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1 Minkowski’s inequality for determinants

Lemma 1.1. [Vil03, Lemma 5.23] Let A and B be two non-negative symmetric n X n
matrices, and X € [0,1]. Assume that A is invertible. Then

det(AA + (1 — \)B)Y™ > A(det A)Y™ + (1 — X)(det B)/™, (1)

and
det(AA + (1 — \)B) > (det A)*(det B)' ™. (2)

Proof. We first prove . Since det(AA) = A" det A, to prove it is sufficient to prove
that
det(A + B)Y" > (det A)Y" + (det B)Y/™. (3)

This inequality is known as Minkowski’s inequality. Since A4+B = AY2(I+A~Y2BA-Y2) A2 =
AVE(T 4+ C)AY? where C = A"Y/2BA~Y2 is a non-negative symmetric matrix, and
det(MN) = (det M)(det N) we have

det(A+B)Y" = (det A)V/" det(I+C)/™,  (det A)/"+(det B)Y™ = (det A)Y/" [1+(det cHm.

We next show that
det(I +C)Y/" > 14 (det C)/™ for all C' non-negative and symmetric,
which will imply . Since C' is non-negative symmetric, it has nonnegative eigenvalues

A, A, and

n

det(I + )" =T+ )" and (detC)'/" = [T

i=1 =1



We need to prove
n

[[a+x)tm =1+ ﬁxg/n.

i=1 i=1

This inequality indeed holds true since using the Arithmetic-Geometric inequality we have

1+ [ A"

i=1 1 )1/n ( i )1/n 1 1 1 A
TT(1+ X)Ym

=1

We now prove (2)). From (I)) and the Arithmetic-Geometric inequality we have
det(AA + (1 = \)B)Y™ > X(det A)Y™ + (1 — \)(det B)Y™ > (det A)"(det B)1—V/",

which implies that
det(AA + (1 — X\)B) > (det A)*(det B)1™V,

that is as expected. [

2 Hadamard’s Inequality

Theorem 2.1 (Hadamard’s inequality).
|det A| < T llall, (4)
i=1

where {a;}, are (real vectors) columns of A and || - || is the Fuclidean norm.

Proof. The inequality is obviously true If A is singular. Therefore, assume that the column
of A are linearly independent. By dividing each column by its length, the inequality is
equivalent to the special case where each column has length 1. Suppose that {b;}!' , are
unit column vectors and B has the {b;} as column. We need to show that

|det B| < 1.

Indeed, let C' = BT B. Then C' is non-negative symmetric whose diagonal entries are all 1.
Thus trC' = n. Let Ai,..., A\, > 0 be the eigenvalues of C'. By the arithmetic-geometric
inequality we have

(det B)? = det C = f[A,- < (% zn:A)" -~ (%tr(])n —1,
=1

=1

i.e., |det B] <1 as required. O



Corollary 2.2. Let A be a n x n positive definite matriz. Then

i=1
Proof. Sine A is positive definite, there exists B such that A = BTB. Let b; are the
columns of B. We have

det A = (det B)> < [ [ Ibsll* = ] ] Au (6)

]

Proposition 2.3. [Dan01, Theorem 2.8] Let A and B be n x n positive definite matrices.
Then

n(det A - det B)» < tr(A™B™) (7)

for any positive integer m.

Proof. Let A\i,...,\, > 0 be eigenvalues of A and suppose that A = PTAP where P is an
orthonormal matrix and A = diag(A1, ..., \,). Let byi(m), ..., by, (m) denote the diagonal
elements of (PTBP)™. Since the trace operator is invariant under permutation, we have

1 1
—tr(A™B™) = —tr(PTA™PB™)
n

n

1
= —tr(A"P"B™P)
n

= %tr(Am(PTBP)m)

1= o

Using the last identity and the arithmetic-geometric inequality, we have

1

Lix(amB) > TTOW* Tt 0

On the other hand from (5)) we have
(det A-det B) = (det A™ det P"B™P)x < [T [T [[(ba(m))
Together with (§) we obtain the claimed inequality. O

3=
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