Practice problems

Problem 12 Let $SL_2(\mathbb{Z})$ consists of 2×2 -matrices with integer entries and determinant 1.

- (i) Show that $SL_2(\mathbb{Z})$ is a group under matrix multiplication.
- (ii) Prove that, for every $A \in SL_2(\mathbb{Z})$, the map $x \mapsto Ax$ is bijective on \mathbb{Z}^2 .

(iii) Let $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ be a non-zero vector in \mathbb{Z}^2 such that the straight line segment connecting y to the origin has no points from \mathbb{Z}^2 in its interior. Show that there is $A \in SL_2(\mathbb{Z})$ with $Ay = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Problem 13 Suppose that each of the vertices of a triangle ABC belongs to \mathbb{Z}^2 and that there is exactly one point P from \mathbb{Z}^2 in the interior of the triangle. Let E be the point of intersection of the lines AP and BC. Determine the largest possible value for the ratio of the segments |AP|/|PE|.