Probability

A discrete probability space Ω is a countable set imbued with a probability function $\mathbb{P}: \Omega \rightarrow[0,1]$ such that $\sum_{x \in \Omega} \mathbb{P}(x)=1$. A random variable is a function $X: \Omega \rightarrow \mathbb{R}$

Given a discrete random variable $X: \Omega \rightarrow S \subset \mathbb{R}$, the expectation $\mathbb{E}(X)$ is equal to $\sum_{s \in S} s \mathbb{P}(X=s)$. The variance $\mathbb{V}(X)$ is equal to $\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)$

Given an event $A \subset \Omega$, its indicator function $I_{A}: \Omega \rightarrow\{0,1\}$ is defined to be 1 on A and 0 on $\Omega \backslash A$.

Theorem (Markov's inequality): For $t>0$ and a positive random variable $X>0$ we have $\mathbb{P}(X>$ $t)<\frac{\mathbb{E}(X)}{t}$

Theorem: For a positive random variable $X>0$ we have $\mathbb{P}(X=0) \leq \frac{\mathbb{V}(X)}{\mathbb{E}(X)^{2}}$
The probability generating function of a random variable X is defined to be $G_{X}(z) \equiv \sum_{s \in S} z^{s} \mathbb{P}(z=s)$

Problems

Problem 1: Show that a graph G has a bipartition $V(G)=V_{1} \cup V_{2}$ such that $e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right) \leq \frac{e(G)}{2}$ (where $e(G[U])$ means the number of edges whose end points are both in U)

Problem 2: Given s, t integers, show that for every $n \geq 1$, there is a bipartite graph with both parts of size n, at least $\frac{1}{2} n^{2-\frac{s+t-2}{s t-1}}$ edges, but doesn't contain a $K_{s, t}$ (the complete bipartite graph with partitions of sizes s and t)

2012/1/1: For every positive integer n, let $p(n)$ denote the number of ways to express n as a sum of positive integers. For example, $p(4)=5$ because:

$$
4=3+1=2+2=2+1+1=1+1+1+1
$$

Also define $p(0)=1$.
Prove that $p(n)-p(n-1)$ is the number of ways to express n as a sum of integers each of which is strictly greater than 1

2016/2/4 Let k be a positive integer. For each nonnegative integer n, let $f(n)$ be the number of solutions $\left(x_{1}, x_{2}, \ldots x_{k}\right) \in \mathbb{Z}^{k}$ of the inequality $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{k}\right| \leq n$. Prove that for every $n \geq 1$, $f(n-1) f(n+1) \leq f(n)^{2}$
$\mathbf{2 0 1 6} / \mathbf{1} / \mathbf{5}$ Let S_{n} denote the set of permutations of the sequence $(1,2, \ldots, n)$. For every permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots p_{n}\right) \in S_{n}$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i<j \leq n$ with $\pi_{i}>\pi_{j}$, ie the number of inversions in π. Denote by $f(n)$ the number of permutations of $\pi \in S_{n}$ for which $\operatorname{inv}(\pi)$ is divisible by $n+1$.

Prove that there exist infinitely many primes p such that $f(p-1)>\frac{(p-1)!}{p}$ and infinitely manu primes p for which $f(p-1)<\frac{(p-1)!}{p}$.

