# Random walks and the component structure of the vacant set

Colin Cooper (KCL) Alan Frieze (CMU)

17th January 2014 Warwick

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Introduction: random walks and cover time
- How to estimate 'un-visit probability' and some examples

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Vacant set definition and main results
- Vacant set in G<sub>n,p</sub>
- Vacant set in random r-regular graphs

## Discrete random walk on a finite graph

- G = (V, E) is a finite graph with *n* vertices and *m* edges. (|V| = n, |E| = m)
- Assume that G is connected, so that all vertices in G have at least one neighbour vertex,
- Simple random walk: move to a randomly chosen neighbour at each step
- A simple random walk is a (unbiased) Markov process
- Suppose that at step *t* the walk is at vertex X(t) = v Let d(v) = |N(v)| be the degree of vertex v, then for w ∈ N(v)

$$\Pr(X(t+1) = w) = \frac{1}{d(v)}$$

(日) (日) (日) (日) (日) (日) (日)

## Cover time: Introduction

• G = (V, E) is a connected graph. (|V| = n, |E| = m)

- ► Random walk W<sub>v</sub> on G starting at v ∈ V Let C<sub>v</sub> be the expected time taken for W<sub>v</sub> to visit every vertex of G
- The <u>cover time</u> of G is defined as  $T_{cov} = \max_{v \in V} C_v$
- Starting vertex matters
- ► Graph with vertices *u*, *v*, *w*

U

 $C_v = C_u + 1$ 

W

(日) (日) (日) (日) (日) (日) (日)

V

## **Brief history**

- AKLLR<sup>1</sup> For any connected graph  $T_{cov} \leq 4mn$
- Application: Is there a path connecting vertex s to t? Test graph connectivity by random walk, in O(n<sup>3</sup>) steps with O(log n) storage.
- Good for exploring large networks.
   This led to increased interest in cover time
- ► Feige (1995). Bounds for any connected G:

$$(1 - o(1))n\log n \le T_{cov} \le (1 + o(1))\frac{4}{27}n^3$$

<sup>&</sup>lt;sup>1</sup>Aleliunas, Karp, Lipton, Lovász and Rackoff. Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. (1979)

### Matthews bound for cover time

Hitting time from x to y,  $\mathbf{E}_x T_y$ , the expected time to reach destination vertex y, from start vertex x

$$T_{cov} \leq H_{\max}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) = O(H_{\max}\log n)$$

where  $H_{max} = \max \mathbf{E}_x T_y$  is the maximum expected hitting time over all pairs (x, y)

e.g. Complete graph  $K_n$ ,  $H_{max} = n - 1$ ,  $T_{cov} \sim n \log n$ 

Geometric waiting time, probability visit y at next step 1/(n-1)

## Convergence of random walk to stationarity

- Transition matrix of walk P = (p<sub>i,j</sub>), where p<sub>i,j</sub> is probability a walk at vertex *i* moves to vertex *j*
- Assume: graph connected, walk not periodic

$$P^t \rightarrow \Pi$$
 where  $\Pi_{i,j} = \pi_j$ 

For a random walk, stationary distribution

$$\pi_j = \frac{d(j)}{2|E|}$$

• The rate of convergence of the walk to  $\pi$  is given by

$$|P_{u}^{t}(x) - \pi_{x}| \leq (\pi_{x}/\pi_{u})^{1/2} \lambda_{2}^{t}$$

 $\lambda_2$  is the second eigenvalue of the transition matrix *P* 

Many random graphs are expanders (0 < λ<sub>2</sub> < 1)</li>
 Walk is Rapidly Mixing. After t = O(log n) steps

$$|\boldsymbol{P}_{\boldsymbol{u}}^{(t)}(\boldsymbol{v}) - \pi_{\boldsymbol{v}}| \leq \boldsymbol{n}^{-\epsilon}$$

もしゃ 本語 \* 本語 \* 本語 \* よ日 \*

Estimate the un-visit probability of states
 The probability a given state has has not been visited after
 t steps of the process

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Estimate the un-visit probability of states
 The probability a given state has has not been visited after
 t steps of the process

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Related quantity The probability a given state has has not been visited after t steps of the process, starting from stationarity

- Estimate the un-visit probability of states
   The probability a given state has has not been visited after
   t steps of the process
- Related quantity The probability a given state has has not been visited after t steps of the process, starting from stationarity
- The expected hitting time of state v from stationarity can be approximated by

