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Abstract

Inequalities are ubiquitous in Mathematics (and in real life). For example, in
optimization theory (particularly in linear programming) inequalities are used to de-
scribed constraints. In analysis inequalities are frequently used to derive a priori
estimates, to control the errors and to obtain the order of convergence, just to name
a few. Of particular importance inequalities are Cauchy-Schwarz inequality, Jensen’s
inequality for convex functions and Fenchel’s inequalities for duality. These inequal-
ities are simple and flexible to be applicable in various settings such as in linear
algebra, convex analysis and probability theory.

The aim of this mini-course is to introduce to undergraduate students these in-
equalities together with useful techniques and some applications. In the first section,
through a variety of selected problems, students will be familiar with many techniques
frequently used. The second section discusses their applications in matrix inequali-
ties/analysis, estimating integrals and relative entropy. No advanced mathematics is
required.

This course is taught for Warwick’s team for International Mathematics Com-
petition for University Students, 24th IMC 2017. The competition is planned for
students completing their first, second, third or fourth year of university education.
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1 Fundamental inequalities: Cauchy-Schwarz inequal-

ity, Jensen’s inequality for convex functions and

Fenchel’s dual inequality

In this section, we review three basic inequalities that are Cauchy-Schwarz inequality,
Jensen’s inequality for convex functions and Fenchel’s inequality for duality. For simplicity
of presentation, we only consider simplest underlying spaces such as Rn or a finite set. These
inequalities, however, can be stated in much more complex situations. Many techniques
for proving inequalities are presented via selected examples and exercises in Section 1.5.

1.1 Cauchy-Schwarz inequality

Let u,v be two vectors of an inner product space (over R, for simplicity ). The Cauchy-
Schwarz inequality states that

|〈u,v〉| ≤ ‖u‖‖v‖.

Proof. If v = 0, the inequality is obvious true. Let v 6= 0. For any λ ∈ R, we have

0 ≤ ‖u + λv‖2 = ‖u‖2 + 2λ〈u,v〉+ λ2‖v‖2.

Consider this as a quadratic function of λ. Therefore we have

〈u,v〉2 ≤ ‖u‖2‖v‖2,

which implies the Cauchy-Schwarz inequality.

1.2 Convex functions

Definition 1.1 (Convex function). Let X ⊂ R
n be a convex set.

• A function f : X → R is call convex if for all x1, x2 ∈ X and t ∈ [0, 1]

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

• A function f : X → R is call strictly convex if for all x1, x2 ∈ X and t ∈ (0, 1)

f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2).

Example 1.1. Examples of convex functions:

• affine functions: f(x) = a · x+ b, for a, b ∈ Rn,

• exponential functions: f(x) = eax for any a ∈ R,
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• Euclidean-norm: f(x) = ‖x‖ =
( n∑
i=1

x2
i

) 1
2
.

Verifying convexity of a differentiable function Note that in Definition 1.1, the
function f does not require to be differentiable. The following criteria can be used to verify
the convexity of f when it is differentiable.

(1) If f : X → R is differentiable, then it is convex if and only if

f(x) ≥ f(y) +∇f(y) · (x− y) for all x, y ∈ X.

(2) If f : X → R is twice differentiable, then it is convex if and only if its Hessian ∇2f(x)
is semi-positive definite for all x ∈ X.

Some important properties of convex functions

Lemma 1.2. Below are some important properties of convex functions.

(1) If f and g are convex functions, then so are m(x) = max{f(x), g(x)} and s(x) =
f(x) + g(x).

(2) If f and g are convex functions and g is non-decreasing, then h(x) = g(f(x)) is convex.

Proof. These properties can be directly proved by verifying the definition.

