Practice problems

Problem 12 Let $S L_{2}(\mathbb{Z})$ consists of 2×2-matrices with integer entries and determinant 1.
(i) Show that $S L_{2}(\mathbb{Z})$ is a group under matrix multiplication.
(ii) Prove that, for every $A \in S L_{2}(\mathbb{Z})$, the map $x \mapsto A x$ is bijective on \mathbb{Z}^{2}.
(iii) Let $y=\binom{y_{1}}{y_{2}}$ be a non-zero vector in \mathbb{Z}^{2} such that the straight line segment connecting y to the origin has no points from \mathbb{Z}^{2} in its interior. Show that there is $A \in S L_{2}(\mathbb{Z})$ with $A y=\binom{0}{1}$.

Problem 13 Suppose that each of the vertices of a triangle $A B C$ belongs to \mathbb{Z}^{2} and that there is exactly one point P from \mathbb{Z}^{2} in the interior of the triangle. Let E be the point of intersection of the lines $A P$ and $B C$. Determine the largest possible value for the ratio of the segments $|A P| /|P E|$.