 $\mathbf{E}_{\pi} H_{\mathbf{v}} \sim R_{\mathbf{v}} / \pi_{\mathbf{v}}$ 

where  $R_v$  is expected number of returns to v during a suitable mixing time

- Estimate the un-visit probability of states
   The probability a given state has has not been visited after
   t steps of the process
- Related quantity The probability a given state has has not been visited after t steps of the process, starting from stationarity
- The expected hitting time of state v from stationarity can be approximated by

 $\mathbf{E}_{\pi} H_{\mathbf{v}} \sim R_{\mathbf{v}} / \pi_{\mathbf{v}}$ 

where  $R_v$  is expected number of returns to v during a suitable mixing time

 (Informally) Waiting time of first visit to v tends to geometric distn, success probability p<sub>v</sub> ~ π<sub>v</sub>/R<sub>v</sub>

## Estimate of Unvisit Probability

 $T_{mix}$ , a suitable mixing time of the walk.  $\pi_{v}$ , the stationary distribution of v.  $R_{v}$ , the expect number of returns to v by the walk in time  $T_{mix}$ .

**Unvisit Probability** 

$$\Pr(\mathcal{W}_u(\tau) \neq v: \tau = T_{mix}, \dots, t) \sim e^{-t\pi_v/R_v}$$

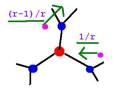
True under assumptions that hold for many e.g. random graph models. Asymptotics of generating function

If the walk is rapidly mixing  $T_{mix} = O(\log n)$ , we can 'ignore' effect of visits during the mixing time when calculating  $T_{cov}$ 

For random graphs we can estimate  $R_v$  from the graph structure for most vertices, (and bound it for all vertices)

Sac

How to calculate  $R_v$  for random *r*-regular graphs ? If *v* is tree-like (not near any short cycles) then  $R_v \sim \frac{r-1}{r-2}$ 



Same as: biassed random walk on the half line (0, 1, 2, ....)

**Pr**(go left) =  $\frac{1}{r}$ , **Pr**(go right) =  $\frac{r-1}{r}$ 

 $f = \mathbf{Pr}($  walk returns to origin  $) = \frac{1}{r-1}$   $R_v \sim \frac{1}{1-r} = \frac{r-1}{r-2}$ 

(日) (日) (日) (日) (日) (日) (日)

- $\pi_v = 1/n$
- ► *T<sub>mix</sub>* the mixing time *O*(log *n*)
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite r-regular tree

(ロ) (同) (三) (三) (三) (○) (○)

•  $\pi_v = 1/n$ 

- ► *T<sub>mix</sub>* the mixing time *O*(log *n*)
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite r-regular tree

 $\mathbf{Pr}(v \text{ unvisited in } T_{mix}, \dots, t) \sim e^{-t\pi_v/R_v} \\ \sim e^{-t(r-2)/(r-1)n}$ 

(ロ) (同) (三) (三) (三) (○) (○)

- $\pi_v = 1/n$
- ► *T<sub>mix</sub>* the mixing time *O*(log *n*)
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite r-regular tree

$$\begin{array}{lll} \mathbf{Pr}(v \text{ unvisited in } T_{mix}, \dots, t) & \sim & e^{-t\pi_v/R_v} \\ & \sim & e^{-t(r-2)/(r-1)n} \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

- $\mathbf{\mathcal{R}}(t) \text{ set of vertices not visited by walk at step } t$
- Size of set of unvisited vertices  $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$

- $\pi_v = 1/n$
- ► *T<sub>mix</sub>* the mixing time *O*(log *n*)
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite r-regular tree

$$\begin{array}{lll} \mathbf{Pr}(v \text{ unvisited in } T_{mix}, \dots, t) & \sim & e^{-t\pi_v/R_v} \\ & \sim & e^{-t(r-2)/(r-1)n} \end{array}$$

(ロ) (同) (三) (三) (三) (○) (○)

- $\mathbf{\mathcal{R}}(t) \text{ set of vertices not visited by walk at step } t$
- Size of set of unvisited vertices  $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$
- We know the size of  $\mathcal{R}(t)$ , the vacant set

