
PROBLEM SOLVING 6TH MARCH

ANDRÁS MÁTHÉ

1. Problems

1. Does there exist
(a) finitely many (at least 2)
(b) countably many

non-empty disjoint closed sets whose union is the interval [0, 1]?

2. Let f be a function
(a) f : R× R→ R
(b) f : Q×Q→ Q

such that its restriction to any horizontal or vertical line is a polynomial. Does it follow
that f is a polynomial in two variables?

3. Let f : [0,∞) → R be a continuous function. Assume that for every x > 0 the sequence
f(nx) has a limit. Does it follow that

lim
x→∞

f(x)

exists?

4. (If we use a standard numeral system, like the decimal or binary, there are numbers that
can be written in two different ways, for example, 10 = 9.999999 . . . in base 10, or 0.1 =
0.011111 . . . in base 2. This question concerns a bit more general numeral systems.)

Are there a real number b with |b| > 1 and a finite set D ⊂ R with 0 ∈ D such that
every real number x can be uniquely written in the form

x =

N∑
n=−∞

dnb
n

where N is an integer, ∀n dn ∈ D, and dN 6= 0?

5. Characterise those functions f : R→ R that have the property that for any sequence (an),
∞∑

n=1

|an| <∞ ⇐⇒
∞∑

n=1

|f(an)| <∞.

6. Characterise those functions f : R→ R that have the property that for any sequence (an),
∞∑

n=1

an converges ⇐⇒
∞∑

n=1

f(an) converges.

In the class we covered (parts of the) solutions of Problem 1, Problem 2 and Baire’s category
theorem.

Hint for problem 3: use Baire’s category theorem.
For Problem 5 and 6 only first-year analysis is required.
If you have solutions or possible solutions, write me (A.Mathe at warwick.ac.uk), and we can

fix a time to meet.
Written solutions may be released later.
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In the next sections I state Baire’s category theorem again and write a solution for problem 1
and 2.

2. Baire’s category theorem

Theorem 2.1 (Baire’s category theorem (simple form)). If R (or [0, 1]) if a union of countably
many closed sets, then one of these contains a non-trivial interval.

In Rn, or in a complete metric space, the theorem states that if the union of countably many
closed sets contain an open ball (or the whole Rn or the whole complete metric space), then one
of your closed sets already contains a (non-empty) open ball.

One can also state the theorem by talking about the complements of these closed sets: In R,
for example, it says that the intersection of countably many dense open sets is non-empty. (A set
is dense if it has a point in every (non-empty) open interval.)

Proof of Baire’s category theorem in R. (I will assume that we have countably infinitely many sets,
indexed by positive integers, but the same (or shorter) proof works for a finitely many sets as well.)
Assume that R = ∪∞n=1An, the sets An are closed, but none of them contains an interval.

A1 does not contain an interval, so there is x /∈ A1. Since A1 is closed, there is an ε > 0 such
that [x − ε, x + ε] is disjoint from A1. Let this interval be [a1, b1]. We know that A2 does not
contain this interval, so there is x2 ∈ [a1, b1] such that x2 /∈ A2. Since A2 is closed, we can similarly
choose a non-trivial interval [a3, b3] that is inside [a2, b2] but disjoint from A2.

And so on. We obtain a nested sequence of closed (non-trivial) intervals

[a1, b1] ⊃ [a2, b2] ⊃ · · · ,
such that [ak, bk] is disjoint from Ak. The intersection⋂

n

[an, bn]

is non-empty, as it contains the interval

[sup an, inf bn].

This “interval” often consists of a single point of course (if the lengths of the intervals tend to zero).
Since any point in this intersection is disjoint from all the sets Ak, we obtained a contradiction. �

3. Solution of Problem 1

The answer is negative to both questions. The proof does not use Baire’s category theorem but
it is very similar to its proof.

As many of you have pointed out, [0, 1] is not the union of two disjoint closed sets, as it is
connected. To see this directly, assume that [0, 1] = A∪B, where A and B are disjoint non-empty
closed sets. One of the sets does not contain 0, let this be B. Let b be the infimum of B. Since
B is closed, b ∈ B and thus b > 0. Since A ∪ B = [0, 1] ⊃ [0, b), we must have A ⊃ [0, b). As A is
closed, we have b ∈ A which contradicts to A and B being disjoint.

If we had
[0, 1] = ∪ni=1Ai

where the sets Ai are disjoint, non-empty and closed, then [0, 1] would be the union of two disjoint
non-empty closed sets: A1 and

∪ni=2Ai.

So it is left to prove that [0, 1] is not a union of countably many disjoint closed sets Ai. Assume
it is.

We may assume that 0 ∈ A1 and we have 1 ∈ A2 or perhaps 1 ∈ A1 as well. In either case,
A1 ∪A2 is a closed set in [0, 1], which contains 0 and 1 but not everything. Then [0, 1] \ (A1 ∪A2)
is a non-empty open set. Choose a (maximal) open interval (a2, b2) inside this open set, that is,
the points a2 and b2 should be in A1 ∪A2.

Now consider A3. If A3 ∩ (a2, b2) = ∅, then let a3 = a2 and b3 = b2. On the other hand,
if A3 ∩ (a2, b2) 6= ∅, then we do one of the following options. We can let a3 = a2, and let
b3 = inf A3 ∩ (a2, b2); OR we let b3 = b2 and let a3 = supA3 ∩ (a2, b2). In either case we have that
the points a3, b3 are in A1 ∪A2 ∪A3, but the open interval (a3, b3) is disjoint from this set.
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We repeat the same step. If (ak, bk) is given such that it is disjoint from A1 ∪ . . . Ak but its
endpoints are in this set, then consider Ak. If Ak ∩ (ak, bk) = ∅, then let ak+1 = ak and bk+1 = bk.
If the intersection is non-empty, then we choose between two options: either let ak+1 = ak and
bk+1 = inf Ak+1 ∩ (ak, bk) OR we let bk+1 = bk and let ak+1 = supAk+1 ∩ (ak, bk). In either case
we have that the open interval (ak+1, bk+1) is disjoint from A1 ∪ . . . ∪ Ak+1 but its endpoints are
in this set.

