Linear algebra

1. Do there exist two $n \times n$ matrices A and B such that $A B-B A$ is the unit matrix?
2. Let A, B, C and D be $n \times n$ matrices. Suppose that the matrices $A B^{T}$ and $C D^{T}$ are symmetric and $A D^{T}-B C^{T}$ is the unit matrix. Show that $A^{T} D-C^{T} B$ is also the unit matrix.
3. Do there exist polynomials $a(x), b(x), c(y)$ and $d(y)$ such that $a(x) c(y)+$ $b(x) d(y)=1+x y+x^{2} y^{2}$?
4. Let A be an $n \times n$ matrix such that $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for every $i=1, \ldots, n$. Show that A is regular.
5. Let A and B be two $n \times n$ matrices such that the rank of $A B-B A$ is one. Show that $(A B-B A)^{2}=0$.
6. Let A be an $n \times n$ matrix such that $A^{3}-A$ is the unit matrix. Show that the determinant of A is positive.
7. Let A be an $n \times n$ skew-symmetric matrix, i.e., $A=-A^{T}$. Show that the determinant of A is non-negative.