- $\pi_v = 1/n$
- ► *T<sub>mix</sub>* the mixing time *O*(log *n*)
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite r-regular tree

$$\begin{array}{lll} \mathbf{Pr}(v \text{ unvisited in } T_{mix}, \dots, t) & \sim & e^{-t\pi_v/R_v} \\ & \sim & e^{-t(r-2)/(r-1)n} \end{array}$$

- $\mathbf{\mathcal{R}}(t) \text{ set of vertices not visited by walk at step } t$
- Size of set of unvisited vertices  $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$
- We know the size of  $\mathcal{R}(t)$ , the vacant set
- We can use this to calculate the cover time T<sub>cov</sub>

 $T_{cov}$  is the maximum expected time, over all start vertices u, for a random walk  $W_u$  to visit all vertices of G.

 $T_{cov}$  is the maximum expected time, over all start vertices u, for a random walk  $W_u$  to visit all vertices of G.

We studied whp cover time of random walks on random graphs

 $T_{cov}$  is the maximum expected time, over all start vertices u, for a random walk  $W_u$  to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs  $G_{n,p}$ Let  $np = c \log n$  and  $(c - 1) \log n \rightarrow \infty$  then

$$T_{cov} \sim c \log\left(\frac{c}{c-1}\right) n \log n.$$

 $T_{cov}$  is the maximum expected time, over all start vertices u, for a random walk  $W_u$  to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs  $G_{n,p}$ Let  $np = c \log n$  and  $(c - 1) \log n \rightarrow \infty$  then

$$T_{cov} \sim c \log\left(\frac{c}{c-1}\right) n \log n.$$

2. Random regular graphs  $G_r$ , where  $3 \le r = O(1)$  then

$$T_{cov} \sim rac{r-1}{r-2} \ n \log n$$

 $T_{cov}$  is the maximum expected time, over all start vertices u, for a random walk  $W_u$  to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs  $G_{n,p}$ Let  $np = c \log n$  and  $(c - 1) \log n \rightarrow \infty$  then

$$T_{cov} \sim c \log\left(\frac{c}{c-1}\right) n \log n.$$

2. Random regular graphs  $G_r$ , where  $3 \le r = O(1)$  then

$$T_{cov} \sim rac{r-1}{r-2} n \log n$$

3. Web-graphs G(m, n) where  $m \ge 2$ 

$$T_{cov} \sim rac{2m}{m-1} n \log n$$

## Directed graphs: random digraphs $D_{n,p}$

The main challenge for  $D_{n,p}$ , was to obtain the stationary distribution

#### Theorem

Let  $np = d \log n$  where d = d(n), and let m = n(n-1)p

Let  $\gamma = np - \log n$ , and assume  $\gamma = \omega(\log \log n)$ 

Then whp, for all  $v \in V$ ,

$$\pi_{v}\sim rac{\deg^{-}(v)}{m},$$

#### and

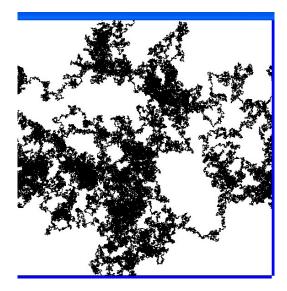
$$T_{cov} \sim d \log\left(rac{d}{d-1}
ight) n \log n$$

## The vacant set of a random walk



Random walk on  $600 \times 600$  toriodal grid. Black visited, white unvisited.

## What is the component structure of vacant set?



Notation

Finite graph G = (V, E).

 $W_u$  Simple random walk on G, starting at  $u \in V$ 

The vacant set. Vertices not yet visited by the walk

Can think of vacant set  $\mathcal{R}(t)$  as coloured red, and visited vertices  $\mathcal{B}(t)$  as colored blue

 $\mathcal{R}(t)$  Set of vertices not visited by  $\mathcal{W}_u$  up to time t $\Gamma(t)$  Sub-graph of *G* induced by vacant set  $\mathcal{R}(t)$ 

How large is  $\mathcal{R}(t)$ ? What is the likely component structure of  $\Gamma(t)$ ?

## Evolution of vacant set graph $\Gamma(t)$

It is a sort of random graph process in reverse As the walk progresses the vacant set  $\Gamma(t)$  is reduced from the whole graph *G* to a graph with no vertices

In the context of sparse random graphs, as the unvisited vertex set  $\mathcal{R}(t)$  gets smaller, the edges inside  $\Gamma(t)$  will get sparser and sparser.