1.3 Jensen’s inequality

Theorem 1.3 (Jensen’s inequality). Let f be a convex function, 0 ≤ αi ≤ 1; i = 1, . . . , n

such that
n∑
i=1

αi = 1. Then for all x1, . . . , xn, we have

f
( n∑
i=1

αixi

)
≤

n∑
i=1

αif(xi). (1)

Proof. We prove by induction. The cases n = 1, 2 are obvious. Suppose that the statement
is true for n = 1, . . . , K − 1. Suppose that α1, . . . , αK are non-negative numbers such that∑K

i=1 αi = 1. We need to prove that

f
( K∑
i=1

αixi

)
≤

K∑
i=1

αif(xi).
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Since
∑K

i=1 αi = 1, at least one of the coefficients αi must be strictly positive. Assume
that α1 > 0. Then by the conducting assumptions, we obtain

f
( K∑
i=1

αixi

)
= f

(
α1x1 + (1− α1)

K∑
i=2

αi
1− α1

xi

)
≤ α1f(x1) + (1− α1)f

( K∑
i=2

αi
1− α1

xi

)
≤ α1f(x1) + (1− α1)

K∑
i=2

αi
1− α1

f(xi)

=
K∑
i=1

αif(xi),

where we have used the fact that
K∑
i=2

αi

1−α1
= 1.

Remark 1.4 (Jensen’s inequality- probabilistic form). Jensen’s inequality can also
be stated using probabilistic form. Let (Ω, A, µ) be a probability space. If g is a real-valued
function that is µ− integrable and if f is a convex function on the real line, then

f
(∫

Ω

g dµ
)
≤
∫

Ω

f ◦ g dµ.

Example 1.2 (Examples of Jensen’s inequality).

1) For all real numbers x1, . . . , xn, it holds( n∑
i=1

xi

)2

≤ n

n∑
i=1

x2
i .

Proof. Since f(x) = x2 is convex, we have( 1

n

n∑
i=1

xi

)2

= f
( 1

n

n∑
i=1

xi

)
≤

n∑
i=1

1

n
f(xi) =

1

n

n∑
i=1

x2
i ,

which is the desired statement.

2) Arithmetic-Geometric (AM-GM) Inequality. Let (xi)1≤i≤n and (λi)1≤i≤n be real
number satisfying

xi ≥ 0, λi ≥ 0,
n∑
i=1

λi = 1.
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Then, with the convention 00 = 1,

n∑
i=1

λixi ≥
n∏
i=1

xλii . (2)

In particular, taking λ1 = . . . = λn = 1
n

yields

n∑
i=1

xi ≥ n 1/n
√
x1 . . . xn.

Proof. By taking the logarithmic both sides, (2) is equivalent to

n∑
i=1

λi ln(xi) ≤ ln
( n∑
i=1

λixi

)
.

This is exactly Jensen’s inequality applying to the convex function f(x) = − ln(x).

1.4 Convex conjugate and Fenchel’s inequality

The convex conjugate of a function f : Rd → R is, f ∗ : Rd → R, defined by

f ∗(y) = sup
x∈Rd

{x · y − f(y)}.

Fenchel’s inequality: for x, y ∈ Rd, we have

f(x) + f ∗(y) ≥ x · y.

Example 1.3. Examples of Fenchel’s inequality

1) f(x) = |x|2
2

, then f ∗(y) = sup
x∈Rd

{x · y − |x|2} = |y|2
2

. Fenchel’s inequality reads

1

2
(|x|2 + |y|2) ≥ x · y.

2) f(x) = 1
p
|x|p where p > 1. Then f ∗(y) = sup

x∈Rd

{x · y − 1
p
|x|p} = 1

q
|y|q where 1

p
+ 1

q
= 1.

Fenchel’s inequality becomes: for x, y ∈ Rd and p, q > 1 such that 1
p

+ 1
q

= 1, we have

1

p
|x|p +

1

q
|y|q ≥ x · y.
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1.5 Some techniques to prove inequalities

In practises, three inequalities introduced in previous sections often do not appear in
standard forms. It is crucial to recognize them. In this section, through exercises we will
learn some techniques to prove inequalities.

Exercise 1. Let ai, bi ∈ R, bi > 0 for i = 1, . . . , n. Prove that

n∑
i=1

a2
i

bi
≥

(∑n
i=1 ai

)2∑n
i=1 bi

.

Proof. By the Cauchy-Scharz inequality we have( n∑
i=1

ai

)2

=
( n∑
i=1

ai√
bi

√
bi

)2

≤
( n∑
i=1

a2
i

bi

)( n∑
i=1

bi

)
.

