An elementary proof for the dimension of the graph of the classical Weierstrass function

Gerhard Keller

Let $W_{\lambda,b}(x) = \sum_{n=0}^{\infty} \lambda^n g(b^n x)$ where $b \ge 2$ is an integer and $g(u) = \cos(2\pi u)$ (classical Weierstrass function) or b=2 and $g(u)=\operatorname{dist}(u,\mathbb{Z})$. Building on recent work by Baránsky, Bárány and Romanowska and on a 2001 paper by Tsujii, we provide elementary proofs that the Hausdorff dimension of $W_{\lambda,b}$ equals $2+\frac{\log \lambda}{\log b}$ for all $\lambda \in (\lambda_b,1)$ with a suitable $\lambda_b < 1$. This reproduces results by Ledrappier and Baránsky, Bárány and Romanowska without using the dimension theory for hyperbolic measures of Ledrappier and Young, which is replaced by a simple telescoping argument together with a recursive multi-scale estimate.