# $p$-adic height pairings and integral points on hyperelliptic curves 

Jennifer Balakrishnan<br>joint work with<br>Amnon Besser, J. Steffen Müller

University of Oxford
Warwick Number Theory Seminar Monday, November 11, 2013

## Motivation: Finding rational points

Theorem (Faltings, '83)
Let $X$ be a curve of genus $g \geqslant 2$ over $\mathbf{Q}$. The set $X(\mathbf{Q})$ is finite.

Faltings' proof does not lead to an algorithm to compute $X(\mathbf{Q})$. However:

## Chabauty's theorem

> Theorem (Chabauty, '41)
> Let $X$ be a curve of genus $g \geqslant 2$ over $\mathbf{Q}$. Suppose the rank of the Mordell-Weil group of the Jacobian J of $X$ is less than $g$. Then $X\left(\mathbf{Q}_{p}\right) \cap \overline{J(\mathbf{Q})}$ is finite. In particular, $X(\mathbf{Q})$ is finite.

To make Chabauty's theorem effective:

- Need to find a way to bound $X\left(\mathbf{Q}_{p}\right) \cap \overline{J(\mathbf{Q})}$
- Do this by constructing functions ( $p$-adic integrals of 1-forms) on $J\left(\mathbf{Q}_{p}\right)$ that vanish on $J(\mathbf{Q})$ and restrict them to $X\left(\mathbf{Q}_{p}\right)$


## The method of Chabauty-Coleman

Recall that the map $H^{0}\left(J_{\mathbf{Q}_{p}}, \Omega^{1}\right) \longrightarrow H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ induced by $X \hookrightarrow J$ is an isomorphism of $\mathbf{Q}_{p}$-vector spaces. Suppose $\omega_{J}$ restricts to $\omega$. Then for $Q, Q^{\prime} \in X\left(\mathbf{Q}_{p}\right)$, define

$$
\int_{Q}^{Q^{\prime}} \omega:=\int_{0}^{\left[Q^{\prime}-Q\right]} \omega_{J} .
$$

If the Chabauty condition is satisfied, there exists $\omega \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ such that

$$
\int_{b}^{P} \omega=0
$$

for all $P \in X(\mathbf{Q})$. Thus by studying the zeros of $\int \omega$, we can find the rational points of $X$.

## Generalizing this approach

Our method to study integral points on hyperelliptic curves is in the spirit of the nonabelian Chabauty program:

- Kim's nonabelian Chabauty: aim is to generalize the Chabauty method, giving iterated $p$-adic integrals vanishing on rational or integral points on curves
- Explicit examples have been worked out in the case of
- $\mathbf{P}^{1} \backslash\{0,1, \infty\}$
- Elliptic curve $E \backslash\{\infty\}$, where $\operatorname{rank} E=0$ or 1
- Odd degree genus $g$ hyperelliptic curve $C \backslash\{\infty\}$, where we have $\operatorname{rank} J(C)=g$


## Digression: nonabelian Chabauty philosophy

Let $X=\mathcal{E} \backslash O$ where $\mathcal{E}$ is an elliptic curve of rank 0 and squarefree discriminant. Fix a model of the form $y^{2}=f(x)$, let $p$ be a prime of good reduction, and let

$$
\log (z):=\int_{b}^{z} \frac{d x}{2 y}
$$

Let

$$
X\left(\mathbf{Z}_{p}\right)_{1}=\left\{P \in X\left(\mathbf{Z}_{p}\right) \mid \log (P)=0\right\} .
$$

So we have

$$
X\left(\mathbf{Z}_{p}\right)_{1}=\mathcal{E}\left(\mathbf{Z}_{p}\right)_{\text {tors }} \backslash O
$$

For small $p$, it happens that $\mathcal{E}(\mathbf{Z})_{\text {tors }}=\mathcal{E}\left(\mathbf{Z}_{p}\right)_{\text {tors }}$, and hence that

