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Motivation: Finding rational points

Theorem (Faltings, 83)
Let X be a curve of genus g > 2 over Q. The set X(Q) is finite.

Faltings’ proof does not lead to an algorithm to compute X(Q).
However:

Jennifer Balakrishnan, University of Oxford p-adic height pairings and integral points e curves 1




Chabauty’s theorem

Theorem (Chabauty, "41)

Let X be a curve of genus § > 2 over Q. Suppose the rank of the
Mordell-Weil group of the Jacobian ] of X is less than g. Then
X(Qp) NJ(Q) is finite. In particular, X(Q) is finite.

To make Chabauty’s theorem effective:
» Need to find a way to bound X(Q,) NJ(Q)

» Do this by constructing functions (p-adic integrals of
1-forms) on J(Qy) that vanish on J(Q) and restrict them to

X(Qp)

Jennifer Balakrishnan, University of Oxford p-adic height pairings and integral points on hyperelliptic curves



The method of Chabauty-Coleman

Recall that the map HY (]Qp, o) — HO(XQP, Q') induced by
X < ] is an isomorphism of Q,-vector spaces. Suppose w;
restricts to w. Then for Q,Q’ € X (Qp), define

Q' Q'-Ql
J w = J w].
Q 0

If the Chabauty condition is satisfied, there exists
w e HO(XQP,Ql) such that

P
J w=0
b

forall P € X(Q). Thus by studying the zeros of | w, we can find
the rational points of X.
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Generalizing this approach

Our method to study integral points on hyperelliptic curves is
in the spirit of the nonabelian Chabauty program:

» Kim’s nonabelian Chabauty: aim is to generalize the
Chabauty method, giving iterated p-adic integrals
vanishing on rational or integral points on curves

» Explicit examples have been worked out in the case of

» P1\{0,1, 00}

» Elliptic curve E \ {oo}, where rank E =0or 1

» Odd degree genus g hyperelliptic curve C \ {co}, where we
haverank J(C) =g
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Digression: nonabelian Chabauty philosophy

Let X = € \ O where € is an elliptic curve of rank 0 and
squarefree discriminant. Fix a model of the form y? = f(x), let p
be a prime of good reduction, and let

Z dx
log(z) = L E

Let
X(Zy)1 ={P € X(Zp) | log(P) = 0}.

So we have
x(zp)l = 8(Zp)tors \O.

For small p, it happens that €(Z)tors = €(Zp)tors, and hence that

X(Z) = X(Z,):.
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Extra points in classical Chabauty ("26a3")

E is: 26a3:: y"2 = x"3 + 621x + 9774

residue disks = [(®0 : 2 : 1), (0@ : 3 : 1), (1 : 1 : 1), (1 :4: 1, (2:2:1, Q2
3: 1), 3:2:1, 3:3:D]

searching in disk: @ : 2 : 1)

zero of log: (3*5 + 572 + 4%574 + 2*5°5 + 2%5°7 + 578 + 4*5°9 + 0(5710) : 2 + 3*5 +
2%5%2 + 2%573 + 4%*574 + 4*5°5 + 3%5"°6 + 3*5°7 + 578 + 3*57°9 + 0(5710) : 1 + O
(5710))

searching in disk: @ : 3 : 1)

zero of log: (3%5 + 572 + 4%5°4 + 2%5°5 + 2%5°7 + 578 + 4%*5°9 + 0(5710) : 3 + 5 +
2%¥572 + 2%5°3 + 5°6 + 577 + 3%*5°8 + 579 + 0(5710) : 1 + 0(5710))

searching in disk: 1:1: 1

zero of log: (1 + 5 + 572 + 573 + 4%5"°4 + 3%*5°5 + 3*5°6 + 578 + 579 + 0(5710) : 1 +
4%5 4+ 3%573 + 2%5°5 4+ 4%5%6 + 3%*5°8 + 4%5°9 + 0(5710) : 1 + 0(5710))

searching in disk: (1 : 4 : 1)

zero of log: (1 + 5 + 572 + 573 + 4*574 + 3%5°5 + 3*57°6 + 5°8 + 579 + 0(5710) : 4 +
4%5%2 + 573 + 4*574 + 2%5°5 + 4%57°7 + 57°8 + 0(5710) : 1 + 0(5710))

searching in disk: 2 :2: 1D

zero of log: (2 + 5 + 3*572 + 4%5°3 + 574 + 3*5°5 + 2%5°7 + 2*5°8 + 4*%5°9 + 0(5710)