Small sets of vertices don't induce many edges One might expect that at some time  $\Gamma(t)$  will break up into small components This is basically what we prove

We say that  $\Gamma(t)$  is sub-critical at step *t*, if all of its components are of size  $O(\log n)$ 

We say that  $\Gamma(t)$  is super-critical at step *t*, if it has a unique giant component, (of size  $\Theta(\mathcal{R}(t))$ ) and all other components are of size  $O(\log n)$ 

In the cases we consider there is a  $t^*$ , which is a (**whp**) threshold for transition from super-criticality to sub-criticality

(日) (日) (日) (日) (日) (日) (日)

## Vacant set of G<sub>n,p</sub>

We assume that

$$p = rac{c \log n}{n}$$

where  $(c-1) \log n \to \infty$  with *n*, and  $c = n^{o(1)}$ . Let

$$t(\epsilon) = n (\log \log n + (1 + \epsilon) \log c)$$

#### Theorem

Let  $\epsilon > 0$  be a small constant Then **whp** we have (i)  $\Gamma(t)$  is super-critical for  $t \le t(-\epsilon)$ (ii)  $\Gamma(t)$  is sub-critical for  $t \ge t(\epsilon)$ 

Giant component of  $\mathcal{R}(t)$  until  $t > n \log \log n$ For c > 1 constant, Cover time  $T_{cov}$  of  $G_{n,p}$  is  $T_{cov} \sim n \log n$ 

## Random graphs $G_{n,r}$

For  $r \geq 3$ , constant, let

$$t^* = rac{r(r-1)\log(r-1)}{(r-2)^2} \; n$$

#### Theorem

Let  $\epsilon > 0$  be a small constant. Then **whp** we have (i)  $\Gamma(t)$  is super-critical for  $t \le (1 - \epsilon)t^*$ (ii) For  $t \le (1 - \epsilon)t^*$ , size of giant component is  $\Omega(n)$ (iii)  $\Gamma(t)$  is sub-critical for  $t \ge (1 + \epsilon)t^*$ 

e.g. for 3-regular random graphs r = 3, and  $t^* = (6 \log 2) n$ Giant component for about  $t^* = (6 \log 2)n$  steps Cover time  $T_{cov} \sim 2n \log n$ 

## **Related Work**

Benjamini and Sznitman; Windisch: Considered the *d*-dimensional toroidal grids  $d \ge 5$ . Super-critical below  $C_1 n$ , sub-critical above  $C_2 n$ 

Černy, Teixeira and Windisch: Considered random *r*-regular graphs  $G_{n,r}$ They showed sub-criticality for  $t \ge (1 + \epsilon)t^*$ and existence of a unique giant component for  $t \le (1 - \epsilon)t^*$ These proofs use the concept of random interlacements of continuous time random walks

(日) (日) (日) (日) (日) (日) (日)

## Our proof: Discrete time

- Simple. Based on established random graph results
- Gives results for G<sub>n,p</sub>
- Completely characterizes the component structure
- Proves that in the super-critical phase t ≤ t\*, the second largest component of G<sub>n,r</sub> has size O(log n) whp Gives the small tree structure of Γ(t)

Subsequent Work: Černy, Teixeira and Windisch:

Consider random *r*-regular graphs  $G_{n,r}$ 

Investigate scaling window around t\* using annealed model

(ロ) (同) (三) (三) (三) (○) (○)

# Component structure of vacant set of *G<sub>n,p</sub>*

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Distribution of edges in $\Gamma(t)$

#### Lemma

Consider a random walk on  $G_{n,p}$ Conditional on  $N = |\mathcal{R}(t)|$ ,  $\Gamma(t)$  is distributed as  $G_{N,p}$ .

**Proof** This follows easily from the principle of deferred decisions. We do not have to expose the existence or absence of edges between the unvisited vertices of  $\mathcal{R}(t)$ 

Thus to find the super-critical/ sub-critical phases, we only need high probability estimates of  $|\mathcal{R}(t)|$  as *t* varies

(日) (日) (日) (日) (日) (日) (日)

This, we know how to do, from our work on cover time of random graphs

## Size of vacant set $\mathcal{R}(t)$ in $G_{n,p}$

Analysis of  $G_{n,p}$  for  $p = c \log n/n$ 

1.  $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_v/R_v}$ 



Size of vacant set  $\mathcal{R}(t)$  in  $G_{n,p}$ 

Analysis of  $G_{n,p}$  for  $p = c \log n/n$ 

- 1.  $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_v/R_v}$
- 2. Almost all vertices have  $\sim$  average degree  $np = c \log n$ Thus  $\pi_v \sim 1/n$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