$$
X(\mathbf{Z})=X\left(\mathbf{Z}_{p}\right)_{1} .
$$

## Extra points in classical Chabauty ("26a3")

```
E is: 26a3:: y^2 = x^3 + 621x + 9774
```

```
residue disks = [(0 : 2 : 1), (0 : 3 : 1), (1 : 1 : 1), (1 : 4 : 1), (2 : 2 : 1), (2
    : 3 : 1), (3 : 2 : 1), (3 : 3 : 1)]
searching in disk: (0 : 2 : 1)
zero of log: (3*5 + 5^2 + 4*5^4 + 2*5^5 + 2*5^7 + 5^8 + 4*5^9 + 0(5^10): 2 + 3*5 +
    2*5^2+2*5^3+4*5^4+4*5^5 + 3*5^6 + 3*5^7 + 5 5^ 8 + 3*5^9 + 0 (5^10): 1 + 0
    (5^10))
searching in disk: (0 : 3 : 1)
zero of log: ( 3*5 + 5^2 + 4*5^4 + 2*5^5 + 2*5^7 + 5^8 + 4*5^9 + 0(5^10): 3 + 5 +
    2*5^2+2*5^3+5^6 + 5^7 + 3*5^8 + 5^9 + 0(5^10): 1 + 0(5^10))
searching in disk: (1 : 1 : 1)
zero of log: (1 + 5 + 5^2 + 5^3 + 4*5^4 + 3*5^5 + 3*5^6 + 5^8 8 + 5^9 + 0(5^10): 1 +
    4*5 + 3*5^3 + 2*5^5 + 4*5^6 + 3*5^8 + 4*5^9 + 0(5^10): 1 + 0(5^10))
searching in disk: (1 : 4 : 1)
zero of log: (1 + 5 + 5^2 + 5^3 + 4* 5^4 + 3* 5^5 + 3*5^6 + 5^8 + 5^9 + 0(5^10) : 4 +
    4*5^2 + 5^3 + 4* 5^4 + 2* 5^5 + 4* 5^7 + 5^ 8 + 0 (5^10): 1 + 0(5^10))
searching in disk: (2 : 2 : 1)
zero of log: (2 + 5 + 3*5^2 + 4*5^3 + 5^4 + 3*5^5 + 2*5^7 + 2*5^8 + 4*5^9 + 0(5^10)
    : 2 + 3*5 + 4*5^2 + 5^3 + 2*5^4 + 2*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + 2*5^9 + 0
    (5^10) : 1 + 0(5^10))
searching in disk: (2 : 3 : 1)
zero of log: (2 + 5 + 3*5^2 + 4*5^3 + 5^4 + 3*5^5 + 2*5^7 + 2*5^8 + 4*5^9 + 0(5^10)
    : 3 + 5 + 3*5^3 + 2*5^4 + 2* 5^5 + 5^6 + 2*5^ 9 + 0(5^10): 1 + 0(5^10))
searching in disk: (3 : 2 : 1)
zero of log: (3 + 0(5^10) : 2 + 3*5 + 4* 5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8
    +4*5^9 + 0(5^10): 1 + 0(5^10))
searching in disk: (3 : 3 : 1)
zero of log: (3+0(5^10): 3 + 5 + 4*5^2 + 0(5^10): 1 + 0(5^10))
```

Clearly, we are finding more than the two integral points $(3, \pm 108)$.

## Nonabelian Chabauty, continued

Then we do the following: consider the double (Coleman) integral

$$
D_{2}(z)=\int_{b}^{z} \frac{d x}{2 y} \frac{x d x}{2 y}
$$

and define the "level 2" set

$$
X\left(\mathbf{Z}_{p}\right)_{2}=\left\{P \in X\left(\mathbf{Z}_{p}\right) \mid \log (P)=0 \text { and } D_{2}(P)=0\right\} .
$$

Does

$$
X(\mathbf{Z})=X\left(\mathbf{Z}_{p}\right)_{2} ?
$$

## Nonabelian Chabauty, $g=r=1$ at "level 2"

The functions in nonabelian Chabauty are slightly different as we fix genus and go up in rank:

- For the elliptic curve $y^{2}=x^{3}+a x+b$, (with rank 1 and squarefree discriminant), consider

$$
\log (z):=\int_{b}^{z} \frac{d x}{2 y}, \quad D_{2}(z)=\int_{b}^{z} \frac{d x}{2 y} \frac{x d x}{2 y}
$$

- By writing $\log (z)$ and $D_{2}(z)$ as $p$-adic power series and fixing one integral point $P$, one can consider

$$
g(z):=D_{2}(z) \log ^{2}(P)-D_{2}(P) \log ^{2}(z)
$$

- Kim showed: integral points on an elliptic curve are contained in the set of zeros of $g$.
Today: the analogue for hyperelliptic curves via $p$-adic heights