2 + 3%5 + 4%5°2 + 573 + 2%5"4 + 2%5°5 + 3%5°6 + 4%5°7 + 4%5°8 + 2*5"9 + 0O

(5710) : 1 + 0(5710))

searching in disk: 2 :3: 1D

zero of log: (2 + 5 + 3*572 + 4%5°3 + 574 + 3*5°5 + 2%57°7 + 2*5°8 + 4*5°9 + 0(5710)
: 3+ 5 + 3%573 + 2%5°4 4+ 2%5°5 + 576 + 2%579 + 0(5710) : 1 + 0(5710))

searching in disk: 3 :2: 1

zero of log: (3 + 0(5710) : 2 + 3*5 + 4%573 + 4%5%4 + 4*5°5 + 4%5°6 + 4%5°7 + 4%5°8
+ 4*5°9 + 0(5710) : 1 + 0(5710))

searching in disk: 3 :3:1

zero of log: (3 + 0(5710) : 3 + 5 + 4*57°2 + 0(5710) : 1 + 0(5710))

Clearly, we are finding more than the two integral points
(3, £108).
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Nonabelian Chabauty, continued

Then we do the following: consider the double (Coleman)
integral

Z
Dy (z :J dx xdx,
b2y 2y

and define the “level 2” set
X(Zy)2 ={P € X(Z,) | log(P) =0 and D,(P) = 0}.

Does
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Nonabelian Chabauty, g =r =1 at “level 2”

OXFORD

The functions in nonabelian Chabauty are slightly different as
we fix genus and go up in rank:

» For the elliptic curve y? = x> + ax + b, (with rank 1 and
squarefree discriminant), consider

Z dx Z dx xdx
log(z) = L E, Dy(z) = L @Z

» By writing log(z) and D;(z) as p-adic power series and
fixing one integral point P, one can consider

g(z) = Dy (z) log?(P) — Dy(P) log?(2).

» Kim showed: integral points on an elliptic curve are
contained in the set of zeros of g.

Today: the analogue for hyperelliptic curves via p-adic heights
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Notation

» f € Z[x]: monic and separable of degree 2¢g +1 > 3.
» X/Q: hyperelliptic curve of genus g, given by

v =f(x)

» O € X(Q): point at infinity

» Div’(X): divisors on X of degree 0

» J/Q: Jacobian of X

» p: prime of good ordinary reduction for X

> log,: branch of the p-adic logarithm
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Special case: p-adic heights on elliptic curves

Let
» p > 5 prime
» E/Q elliptic curve with Weierstrass model y? = f(x), good
ordinary reduction at p

Take P € E(Q). If P reduces to O mod p and lies in 8% atbad ],
the cyclotomic p-adic height is given by

hy(P) = llogp <g((l;))> € Qp.
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o(P),d(P)

OXFORD

Two ingredients:

» p-adic o function o: the unique odd function
o(t) =t +--- € tZ,[[t] satisfying

x(t)+c= 4 <1dc>

w \ow

(with w the invariant differential g—; and ¢ € Z,, which can
be computed by Kedlaya’s algorithm)

» denominator function D(P): if P = (;—2, d%) ,then D(P) =d
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o as an iterated Coleman integral

Here’s one way to think of o:

d <1d6>
X+c=——|—-—
w \ow
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o as an iterated Coleman integral

Here’s one way to think of o:

wx+c)=—d <1dc>

o w
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o as an iterated Coleman integral

Here’s one way to think of o:

J <1dc)
xw+cex=—|——
o w
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o as an iterated Coleman integral

Here’s one way to think of o:

| (%)
wlxw+cw=—|—
()
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o as an iterated Coleman integral
Here’s one way to think of o:

Jwaw +cw = —log(o),

which is a double Coleman integral.
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p-adic heights on integral points

Suppose P € E(Z). Then
1
h(P) = Elog(G(P))

P
:—J w(xw + cw)
PJo

Unfortunately, this definition of p-adic height is only valid for
elliptic curves. To use p-adic heights to study integral points on
higher genus curves, we must use the definition of Coleman
and Gross.
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Coleman-Gross p-adic height pairing

The Coleman-Gross p-adic height pairing is a symmetric
bilinear pairing

h:Div’(X) x Div’(X) =+ Q,,  where

» h can be decomposed into a sum of local height pairings
h =) _h, over all finite places v of Q.