Exercise 2 (Problem 6, IMC 2015). Prove that

∞∑
n=1

1√
n(n+ 1)

< 2.

Proof. By the AM-GM Inequality we have

2(n+ 1)− 1 = n+ (n+ 1) > 2
√
n(n+ 1),

which implies that
2(n+ 1)− 2

√
n(n+ 1) > 1.

Dividing both sides by
√
n(n+ 1) yields

1√
n(n+ 1)

< 2
( 1√

n
− 1√

n+ 1

)
.

Hence by summing up over n we obtain

∞∑
n=1

1√
n(n+ 1)

< 2
∞∑
n=1

( 1√
n
− 1√

n+ 1

)
= 2.

Exercise 3. Let A,B,C be three angles of a triangle. Prove that

sinA+ sinB + sinC ≤ 3

√
3

2
.
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Proof. Consider the function f(x) = sinx. Since f ′′(x) = − sin2(x) ≤ 0, f is concave.
Therefore,

sinA+ sinB + sinC ≤
3

≤ sin
(A+B + C

3

)
= sin

π

3
=

√
3

2
.

Exercise 4 (Problem 3, IMC 2016). Let n be a positive integer and a1, . . . , an; b1, . . . , bn
be real number such that ai + bi > 0 for i = 1, . . . , n. Prove that

n∑
i=1

aibi − b2
i

ai + bi
≤

n∑
i=1

ai ·
n∑
i=1

bi −
( n∑
i=1

bi

)2

n∑
i=1

(ai + bi)
. (3)

Proof. We notice the similar form of both sides of (3). For A,B ∈ R we have

AB −B2

A+B
= B − 2B2

A+B
(4)

Applying (4) for A = ai, B = bi, we get

LHS =
n∑
i=1

aibi − b2
i

ai + bi
=

n∑
i=1

(
bi −

2b2
i

ai + bi

)
=

n∑
i=1

bi −
n∑
i=1

2b2
i

ai + bi
.

Similarly now applying (4) for A =
∑b

i=1 ai, B =
∑n

i=1 bi, we obtain

RHS =
n∑
i=1

bi −
2
(∑n

i=1 bi

)2∑n
i=1 ai + bi

.

Therefore (3) is equivalent to (∑n
i=1 bi

)2∑n
i=1 ai + bi

≤
n∑
i=1

b2
i

ai + bi
(5)

By Cauchy-Schwarz inequality we have( n∑
i=1

bi

)2

=
( n∑
i=1

bi√
ai + bi

√
ai + bi

)2

≤
( n∑
i=1

b2
i

ai + bi

)
·
( n∑
i=1

ai + bi

)
,

which implies (5) as desired.

Exercise 5 (Problem 1, IMC 2010). Let 0 < a < b. Prove that∫ b

a

(x2 + 1)e−x
2

dx ≥ e−a
2 − e−b2
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Proof. By the AM-GM Inequality x2 + 1 ≥ 2x > 0 for any 0 < a ≤ x ≤ b, we have∫ b

a

(x2 + 1)e−x
2

dx ≥
∫ b

a

2xe−x
2

dx = e−x
2
∣∣∣b
a

=

∫ b

a

(x2 + 1)e−x
2

dx.

Exercise 6 (Problem 6, IMC 2001). Let n be an integer and let fn(x) = sinx · sin(2x) ·
. . . sin(2nx). Prove that

|fn(x)| ≤ 2√
3
|fn(π/3)|.

Proof. Let g(x) = | sinx| · | sin(2x)|1/2. We have

|g(x)| = | sinx| · | sin(2x)|1/2 =

√
2

4
√

3

(
4

√
| sinx| · | sinx| · | sinx| · |

√
3 cosx|

)2

≤
√

2
4
√

3

3 sin2 x+ 3 cos2 x

4
=
(√3

2

)2

= g(π/3).

Note we have use the AM-GM inequality that

3 sin2 x+ 3 cos2 x = sin2 x+ sin2 x+ sin2 x+ (
√

3 cosx)2 ≥ 4
4

√
| sinx|| sinx|| sinx||

√
3 cosx|.