# Size of vacant set $\mathcal{R}(t)$ in $G_{n,p}$

Analysis of  $G_{n,p}$  for  $p = c \log n/n$ 

- 1.  $E(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_{v}/R_{v}}$
- 2. Almost all vertices have  $\sim$  average degree  $np = c \log n$ Thus  $\pi_v \sim 1/n$
- 3. Probability of retracing an edge at next step 1/d(v) = o(1)Thus  $R_v = 1 + o(1)$  for all  $v \in V$
- 4. Size of vacant set  $\mathbf{E}(|\mathcal{R}(t)|) \sim ne^{-(1+o(1))t/n}$ .
- 5. We can use Chebyshev to show that  $|\mathcal{R}(t)|$  is concentrated

If  $t_{\theta} = n(\log \log n + (1 + \theta) \log c)$  then

$$\mathsf{E}(|\mathcal{R}(t)|) \sim \frac{n}{c^{1+\theta}\log n} = \frac{1}{c^{\theta}p}$$

(日) (日) (日) (日) (日) (日) (日)

# Size of 'giant' component

► Recall that  $np = c \log n$ , If  $t_{\theta} = n(\log \log n + (1 + \theta) \log c)$  then  $E(|\mathcal{R}(t)|) \sim 1/(c^{\theta}p)$ So, at  $t_{\theta}$ ,

$$\mathsf{E}(|\mathcal{R}(t_{ heta})| p) \sim rac{1}{c^{ heta}}$$

- Threshold criteria for random graph  $G_{N,p}$  is  $Np \sim 1$
- When  $\theta = 0$ , then  $\mathbf{E}(|\mathcal{R}(t_{\theta})|p) \sim 1$
- The threshold  $t^*$  occurs at around  $\theta = 0$  i.e.

 $t^* \sim n(\log \log n + \log c)$ 

- Size of giant is order |R(t<sub>θ</sub>)|. As t → t\* from below, size of 'giant' is order |R(t\*)| ~ 1/p = n/(c log n)
- Above t\* max component size collapses to O(log n)

Component structure of vacant set of random *r*-regular graphs for  $r \ge 3$ , constant.

Reminder: Vacant set of *r*-regular random graphs

•  $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_v/R_v}$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Reminder: Vacant set of *r*-regular random graphs

- $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_v/R_v}$
- $\pi_v = 1/n$
- ► Most vertices are locally tree-like For such vertices R<sub>v</sub> ~ (r − 1)/(r − 2), expected number of returns to start in infinite *r*-regular tree

**Pr**(
$$v$$
 unvisited in  $T_{mix}, \ldots, t$ ) ~  $e^{-t(r-2)/(r-1)n}$ 

(日) (日) (日) (日) (日) (日) (日)

- A similar upper bound can be obtained for the o(n) non-tree-like vertices
- Size of vacant set  $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$

## Threshold

Let

$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2} n.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Theorem

Let  $\epsilon > 0$  be a small constant. Then **whp** we have (i)  $\Gamma(t)$  is super-critical for  $t \le (1 - \epsilon)t^*$ , (ii) For  $t \le (1 - \epsilon)t^*$ , size of giant component is  $\Omega(n)$ (iii)  $\Gamma(t)$  is sub-critical for  $t \ge (1 + \epsilon)t^*$  and

## Proof outline for *r*-regular random graph

- Generate the graph in the configuration model using the random walk
- Graph  $\Gamma(t)$  induced by vacant set  $\mathcal{R}(t)$  is random
- Estimate un-visit probability of vertices to find size of  $\mathcal{R}(t)$
- Estimate degree sequence *d* of Γ(*t*)in the configuration model, using size of vacant set *R*(*t*), and number of unvisited edges *U*(*t*)
- ► Given the degree sequence *d* of Γ(*t*), we can use Molloy-Reed condition for existence of giant component in a random graph with fixed degree sequence
- Estimate number of small trees in configuration model