> I,(D, E) is defined for D, E € Div’(X x Q,) with disjoint
support.

» We have h(D,div(B)) =0for f € k(X)*,so his
well-defined on | x J.

» The local pairings h, can be extended (non-uniquely) such
that h(D) := h(D,D) = 5, hy(D, D) for all D € Div’(X).

» We fix a certain extension and write h,(D) := h,(D, D).
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Local height pairings

Construction of h, depends on whether v = p or v # p.
» v # p: intersection theory, as in Ph.D. thesis of Miiller ("10)

» v = p: logarithms, normalized differentials, Coleman
integration (B. - Besser "11)
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More on local heights at p

OXFORD

» Fix a decomposition
Hir(X,) = QYX,) & W, €]

where W is unit root subspace
» wp: differential of the third kind on X, such that
» Res(wp) =D,
» wp is normalized with respect to (1).
» If D and E have disjoint support, /1,(D, E) is the Coleman
integral

;Mam—LwD
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Theorem 1

OXFORD

i
. Xd P
L I— xzyx fori=0,...,9—1

> {®o, ..., D1} basis of W dual to {wy, ..., ws 1} with
respect to the cup product pairing.
> T(P) := hy(P — O) for P € X(Qp)

Theorem 1 (B.—Besser—Miiller)

We have
pg—1
T(P) = —2J Z w;@;
Oizo

» The integral is an iterated Coleman integral, normalized to
have constant term 0 with respect to a certain choice of
tangent vector at O.

» The proof uses Besser’s p-adic Arakelov theory.
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A result of Kim

Our second theorem is a generalization of the following:
Theorem (Kim, "10).

Let X = E have genus 1 and rank 1 over Q such that the given
model is minimal and all Tamagawa numbers are 1. Then

P
-[O W XWo
P 7
(I 0 wo)?
normalized as above, is constant on non-torsion P € E(Z). With
Besser, gave a simple proof of this result:
» By Theorem 1 we have —2 fg wo xwo = T(P).

» One can show that (P — O) = t(P) for non-torsion
P e E(Z).

» Both h(P — O) and (fg wp)? are quadratic forms on

E(Q)® Q.
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Theorem 2 (“Quadratic Chabauty”)

» Forie{0,...,g— 1}, letfi(P *Igwiandfi ) = [pwi
> Let gii(Dx, D1) = 3(fi(Dk)f;(Dy) + fi(Di)fi(Dy))

Theorem 2 (B-Besser-Miiller)

Suppose that the Mordell-Weil rank of J/Q is ¢ and that the f;
induce linearly independent Q,-valued functionals on

J(Q) ® Q. Then there exist constants «;; € Qp, ,j €{0,...,g—1}

such that
—- ¥ o
i)

only takes values on X(Z[1/p]) in an effectively computable
finite set T.
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Proof of Theorem 2
Sketch of proof. Set p(P) := —} .., ho(P — O), so we have

h(P—0) =hy(P—0) + ) hy(P—0) =1(P) — p(P)

UEp

If the f; induce linearly independent functionals on J(Q) ® Q,
then the set g;; is a basis of the space of Q,-valued quadratic
forms on J(Q) ® Q. Since h(P — O) is also quadratic in P, we can

write
h(P—0O) Z (Xufl oG € Qp

i)

and conclude

p(P) =1(P)— > afi(P)fi(P)

ij

20
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Finite set of values T

Proposition

There is a proper regular model X of X/Z, such that if z is p-integral,
hy(z — O,z — O) depends solely on the component of the special fiber
X; that the section in X(Z;) corresponding to z intersects.
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Algorithms

OXFORD

We have Sage code for the computation of the following
objects:

» single and double Coleman integrals
> hy(D,E)
» The main tool is Kedlaya’s algorithm — computes the action
of Frobenius and fix the global constant of integration.
We also have Magma code for the computation of:
» hy(D,E) forv #p
» theset T

» The algorithms rely on Steve Donnelly’s implementation of
the computation of regular models in Magma.
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Explicit Coleman integration

The Coleman integral is a p-adic line integral on the curve
between points.

