 2 ∼ 4.16, with µ∗ = 1/8



Closing observations

I Random graphs G(n,p) and random r -regular graphs
exhibit threshold behavior

I The size of the giant component can be estimated in the
super-critical range

I The number of small tree components of a given size can
be estimated

I The technique can be applied to other problems e.g.
I Vacant net: sub-graph induced by the unvisited edges
I Upper bounds on sub-critical threshold for hypercube, high

degree grids,...
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