Therefore, let K = 2
3

[
1− (−1/2)n

]
, we have

|fn(x)| = | sinx| · | sin(2x)| . . . | sin(2nx)|

=
(
| sinx|| sin(2x)|1/2

)
·
(
| sin(2x)|| sin(4x)|1/2

)1/2(
| sin(4x)|| sin(8x)|1/2

)3/4

×

× . . .×
(
| sin(2n−1x|| sin(2nx)|1/2

)K(
| sin(2nx)|

)1−K/2

= g(x) · g(2x)1/2 . . . g(2n−1x)K
(
| sin(2nx)|

)1−K/2

≤ g(π/3)g(x) · g(2π/3)1/2 . . . g(2n−1π/3)K

= |fn(π/3)|/| sin(2nπ/3)1−K/2|

= |fn(π/3)|
( 2√

3

)1−K/2
≤ |fn(π/3)| 2√

3
.

This is the desired inequality.

Exercise 7 (IMO 1995). Let a, b, c be positive real numbers such that abc = 1. Prove that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.



11

Proof. Let x = 1
a
, y = 1

b
, z = 1

c
. Then x, y, z are positive real numbers and xyz = 1. We

have
1

a3(b+ c)
=

1

1
x3

(
1
y

+ 1
z

) =
x2

y + z
.

Similarly
1

b3(c+ a)
=

y2

z + x
,

1

c3(a+ b)
=

z2

x+ y
.

By Cauchy-Scharz inequality (see also Exercise 1) and the Arithmetic-Geometric Inequality
we have

x2

y + z
+

y2

z + x
+

z2

x+ y
≥ (x+ y + z)2

2(x+ y + z)
=
x+ y + z

2
≥

3 3
√
xyz

2
=

3

2
.

Exercise 8 (Problem 1, The 26th Annual Vojtech Jarnik International Competition 2016).
Let a, b, c be positive real number such that a+ b+ c = 1. Prove that(1

a
+

1

bc

)(1

b
+

1

ca

)(1

c
+

1

ab

)
≥ 1728

Proof. By the AM-GM inequality we have

1

a
+

1

bc
=

1

a
+

1

3bc
+

1

3bc
+

1

3bc
≥ 4

1
4
√
ab3c3

,

and
1

27
=
(a+ b+ c

3

)3

≥ abc, i.e.,
1

abc
≥ 27.

Therefore, (1

a
+

1

bc

)(1

b
+

1

ca

)(1

c
+

1

ab

)
≥
(

4
1

4
√
ab3c3

)(
4

1
4
√
ba3c3

)(
4

1
4
√
ca3b3

)
=

64

abc
≥ 64× 27 = 1728.

Exercise 9. Let x, y ∈ R, y > 0. Prove that

ex + y(ln y − 1) ≥ x · y.

Proof. Let f(x) = ex. Then for y > 0, we have f ∗(y) = sup
x∈R
{x · y − ex} = y(ln y − 1). By

Fenchel’s inequality we have f(x) + f ∗(y) = ex + y(ln y − 1) ≥ x · y as desired.
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Exercise 10 (IMO 2001). Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Proof. Since the expression on the LHS does not change when we replace (a, b, c) by
(ka, kb, kc) for arbitrary k ∈ R, we can assume that a + b + c = 1. Since x 7→ 1√

x
is

convex for x > 0, applying Jensen’s inequality we obtain

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1√
a(a2 + 8bc) + b(b2 + 8ca) + c(c2 + 8ab)

=
1√

a3 + b3 + c3 + 24abc
. (6)

Next we show that

a3 +b3 +c3 +24abc ≤ 1 = (a+b+c)3 = a3 +b3 +c3 +3(a2b+a2c+b2c+b2a+c2a+c2b)+6abc,
(7)

which is equivalent to show that

(a2b+ a2c+ b2c+ b2a+ c2a+ c2b) ≥ 6abc.

This is indeed true because of the AM-GM inequality

(a2b+ a2c+ b2c+ b2a+ c2a+ c2b) ≥ 6
6
√
a2b · a2c · b2a · b2c · c2a · c2b = 6abc.

The desired inequality follows from (6) and (7).
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