If points P, Q are in the same residue disk, use intuition from
real-valued line integrals to compute Coleman integrals.

How do we integrate if P, Q aren’t in the same residue disk?
Coleman’s key idea: use Frobenius to move between different
residue disks (Dwork’s “analytic continuation along
Frobenius”)

Frobenius

— “Tiny"integral
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Explicit Coleman integration, continued

OXFORD

So we need to

» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and

» use this to set up a linear system to compute single and
iterated Coleman integrals

Using a few more words (and equations):

» Calculate the action of Frobenius ¢ on each basis
differential, letting

2¢—1
d)*wz- = dfz + Z Ml]w]
j=0
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Explicit Coleman integration, continued

OXFORD

So we need to

» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and

» use this to set up a linear system to compute single and
iterated Coleman integrals

Using a few more words (and equations):

» Calculate the action of Frobenius ¢ on each basis
differential, letting

2¢—1
d)*wz- = dfz + Z Ml]w]
j=0

» Compute ﬁ?,’ w;j by solving a linear system
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system
Q b (Q")
J w; = J w;
! b (P)
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system
Q' o )
J w; :J CbTw;

! P
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system
Q/ 2g—1

Q/
J w; = Jp/ dfl + Z Mljw]
j=0

/
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system
Q/ Q/ 2871 Q/
TS T
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system
Ql ngl Q/

L/ w; =fi(Q") —fiP") + j—ZO MijJP/ w;.
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Explicit Coleman integration, continued
So we need to OXFORD
» calculate the action of Frobenius on differentials (Kedlaya’s
algorithm) and
» use this to set up a linear system to compute single and
iterated Coleman integrals
Using a few more words (and equations):
» Calculate the action of Frobenius ¢ on each basis

differential, letting
29—1
d*w; = dﬁ + Z Mijw]'.
j=0

» Compute fg,/ w; by solving a linear system

Q' 2g—1 Q'
L/ w; =fi(Q") —fiP") + j—ZO MijJP/ w;.

» Eigenvalues of M are algebraic integers of norm p'/2 # 1.
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Example 1

OXFORD

» X yz = x3 — 3024x + 70416: non-minimal model of “57a1”

» X(Q) has rank 1 and trivial torsion.

» p =71is agood ordinary prime.
> Q= (60,-324) € X(Q)
» Compute

_hQ-0)
(18wo)

xo0

» Compute
T ={i-log,(2)+j-log,(3) : i €{0,2}, j € {0,2,5/2}}.

» Compute
{z € X(Q7):p(z) € Th
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Example 1, continued

» X :y? = x> —3024x + 70416
» T ={i-log,(2) +j-log,(3) : i €{0,2},j€{0,2,5/2}}

There are 16 integral points on X; we have

p p(P)
(—48,£324) | 2log,(2) + 3 log;,(3)
(—12,4+324) | 2log,(2) + 2log,(3)

(24,4108) | 2log,(2) + 2log,(3)
(33,+81)
(40, +116)
(60,+£324) | 2log,(
(132,+1404) | 2log,(
(384, +£7452) | 2log,(
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Example 2

OXFORD

» Xy =23 (x—1)2+1
» J(Q) has rank 2 and trivial torsion.

» Q1=(2,-3),0:=1(1,-1),Q3 = (0,1) € X(Q) are the only
integral points on X up to involution (computed by M.
Stoll).

» Set D1 = Q1 — O, Dy = Q; — Q3, then
» [D4] and [D;] are independent.

» p =11isa good, ordinary prime.
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Example 2, continued

» Compute

1 2
T = {0, Elogll(Z), 310g11(2)}.

