IMC SEMINAR 2016

Linear Algebra

Things to remember:

- Linear independence, spanning, properties of determinant and trace, column and row operations.
- Eigenvalues, Jordan canonical form, Cayley-Hamilton theorem.
- Vandermonde determinant, density of invertible matrices.

Warm up.

1. (IMC 2005 1.1) Let A be the $n \times n$ matrix, whose (i, j) th entry is $i+j$ for all $i, j=$ $1,2, \ldots, n$. What is the rank of A ?
Solution. The matrix A is given by

$$
\left(\begin{array}{cccc}
2 & 3 & \ldots & n+1 \\
3 & 4 & \ldots & n+2 \\
\vdots & \vdots & \ddots & \vdots \\
n+1 & n+2 & \ldots & 2 n
\end{array}\right)
$$

And by row operations (which do not change the rank), that is, by replacing the i th row by its difference with the $(i-1)$ th, $i=2, \ldots, n$, the matrix can be put into the form,

$$
\left(\begin{array}{cccc}
2 & 3 & \ldots & n+1 \\
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
2 & 3 & \ldots & n+1 \\
1 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

The rank of this last matrix is 2 as the two top rows are linearly independent. All this applies for $n \geq 2$, therefore the rank of A is 2 . For $n=1$ we have $\operatorname{rank}(A)=1$.
2. Let A and B be $n \times n$ matrices and I be the identity matrix. Show that $\operatorname{det}(I+A B)=$ $\operatorname{det}(I+B A)$.
Solution. First let us assume that A is invertible. Then,

$$
\begin{aligned}
\operatorname{det}(I+A B) & =\operatorname{det}\left(A^{-1}\right) \operatorname{det}(I+A B) \operatorname{det}(A), \\
& =\operatorname{det}\left(A^{-1}(I+A B) A\right), \\
& =\operatorname{det}(I+B A) .
\end{aligned}
$$

Hence the result holds. Now let us fix B, for any matrix A with entries ($a_{i j}$) we note that the expression

$$
\operatorname{det}(I+A B)-\operatorname{det}(I+B A)
$$

is a polynomial on $\left(a_{i j}\right)$, therefore it is a continuous function from $\mathbb{R}^{n^{2}}$ to \mathbb{R}. Moreover, the set of invertible matrices form a dense subset in $\mathbb{R}^{n^{2}}$ and we have just proved that $\operatorname{det}(I+A B)-\operatorname{det}(I+B A)$ vanishes on that subset. Thus, by continuity we conclude that $\operatorname{det}(I+A B)-\operatorname{det}(I+B A)=0$ for all $A \in \mathbb{R}^{n^{2}}$. Finally since B was arbitrary, then the previous arguments applies also to all $n \times n$ matrices B.

Homework.

Bring your solutions next session on February 3rd.

1. Let A, B, C, D be $n \times n$ matrices such that $A C=C A$. Prove that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A D-C B)
$$

2. Let $A, B \in M_{2 \times 2}(\mathbb{R})$ such that $A^{2}+B^{2}=A B$. Show that $(A B-B A)^{2}=0$.
3. Does any rotation of a d-dimension sphere have a fixed point?
4. Let v_{0} be the zero vector in \mathbb{R}^{n} and let $v_{1}, v_{2}, \ldots, v_{n+1} \in \mathbb{R}^{n}$ be such that the Euclidean norm $\left|v_{i}-v_{j}\right|$ is rational for every $0 \leq i, j \leq n+1$. Prove that v_{1}, \ldots, v_{n+1} are linearly dependent over the rationals.
Hint: Use the identity $-2\left\langle v_{i}, v_{j}\right\rangle=\left|v_{i}-v_{j}\right|^{2}-\left|v_{i}\right|^{2}-\left|v_{j}\right|^{2}$.
