Some problems about matrices

Manh Hong Duong
Mathematics Institute, University of Warwick
Email: m.h.duong@warwick.ac.uk

March 8, 2017

1 Minkowski's inequality for determinants

Lemma 1.1. Vil03, Lemma 5.23] Let A and B be two non-negative symmetric $n \times n$ matrices, and $\lambda \in[0,1]$. Assume that A is invertible. Then

$$
\begin{equation*}
\operatorname{det}(\lambda A+(1-\lambda) B)^{1 / n} \geq \lambda(\operatorname{det} A)^{1 / n}+(1-\lambda)(\operatorname{det} B)^{1 / n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(\lambda A+(1-\lambda) B) \geq(\operatorname{det} A)^{\lambda}(\operatorname{det} B)^{1-\lambda} \tag{2}
\end{equation*}
$$

Proof. We first prove (11). Since $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det} A$, to prove (1) it is sufficient to prove that

$$
\begin{equation*}
\operatorname{det}(A+B)^{1 / n} \geq(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n} \tag{3}
\end{equation*}
$$

This inequality is known as Minkowski's inequality. Since $A+B=A^{1 / 2}\left(I+A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}=$ $A^{1 / 2}(I+C) A^{1 / 2}$, where $C=A^{-1 / 2} B A^{-1 / 2}$ is a non-negative symmetric matrix, and $\operatorname{det}(M N)=(\operatorname{det} M)(\operatorname{det} N)$ we have
$\operatorname{det}(A+B)^{1 / n}=(\operatorname{det} A)^{1 / n} \operatorname{det}(I+C)^{1 / n}, \quad(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}=(\operatorname{det} A)^{1 / n}\left[1+(\operatorname{det} C)^{1 / n}\right]$.
We next show that

$$
\operatorname{det}(I+C)^{1 / n} \geq 1+(\operatorname{det} C)^{1 / n} \text { for all } C \text { non-negative and symmetric, }
$$

which will imply (3). Since C is non-negative symmetric, it has nonnegative eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and

$$
\operatorname{det}(I+C)^{1 / n}=\prod_{i=1}^{n}\left(1+\lambda_{i}\right)^{1 / n} \quad \text { and } \quad(\operatorname{det} C)^{1 / n}=\prod_{i=1}^{n} \lambda_{i}^{1 / n} .
$$

We need to prove

$$
\prod_{i=1}^{n}\left(1+\lambda_{i}\right)^{1 / n} \geq 1+\prod_{i=1}^{n} \lambda_{i}^{1 / n}
$$

This inequality indeed holds true since using the Arithmetic-Geometric inequality we have

$$
\frac{1+\prod_{i=1}^{n} \lambda_{i}^{1 / n}}{\prod_{i=1}^{n}\left(1+\lambda_{i}\right)^{1 / n}}=\prod\left(\frac{1}{1+\lambda_{i}}\right)^{1 / n}+\prod\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{1 / n} \leq \frac{1}{n} \sum \frac{1}{1+\lambda_{i}}+\frac{1}{n} \sum \frac{\lambda_{i}}{1+\lambda_{i}}=1 .
$$

We now prove (2). From (1) and the Arithmetic-Geometric inequality we have

$$
\operatorname{det}(\lambda A+(1-\lambda) B)^{1 / n} \geq \lambda(\operatorname{det} A)^{1 / n}+(1-\lambda)(\operatorname{det} B)^{1 / n} \geq(\operatorname{det} A)^{\lambda / n}(\operatorname{det} B)^{(1-\lambda) / n}
$$

which implies that

$$
\operatorname{det}(\lambda A+(1-\lambda) B) \geq(\operatorname{det} A)^{\lambda}(\operatorname{det} B)^{(1-\lambda)},
$$

that is (2) as expected.