» Compute the height pairings (D;, D;) and the Coleman
integrals [, wy ID]_ w; and deduce the o; from

—1

00 Ip, @wolp, wo Ipy @wolpy w1 Jp; wilp; w1 h(Dy,D1)
- 1

01 Ipy wolp, wo 3 (fD1 wo [p, w1 +[p; w1p, wj) Ip; @w1lp, @1 h(Dy,Dy)

oqq Ip, wolp, wo Ipy, wolp, w1 Ip, w1lp, w1 1t(Dp,Dy)

» Use power series expansions of T and of the double and
single Coleman integrals to give a power series describing
p in each residue disk.
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Example 2, continued

OXFORD

How can we express T as a power series on a residue disk D?

v

Construct the dual basis {@g, @1} of W.
» Fix a point Py € D.
Compute t(Pg) = hy(Po — O, Py — O) and use

T(P) = -2 Z <J w;m®; + J:O w; J:) cDi)

to give a power series describing T in the residue disk.

\4

v

The integral points P € D are solutions to

p(P) =1(P)— Y wfi(P)fi(P) € T
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Example 2, continued

OXFORD

For example, on the residue disk containing (0, 1), the only
solutions to p(P) € T modulo O(11'!) have x-coordinate
Oo(11'Y or

411+47-11249-1134+7-11*49-11648.117 +1184+4-11°4+10-111°+0(11!1)

Combine with the Mordell-Weil sieve to see that the “extra”
points are not integral. These are the recovered integral points
and their corresponding p values:

P p(P)
(2,£3) | $log,,(2)
(1,+1) | 5log;,(2)
(0,41) | £log;;(2)
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Example 3

Let X be the genus 3 hyperelliptic curve

P = (3 +x+ 1) +20° — 3% 4 dx +4).

v

The prime p = 7 is good and ordinary

J(Q) has rank 3

LetP =(-1,2),Q=(0,2),R =(-2,12),5 = (3,62), and let
L(P), (Q), (R), (S) denote their respective images under
the hyperelliptic involution .

v

v

v

A set of generators of a finite-index subgroup of the
Mordell-Weil group of the Jacobian of X is given by

{D1 =[P —0I],Dy =[S —uUQ)],D3 = [1(S) — R]}.
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Example 3, continued
We first compute global 7-adic height pairings:

W(Dy,Dy)=7+6-72+4-7+3.-7°45.7 +3.78 4+ 4.77 4+ O(7'9)

W(Dy,Dy) =4-74+3-7242-7+6 -7 +7°+7 + 7 +2.7 + 0(7')

h(Dy,D3) =2-742-774+3-7*4+2.7°4+6-7°+5.7 +6-72 + O(7'9)
W(Dp,Dy) =3-7+2-72+2-7P4+74+5.7°44.7° 47 +2.72 4+ 4.7 + 0(7'9)
W(DyyD3) =4-746-72+5-724+3.-72+2. 75474+ 6.7 + 78+ 7° + O(7\9)
W(Ds3,D3) =7 +3-72+7°4+4.7°43.7 +5.78 4+ 77 4+ 0(7'9)

We use the height data and Coleman integration to find the o;:
X =3-7'4+4-74+5-P4+7P 427 +4.7546-7+2.7 +4.7 +0(79)
g =2-7 ' +145- 72437 4+3.-72+6-75+5.-7 +4.72+7 + 0(7'9)

X =5-71464+3-746-7?+7+2.7*4+74+2.746-7 +3.-784+2.77 + O(71")
o =4+3-7+3-72+4-72+3. 74 +3.7°46.7 +6- 72 + 77 + 0(7?)
=27 1424374572444+ 7443.7°43.7 +4.784+7 + 0719

0 =7 1454374724543 7 44.7°42.7 4+ 78 4+4.7 + 07"
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Example 3, continued
With the o data and dual basis, we find the following

Z7-points having p-values in the set

57 1
T = {alog(2) +blog(31):a € {O,l, 4,4},b € {0,2}}.

disk

(3,£1)