# Degree sequence of $\Gamma(t)$

Vacant set size

 $|\mathcal{R}(t)| = (1 + o(1))N_t$  where  $N_t = ne^{-\frac{(r-2)t}{(r-1)n}}$ 

#### Vertex degree

Let  $D_s(t)$  the number of unvisited vertices of  $\Gamma(t)$  with r - s visited neighbours and of degree s in  $\Gamma(t)$ For  $0 \le s \le r$ , and for ranges of t given below, **whp** 

$$D_s(t) \sim N_t \begin{pmatrix} r \\ s \end{pmatrix} p_t^s (1-p_t)^{r-s}$$

where

$$p_t = e^{-\frac{(r-2)^2}{(r-1)r}\frac{t}{n}}$$

(日) (日) (日) (日) (日) (日) (日)

**Range of validity** is  $o(n) \le t \le \Theta(n \log n)$ Includes  $t^*$ 

# Uniformity

#### Lemma

Consider a random walk on  $G_r$ . Conditional on  $N = |\mathcal{R}(t)|$  and degree sequence  $\mathbf{d} = d_{\Gamma(t)}(\mathbf{v}), \mathbf{v} \in \mathcal{R}(t)$ , then  $\Gamma(t)$  is distributed as  $G_{N,d}$ , the random graph with vertex set [N] and degree sequence  $\mathbf{d}$ .

**Proof** Basic idea: Reveal  $G_r$  using the random walk. Suppose that we condition on  $\mathcal{R}(t)$  and the *history of the walk*,  $\mathcal{H} = (W_u(0), W_u(1), \dots, W_u(t))$ . If  $G_1, G_2$  are graphs with vertex set  $\mathcal{R}(t)$  and if they have the same degree sequence then substituting  $G_2$  for  $G_1$  will not conflict with  $\mathcal{H}$ . Every extension of  $G_1$  is an extension of  $G_2$  and vice-versa.

Thus we only need: Good model of component structure of  $G_{N,d}$ High probability estimates of the degree sequence  $D_s(t)$  of  $\Gamma(t)$ .

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

## Main variables

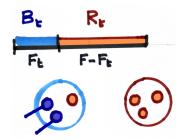
By calculating un-visit probabilities in various ways, we can estimate the size at step t of

- $\mathcal{R}(t)$  the set of unvisited vertices
- $\mathcal{U}(t)$  the set of unvisited edges
- D<sub>s</sub>(t) the number of unvisited vertices of degree s in Γ(t) ie number of unvisited vertices with r − s edges incident with visited vertices B(t)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

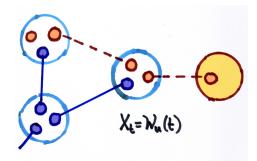
## Annealed process

We use the random walk to generate the graph in the configuration model as a random pairing F



- B<sub>t</sub> blue conifg. points at step t which form discovered pairing F<sub>t</sub>
- *R<sub>t</sub>* red conifg. points at step *t* This will form un-generated pairing *F F<sub>t</sub>*
- Visited vertices may have config. points in *R<sub>t</sub>*, corresponding to unexplored edges

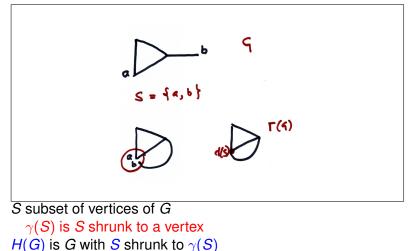
# Next configuration pairing



At step *t* walk located at vertex  $X_t \in \mathcal{B}(t)$ Probability walk moves to an unvisited vertex? Given the walk selects a red config. point of  $X_t$  (if any), the probability this is paired with an config. point in  $\mathcal{R}(t)$  is

 $\frac{|\mathbf{r}|\mathcal{R}(t)|}{|\mathbf{R}_t|-1|}$ 

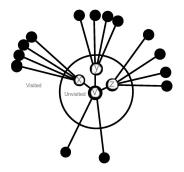
### Shrinking Vertices: First visit to a set of vertices S



 $\mathbf{Pr}_{G}(S \text{ unvisited at step } t) \sim \mathbf{Pr}_{H(G)}(\gamma(S) \text{ unvisited at step } t)$ 

#### Degree of unvisited vertex

Vertex v has 3 unvisited neighbours x, y, z and 2 visited neighbours a, b, so s = 3, r - s = 2