2 Hadamard's Inequality

Theorem 2.1 (Hadamard's inequality).

$$
\begin{equation*}
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left\|\mathbf{a}_{i}\right\| \tag{4}
\end{equation*}
$$

where $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n}$ are (real vectors) columns of A and $\|\cdot\|$ is the Euclidean norm.
Proof. The inequality is obviously true If A is singular. Therefore, assume that the column of A are linearly independent. By dividing each column by its length, the inequality is equivalent to the special case where each column has length 1 . Suppose that $\left\{\mathbf{b}_{i}\right\}_{i=1}^{n}$ are unit column vectors and B has the $\left\{\mathbf{b}_{i}\right\}$ as column. We need to show that

$$
|\operatorname{det} B| \leq 1
$$

Indeed, let $C=B^{T} B$. Then C is non-negative symmetric whose diagonal entries are all 1 . Thus $\operatorname{tr} C=n$. Let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ be the eigenvalues of C. By the arithmetic-geometric inequality we have

$$
(\operatorname{det} B)^{2}=\operatorname{det} C=\prod_{i=1}^{n} \lambda_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\right)^{n}=\left(\frac{1}{n} \operatorname{tr} C\right)^{n}=1 \text {, }
$$

i.e., $|\operatorname{det} B| \leq 1$ as required.

Corollary 2.2. Let A be $a n \times n$ positive definite matrix. Then

$$
\begin{equation*}
|\operatorname{det} A| \leq \prod_{i=1}^{n} A_{i i} \tag{5}
\end{equation*}
$$

Proof. Sine A is positive definite, there exists B such that $A=B^{T} B$. Let \mathbf{b}_{i} are the columns of B. We have

$$
\begin{equation*}
\operatorname{det} A=(\operatorname{det} B)^{2} \leq \prod\left\|\mathbf{b}_{i}\right\|^{2}=\prod A_{i i} . \tag{6}
\end{equation*}
$$

Proposition 2.3. [Dan01, Theorem 2.8] Let A and B be $n \times n$ positive definite matrices. Then

$$
\begin{equation*}
n(\operatorname{det} A \cdot \operatorname{det} B)^{\frac{m}{n}} \leq \operatorname{tr}\left(A^{m} B^{m}\right) \tag{7}
\end{equation*}
$$

for any positive integer m.
Proof. Let $\lambda_{1}, \ldots, \lambda_{n}>0$ be eigenvalues of A and suppose that $A=P^{T} \Lambda P$ where P is an orthonormal matrix and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let $b_{11}(m), \ldots, b_{n n}(m)$ denote the diagonal elements of $\left(P^{T} B P\right)^{m}$. Since the trace operator is invariant under permutation, we have

$$
\begin{aligned}
\frac{1}{n} \operatorname{tr}\left(A^{m} B^{m}\right) & =\frac{1}{n} \operatorname{tr}\left(P^{T} \Lambda^{m} P B^{m}\right) \\
& =\frac{1}{n} \operatorname{tr}\left(\Lambda^{m} P^{T} B^{m} P\right) \\
& =\frac{1}{n} \operatorname{tr}\left(\Lambda^{m}\left(P^{T} B P\right)^{m}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}^{m} b_{i i}(m) .
\end{aligned}
$$

Using the last identity and the arithmetic-geometric inequality, we have

$$
\begin{equation*}
\frac{1}{n} \operatorname{tr}\left(A^{m} B^{m}\right) \geq \prod\left(\lambda_{i}\right)^{\frac{m}{n}} \prod\left(b_{i i}(m)\right)^{\frac{1}{n}} \tag{8}
\end{equation*}
$$

On the other hand from (5) we have

$$
(\operatorname{det} A \cdot \operatorname{det} B)^{\frac{m}{n}}=\left(\operatorname{det} \Lambda^{m} \operatorname{det} P^{T} B^{m} P\right)^{\frac{1}{n}} \leq \prod \prod \lambda_{i}^{\frac{m}{n}} \prod\left(b_{i i}(m)\right)^{\frac{1}{n}}
$$

Together with (8) we obtain the claimed inequality.

References

[Dan01] F. M. Dannan. Matrix and operator inequalities. Journal of Inequalities in Pure and Applied Mathematics, Volume 2, Issue 3, Article 34, 2001.
[Vil03] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.

