Practice problems

Problem 9 There are a finite number of straight lines on a plane such that no two are parallel and every intersection point belongs to at least 3 lines. Prove that all lines intersect in a common point.

Problem 10 Prove that if n points in \mathbb{R}^{2} are not all on one line, then there are at least n distinct lines connecting pairs of them.

Problem 11 There are n points in the plane, no three on a line. Prove that there are at least $\binom{n}{5} /(n-4)$ convex 4 -gons formed by these points.