Calculate probability that exactly  $\{v, x, y, z\}$  are unvisited, and *a*, *b* visited from probability that  $\{v, x, y, z\}$  are unvisited,  $\{v, x, y, z, a\}$  are unvisited etc. Contract e.g.  $\{v, x, y, z\}$  to a single vertex  $\gamma$  of degree 20 with 3 loops

## The degree sequence of $\mathcal{R}(t)$

To analyse the degree sequence of  $\Gamma(t)$  we prove

# Lemma

If the neighbours of v in G are  $w_1, w_2, \ldots, w_r$  then

$$\begin{aligned} \mathbf{Pr}(\mathbf{v}, \mathbf{w}_1, \dots, \mathbf{w}_s \in \mathcal{R}_t, \, \mathbf{w}_{s+1}, \dots, \mathbf{w}_r \in \mathcal{B}(t)) \\ &\sim e^{-\frac{(r-2)t}{(r-1)n}} \, p_t^s \, (1-p_t)^{r-s} \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

where  $p_t = e^{-\frac{t(r-2)^2}{n(r-1)r}}$ 

We write

 $\begin{aligned} \mathsf{Pr}_{\mathcal{W}}(\{v, w_1, \dots, w_s\} \subseteq \mathcal{R}(t) \text{ and } \{w_{s+1}, \dots, w_r\} \subseteq \mathcal{B}(t)) \\ &= \sum_{X \subseteq [s+1,r]} (-1)^{|X|} \mathsf{Pr}_{\mathcal{W}}((\{v, w_1, \dots, w_s\} \cup X) \subseteq \mathcal{R}(t)) \\ &\sim \sum_{X \subseteq [s+1,r]} (-1)^{|X|} e^{-tp_{\gamma_X}}, \end{aligned}$ 

where

$$p_{\gamma_X} \sim \frac{((r-2)(s+|X|)+r)(r-2)}{r(r-1)n}.$$

To prove this we contract  $\{v, w_1, \dots, w_s\} \cup X$  to a single vertex  $\gamma_X$  creating  $\Gamma_X(t)$ . We then estimate the probability that  $\gamma_X$  hasn't been visited by a random walk on  $\Gamma_X(t)$ . (Unvisit probability) For this we argue that  $|\{v, w_1, \dots, w_s\} \cup X| = s + |X| + 1$ 

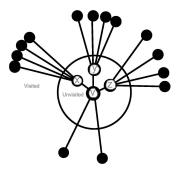
$$\pi_{\gamma_X} = \frac{r(s+|X|+1)}{rn}$$

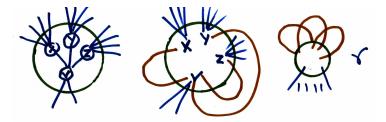
and

$$R_{\gamma_X} \sim rac{(s+|X|+1)r(r-1)}{((r-2)(s+|X|)+r)(r-2)}$$

Expression for  $R_{\gamma\chi}$  is obtained by considering the expected number of returns to the origin in an infinite tree with branching factor r - 1 at each non-root vertex. At the root there are s + |X| loops and (r - 2)(s + |X|) + r branching edges..

# Example

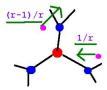




### Reminder, $R_v$ for random *r*-regular graphs

A transition on the loops returns to  $\gamma_X$  immediately, and a transition on any other edge is (usually) like a walk in a tree

If v is tree-like (not near any short cycles) then  $R_v \sim \frac{r-1}{r-2}$ 



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same as: random walk on the line (0, 1, 2, ...)**Pr**(go left) =  $\frac{1}{r}$ , **Pr**(go right) =  $\frac{r-1}{r}$ 

# **Molloy-Reed Condition**

#### Theorem

Let  $\lambda_0, \lambda_1, \ldots, \lambda_r \in [0, 1]$  be such that  $\lambda_0 + \lambda_1 + \cdots + \lambda_r = 1$ . Suppose that  $\mathbf{d} = (d_1, d_2, \ldots, d_N)$  satisfies  $|\{j : d_j = s\}| = (1 + o(1))\lambda_s N$  for  $s = 0, 1, \ldots, r$ . Let  $G_{n,\mathbf{d}}$  be chosen randomly from graphs with vertex set [N]and degree sequence  $\mathbf{d}$ . Let

$$L=\sum_{s=0}^r s(s-2)\lambda_s.$$

(a) If L < 0 then whp G<sub>n,d</sub> is sub-critical.
(b) If L > 0 then whp G<sub>n,d</sub> is super-critical.