343-742-7P4+4.7443.724+7°40
343-74+3-7242.7344.7°42.7°40
342745724+ 42.7445.7°4+4.7°4+0
3427472427 4+6-74+5-7°+7°+0
344-7244-7B 4474 4+74+6-740

3+3:-74+5-72+6-7"+4-77+0
3+3-7+7*4+7+6-7"42-774+6-7°+0

—_—— —~ —~ — — — —

(4,+1)

Jennifer Balakrishnan, University of Oxford p-adic height pairings and integral points on hyperelliptic curves




Example 3, continued

disk x(z
(0,£2) | 4-7+5-724+4-72+6-7*+6-7°+6-7°+0(7
5.746-7243-7P+4.7*46-7°+6-7°4+0

4.742-774+4-7345.7442.754+0
5.742-7246-7P4+2.7442.7743.7°40

2- 724734274 4+6-7°+4-7°40
2.746-7442.7°46-74+0
4.742.724+3.74+4.7540
5.74+4-7242.-7446-7°40

4.-74+4-7743-774+4.746-7°4+0
5.74+74+5.7443.7°42.7°4+0

(
(
(
E
2.742-7746-7P+3-74+3.7742.7+ O(
(
(
(
(
(
(

Jennifer Balakrishnan, University of Oxford p-adic height pairings and integral points on hyperelliptic curves 34



Example 3, continued

disk

(5,£2)

546-7+724+3.-724+2.7445.7°4+7°+0
54+44.-74+5.-7246-72+5.744+5.7°40
546-74+4-7242.-7342.7442.7°40
54+44.742-7243.7342.-724+7°4+0
542.-742-724+742.7445.7°4+0
54+474+2-724+734+3.744+7°4+4.7°4+0
542.74+7245.-7342.7443.7242.7°4+0
54+7+4+3-7244.74 4774740
5+6-7+6-77+6-72+6-7"+6-7°+6-7°+0
544.-74+734+4.7442.724+3.74+0
546-74+2-7245.7342.724+4.7°4+0
544.-74+4-7245.-734+4.7445.7247°40

Q’Q’QG’QEQQQQQ’—‘
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Example 3, continued

disk x(z
(6,+2) 6+3-7+4-7P+4-744+3-7°+0(7
64+74+3-72+7+3.74+7°+4.7°40(77
6+3-7+3-724+7P4+4.744+3.7°4+2.74+0(77
6+7+2-7B4+6-744+2.7°4+2.7°4+0(
6+6-7+6-724+6-74+6-71+6-75+6-7°+O(
64+5-7+5-774+6-724+6-7*+7°+4-7°+ O(

(

(

(

(

(

(

6+6-74+5-7>4+2.734+744+754+5.7°4+0
6+5-74+6-77+7P+7*+7°+3.7°+0
6+3-7+5-7746-724+4.744+2.75°42.74+0
6+7+5-72+4-P4+744+4.754+3.74+ 07
6+3-7+724+3.-7P+4.744+5.7°4+5.74+0(7
6+7+2-724+6-7P+4.7442.7°4+4.740
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Example 3, continued

disk

x(z

(2,£3)

)

2472427447444 7P+ 0O(7)
245.742.-7245.7346-744+5.7°4+6-7°+ O(77)
243.7242.7445.754+2.75+ 0(77)
245.74+3.7246-73+74+5.7°+0(77)
2474472+ 474 +4.75+0(7)
244-743-7242.7345.7543.75 4 0(77)
2474724274 45.754+2.7° 4 0(77)
244.-745.-7P4+6-744+2. 72+ 7+ 0O(77)
244774374 +4.75 4+ 74 0O(77)
245.74+6-72+7°4+5.74+0(7)
243-7244-7P4+6-744+5-72+2.7°4+0(7)
245.746-P+3.74+7P+5.7°4+0(7)
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Future work

What next?

» Further explore the connection with Kim’s nonabelian
Chabauty.

» Higher rank?

» Theorem 2 also yields a bound on the number of integral
points on X, but the bound needs computations of certain
Coleman integrals. Improve on this to get a Coleman-like
bound which only depends on simpler numerical data.

» Explicitly extend Theorems 1 and 2 to more general classes
of curves.
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