IMC SEMINAR 2016 Linear Algebra

Things to remember:

- Linear independence, spanning, properties of determinant and trace, column and row operations.
- Eigenvalues, Jordan canonical form, Cayley-Hamilton theorem.
- Vandermonde determinant, density of invertible matrices.

Warm up.

1. (IMC 2005 1.1) Let A be the $n \times n$ matrix, whose (i, j)th entry is i + j for all i, j = 1, 2, ..., n. What is the rank of A? Solution. The matrix A is given by

$$\begin{pmatrix} 2 & 3 & \dots & n+1 \\ 3 & 4 & \dots & n+2 \\ \vdots & \vdots & \ddots & \vdots \\ n+1 & n+2 & \dots & 2n \end{pmatrix}$$

And by row operations (which do not change the rank), that is, by replacing the *i*th row by its difference with the (i - 1)th, i = 2, ..., n, the matrix can be put into the form,

(2)	3		n+1		$\binom{2}{2}$	3		n+1	
1	1		1		1	1		1	
1	1		1	\longrightarrow	0	0		0	
÷	÷	·	÷		÷	÷	·	:	
1	1		1 /		0	0		0	Ϊ

The rank of this last matrix is 2 as the two top rows are linearly independent. All this applies for $n \ge 2$, therefore the rank of A is 2. For n = 1 we have rank(A) = 1.

2. Let A and B be $n \times n$ matrices and I be the identity matrix. Show that det(I + AB) = det(I + BA).

Solution. First let us assume that A is invertible. Then,

$$det(I + AB) = det(A^{-1}) det(I + AB) det(A),$$

= det(A^{-1}(I + AB)A),
= det(I + BA).

Hence the result holds. Now let us fix B, for any matrix A with entries (a_{ij}) we note that the expression

$$\det(I + AB) - \det(I + BA)$$

is a polynomial on (a_{ij}) , therefore it is a continuous function from \mathbb{R}^{n^2} to \mathbb{R} . Moreover, the set of invertible matrices form a dense subset in \mathbb{R}^{n^2} and we have just proved that $\det(I + AB) - \det(I + BA)$ vanishes on that subset. Thus, by continuity we conclude that $\det(I + AB) - \det(I + BA) = 0$ for all $A \in \mathbb{R}^{n^2}$. Finally since B was arbitrary, then the previous arguments applies also to all $n \times n$ matrices B.

Homework.

Bring your solutions next session on February 3rd.

1. Let A, B, C, D be $n \times n$ matrices such that AC = CA. Prove that

$$\det \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \det(AD - CB)$$

- 2. Let $A, B \in M_{2 \times 2}(\mathbb{R})$ such that $A^2 + B^2 = AB$. Show that $(AB BA)^2 = 0$.
- 3. Does any rotation of a *d*-dimension sphere have a fixed point?
- 4. Let v_0 be the zero vector in \mathbb{R}^n and let $v_1, v_2, \ldots, v_{n+1} \in \mathbb{R}^n$ be such that the Euclidean norm $|v_i v_j|$ is rational for every $0 \le i, j \le n+1$. Prove that v_1, \ldots, v_{n+1} are linearly dependent over the rationals.

Hint: Use the identity $-2\langle v_i, v_j \rangle = |v_i - v_j|^2 - |v_i|^2 - |v_j|^2$.