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1 Minkowski’s inequality for determinants

Lemma 1.1. [Vil03, Lemma 5.23] Let A and B be two non-negative symmetric n × n
matrices, and λ ∈ [0, 1]. Assume that A is invertible. Then

det(λA+ (1− λ)B)1/n ≥ λ(detA)1/n + (1− λ)(detB)1/n, (1)

and
det(λA+ (1− λ)B) ≥ (detA)λ(detB)1−λ. (2)

Proof. We first prove (1). Since det(λA) = λn detA, to prove (1) it is sufficient to prove
that

det(A+B)1/n ≥ (detA)1/n + (detB)1/n. (3)

This inequality is known as Minkowski’s inequality. SinceA+B = A1/2(I+A−1/2BA−1/2)A1/2 =
A1/2(I + C)A1/2, where C = A−1/2BA−1/2 is a non-negative symmetric matrix, and
det(MN) = (detM)(detN) we have

det(A+B)1/n = (detA)1/n det(I+C)1/n, (detA)1/n+(detB)1/n = (detA)1/n
[
1+(detC)1/n

]
.

We next show that

det(I + C)1/n ≥ 1 + (detC)1/n for all C non-negative and symmetric,

which will imply (3). Since C is non-negative symmetric, it has nonnegative eigenvalues
λ1, . . . , λn and

det(I + C)1/n =
n∏
i=1

(1 + λi)
1/n and (detC)1/n =

n∏
i=1

λ
1/n
i .
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We need to prove
n∏
i=1

(1 + λi)
1/n ≥ 1 +

n∏
i=1

λ
1/n
i .

This inequality indeed holds true since using the Arithmetic-Geometric inequality we have

1 +
n∏
i=1

λ
1/n
i

n∏
i=1

(1 + λi)1/n
=
∏( 1

1 + λi

)1/n
+
∏( λi

1 + λi

)1/n
≤ 1

n

∑ 1

1 + λi
+

1

n

∑ λi
1 + λi

= 1.

We now prove (2). From (1) and the Arithmetic-Geometric inequality we have

det(λA+ (1− λ)B)1/n ≥ λ(detA)1/n + (1− λ)(detB)1/n ≥ (detA)λ/n(detB)(1−λ)/n,

which implies that
det(λA+ (1− λ)B) ≥ (detA)λ(detB)(1−λ),

that is (2) as expected.

2 Hadamard’s Inequality

Theorem 2.1 (Hadamard’s inequality).

| detA| ≤
n∏
i=1

‖ai‖, (4)

where {ai}ni=1 are (real vectors) columns of A and ‖ · ‖ is the Euclidean norm.

Proof. The inequality is obviously true If A is singular. Therefore, assume that the column
of A are linearly independent. By dividing each column by its length, the inequality is
equivalent to the special case where each column has length 1. Suppose that {bi}ni=1 are
unit column vectors and B has the {bi} as column. We need to show that

| detB| ≤ 1.

Indeed, let C = BTB. Then C is non-negative symmetric whose diagonal entries are all 1.
Thus trC = n. Let λ1, . . . , λn ≥ 0 be the eigenvalues of C. By the arithmetic-geometric
inequality we have

(detB)2 = detC =
n∏
i=1

λi ≤
( 1

n

n∑
i=1

λi

)n
=
( 1

n
trC
)n

= 1,

i.e., | detB| ≤ 1 as required.
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Corollary 2.2. Let A be a n× n positive definite matrix. Then

| detA| ≤
n∏
i=1

Aii. (5)

Proof. Sine A is positive definite, there exists B such that A = BTB. Let bi are the
columns of B. We have

detA = (detB)2 ≤
∏
‖bi‖2 =

∏
Aii. (6)

Proposition 2.3. [Dan01, Theorem 2.8] Let A and B be n× n positive definite matrices.
Then

n(detA · detB)
m
n ≤ tr(AmBm) (7)

for any positive integer m.

Proof. Let λ1, . . . , λn > 0 be eigenvalues of A and suppose that A = P TΛP where P is an
orthonormal matrix and Λ = diag(λ1, . . . , λn). Let b11(m), . . . , bnn(m) denote the diagonal
elements of (P TBP )m. Since the trace operator is invariant under permutation, we have

1

n
tr(AmBm) =

1

n
tr(P TΛmPBm)

=
1

n
tr(ΛmP TBmP )

=
1

n
tr(Λm(P TBP )m)

=
1

n

n∑
i=1

λmi bii(m).

Using the last identity and the arithmetic-geometric inequality, we have

1

n
tr(AmBm) ≥

∏
(λi)

m
n

∏
(bii(m))

1
n (8)

On the other hand from (5) we have

(detA · detB)
m
n = (det Λm detP TBmP )

1
n ≤

∏∏
λ

m
n
i

∏
(bii(m))

1
n

Together with (8) we obtain the claimed inequality.
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