Furthermore the unique giant component has size  $\beta$ n where  $\beta$  is the solution to an equation derived from the degree sequence

# Threshold for collapse of giant component

Degree sequence of  $\Gamma(t)$  is (approximately) binomial  $Bin(r, p_t)$ where  $p_t = e^{-\frac{t(r-2)^2}{n(r-1)r}}$ 

Once we know the degree sequence we can use the Molloy-Reed criterion to see whether or not there is a giant component. *G* has a giant component iff L > 0, where

$$L=\sum_{v}d_{v}(d_{v}-2).$$

Direct calculation gives  $t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2} n$  as the critical value

・ロト・日本・日本・日本・日本

Heuristically,  $t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$  can be obtained from the degree sequence of unvisited vertices

Branching outward from an unvisited vertex The probability an edge goes to another unvisited vertex:

 $p_t = e^{-\frac{(r-2)^2 t}{(r-1)rn}}$ 

We need branching factor  $(r-1)p_t > 1$ , to have a chance to get a large component

At  $t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$ 

$$(r-1)p_t = (r-1)e^{-\frac{(r-2)^2t}{(r-1)m}}$$
  
=  $(r-1)e^{-\log(r-1)}$   
= 1

# Enumerating tree components

These are small subgraphs of the underlying graph

How to count subgraphs of a given graph?

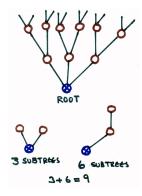


#### Rooted subtrees of the infinite *r*-regular tree

How to count subgraphs of a given graph? Number of rooted *k*-subtrees of the infinite *r*-regular tree

$$\frac{r}{((r-2)k+2)}\binom{(r-1)k}{k-1}$$

Example r = 3, ; k = 3



# Number of small components in $\Gamma(t)$

 $N_t = \mathbf{E}[\mathcal{R}(t)]$ . Expected size of vacant set  $p_t$  probability of a red edge N(k, t): Number of unvisited tree components of  $\Gamma(t)$  with k vertices

#### Theorem

Let  $\epsilon$  be a small positive constant. Let  $1 \le k \le \epsilon \log n$  and  $\epsilon n \le t \le (1 - \epsilon)t_{k-1}$ . Then whp:

$$N(k,t) \sim rac{r}{k((r-2)k+2)} igg( rac{(r-1)k}{k-1} igg) N_t p_t^{k-1} (1-p_t)^{k(r-2)+2}$$

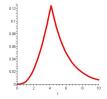
# Vertices on small components of vacant set

Let

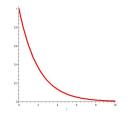
$$t^* = n \frac{r(r-1)}{(r-2)^2} \log(r-1).$$

#### Theorem

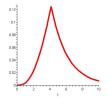
Let  $\mu(t)$  be the expected proportion of vertices on small trees The function  $\mu(t)$  increases from 0 at t = 0, to a maximum value  $\mu^* = 1/(r-1)^{r/(r-2)}$  as  $t \to t^*$ , and decreases to 0 as  $t \to (r-1)/(r-2) \operatorname{nlog} n$ 



Example: r = 3. Vacant set as a function of  $\tau = t/n$ Proportion of vertices in vacant set  $N(t)/n \sim e^{-t/n((r-2)/(r-1))}$ 



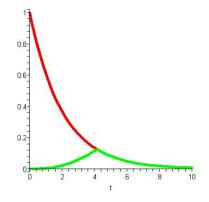
Proportion of vertices in unvisited tree components



(ロ) (同) (三) (三) (三) (○) (○)

Threshold: r = 3,  $t^* = 6 \log 2$ 

$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$$



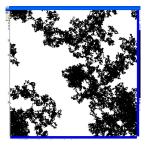
Propn. of vertices in vacant set, and on small tree components

◆□▶◆圖▶◆圖▶◆圖▶ ▲圖》 割くの

## **Closing observations**

- Random graphs G(n, p) and random r-regular graphs exhibit threshold behavior
- The size of the giant component can be estimated in the super-critical range
- The number of small tree components of a given size can be estimated
- The technique can be applied to other problems e.g.
- Vacant net: sub-graph induced by the unvisited edges
- Upper bounds on sub-critical threshold for hypercube, high degree grids,...





# QUESTIONS