We obtain a nested sequence of open intervals

(a1, b1) ⊃ (a2, b2) ⊃ · · · .
For the nested sequence of closed intervals

[a1, b1] ⊃ [a2, b2] ⊃ · · · ,
we have that their intersection is non-empty, as it contains the closed interval

[sup ak, inf bk]

which is, of course, consists of only a single point in case the length of these intervals tend to
zero. The intersection of a nested sequence of open intervals can be empty, but only if one of the
endpoints is eventually constant (that is, for example, ak = ak+1 = ak+2 = . . . for some k) and
the length of the intervals go to zero. We had some freedom in the construction above: it is easy
to see that we can make sure that the intersection of these open intervals is still non-empty. Since
this point is in [0, 1] but not in ∪∞n=1An, we obtain a contradiction.

4. Solution of Problem 2

For f : R× R→ R, the answer is positive, for f : Q×Q→ Q, the answer is negative.

Lemma 4.1 (Interpolation). Let x1, . . . , xd be d distinct points in R and let y1, . . . , yd ∈ R be
arbitrary. Then there is a unique polynomial P of degree at most d− 1 such that

yi = P (xi)

for every i = 1, . . . , d.
In fact, this polynomial is

P (x) =

d∑
n=1

yn ·
∏

i∈{1,...,d}\{n}(x− xi)∏
i∈{1,...,d}\{n}(xn − xi)

.

Proof. Notice that ∏
i∈{1,...,d}\{n}(x− xi)∏
i∈{1,...,d}\{n}(xn − xi)

is a polynomial of degree d − 1 that takes value 1 at x = xn and takes value 0 at all the other
points x = xi. So P is indeed the required polynomial, and its degree is at most d− 1.

If there is another polynomial Q with the same property as P , then P−Q would be a polynomial
of degree d− 1 that has at lest d zeros, so P −Q = 0. �

Remark 4.2. Notice that P in the lemma is linear in yn, if we treat them as variables.

Now assume that f : R×R→ R is such that on vertical and horizontal lines it is a polynomial.
Let

Ed = {x ∈ R : y 7→ f(x, y) is a polynomial of degree at most d}.
Then

R =

∞⋃
d=0

Ed

and E0 ⊂ E1 ⊂ E2 ⊂ · · · . Then R is also the union of the closures of the sets Ed, so there is d
such that

Ed

contains a non-trivial interval. Let this be I.
Consider d + 1 arbitrary horizontal lines, for example, those with y coordinates 0, 1, . . . , d. On

each of these, f is a polynomial, so there exist polynomials Pk such that

f(x, k) = Pk(x) (k = 0, 1, . . . , d).
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Fix any x ∈ Ed. Then y 7→ f(x, y) is a polynomial of degree at most d and its value at k is
Pk(x) (k = 0, 1, . . . , d). By the interpolation lemma above, we see that we must have, for every
y ∈ R,

f(x, y) =

d∑
k=0

Pk(x) ·
∏

i∈{0,...,d}\{k}(y − i)∏
i∈{0,...,d}\{k}(k − i)

.

Let Q : R× R→ R be defined by

Q(x, y) =

d∑
k=0

Pk(x) ·
∏

i∈{0,...,d}\{k}(y − i)∏
i∈{0,...,d}\{k}(k − i)

,

this is a polynomial in x and y. We already know that f and Q agree on Ed × R.
For every c ∈ R, x 7→ f(x, c) is a polynomial, so continuous, and agrees with another continuous

function x 7→ Q(x, c) on the set Ed. So they must agree on Ed as well. Hence, they agree on
the interval I. If two polynomials agree on an interval, then they are the same, so we must have
f(x, c) = Q(x, c) for every x ∈ R (for every c). So we obtained that f and Q agree everywhere in
the plane, so f is indeed a polynomial.

For the second part of the problem we construct a function f : Q × Q → Q that is not a
polynomial in two variables, but it is a polynomial on every horizonal and vertical line.

Enumerate rationals in a sequence {r1, r2, . . .}. Consider the horizontal and vertical lines
{(x, r1) : x ∈ R}, {(r1, y) : y ∈ R}, {(x, r2) : x ∈ R}, {(r2, y) : y ∈ R}, . . .. We will fix the
values of f recursively on each of these lines, in this order.

Fix f on the first line (which is horizontal) to be any polynomial of degree at least 1. Then fix
f on the second line (which is vertical) to be any polynomial of degree at least 2 (keeping in mind
that f was already defined at the intersection of the first and second line). And so on, we fix f on
the kth line to be any polynomial of degree at least k. We can do this, because the value of f of
that line is only fixed at finitely many points (that are the intersections with previously considered
lines). We can also easily ensure that the degree of the polynomial on the new line is as large as
we wish (check this, and use the “interpolation” lemma if needed).

At the end of this process we defined f : Q × Q → Q, which is a polynomial on all horizontal
and vertical lines. It cannot be a polynomial in two variables, because then it would have a degree
d, and then its restrictions to lines would have a degree at most d. However, we made sure we have
arbitrarily large degrees on the lines.
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