## Notation

- $f \in \mathbf{Z}[x]$ : monic and separable of degree $2 g+1 \geqslant 3$.
- X/Q: hyperelliptic curve of genus $g$, given by

$$
y^{2}=f(x)
$$

- $O \in X(\mathbf{Q})$ : point at infinity
- $\operatorname{Div}^{0}(X)$ : divisors on $X$ of degree 0
- J/Q: Jacobian of $X$
- p: prime of good ordinary reduction for $X$
- $\log _{p}$ : branch of the $p$-adic logarithm


## Special case: $p$-adic heights on elliptic curves

Let

- $p \geqslant 5$ prime
- $E / \mathbf{Q}$ elliptic curve with Weierstrass model $y^{2}=f(x)$, good ordinary reduction at $p$

Take $P \in E(\mathbf{Q})$. If $P$ reduces to $O \bmod p$ and lies in $\varepsilon_{\mathbf{F}_{l}}^{0}$ at bad $l$, the cyclotomic $p$-adic height is given by

$$
h_{p}(P)=\frac{1}{p} \log _{p}\left(\frac{\sigma(P)}{D(P)}\right) \in \mathbf{Q}_{p}
$$

## $\sigma(P), d(P)$

Two ingredients:

- $p$-adic $\sigma$ function $\sigma$ : the unique odd function $\sigma(t)=t+\cdots \in t \mathbf{Z}_{p}[[t]]$ satisfying

$$
x(t)+c=-\frac{d}{\omega}\left(\frac{1}{\sigma} \frac{d \sigma}{\omega}\right)
$$

(with $\omega$ the invariant differential $\frac{d x}{2 y}$ and $c \in \mathbf{Z}_{p}$, which can be computed by Kedlaya's algorithm)

- denominator function $D(P)$ : if $P=\left(\frac{a}{d^{2}}, \frac{b}{d^{3}}\right)$, then $D(P)=d$


## $\sigma$ as an iterated Coleman integral

Here's one way to think of $\sigma$ :

$$
x+c=-\frac{d}{\omega}\left(\frac{1}{\sigma} \frac{d \sigma}{\omega}\right)
$$

## $\sigma$ as an iterated Coleman integral

Here's one way to think of $\sigma$ :

$$
\omega(x+c)=-d\left(\frac{1}{\sigma} \frac{d \sigma}{\omega}\right)
$$

## $\sigma$ as an iterated Coleman integral

Here's one way to think of $\sigma$ :

$$
\int x \omega+c x=-\left(\frac{1}{\sigma} \frac{d \sigma}{\omega}\right)
$$

## $\sigma$ as an iterated Coleman integral

Here's one way to think of $\sigma$ :

$$
\omega \int x \omega+c \omega=-\left(\frac{d \sigma}{\sigma}\right)
$$

## $\sigma$ as an iterated Coleman integral

Here's one way to think of $\sigma$ :

$$
\int \omega \int x \omega+c \omega=-\log (\sigma)
$$

which is a double Coleman integral.

## $p$-adic heights on integral points

Suppose $P \in E(\mathbf{Z})$. Then

$$
\begin{aligned}
h(P) & =\frac{1}{p} \log (\sigma(P)) \\
& =-\frac{1}{p} \int_{b}^{P} \omega(x \omega+c \omega)
\end{aligned}
$$

Unfortunately, this definition of $p$-adic height is only valid for elliptic curves. To use $p$-adic heights to study integral points on higher genus curves, we must use the definition of Coleman and Gross.

## Coleman-Gross $p$-adic height pairing

The Coleman-Gross $p$-adic height pairing is a symmetric bilinear pairing

$$
h: \operatorname{Div}^{0}(X) \times \operatorname{Div}^{0}(X) \rightarrow \mathbf{Q}_{p}, \quad \text { where }
$$

- $h$ can be decomposed into a sum of local height pairings $h=\sum_{v} h_{v}$ over all finite places $v$ of $\mathbf{Q}$.
- $h_{v}(D, E)$ is defined for $D, E \in \operatorname{Div}^{0}\left(X \times \mathbf{Q}_{v}\right)$ with disjoint support.
- We have $h(D, \operatorname{div}(\beta))=0$ for $\beta \in k(X)^{\times}$, so $h$ is well-defined on $J \times J$.
- The local pairings $h_{v}$ can be extended (non-uniquely) such that $h(D):=h(D, D)=\sum_{v} h_{v}(D, D)$ for all $D \in \operatorname{Div}^{0}(X)$.
- We fix a certain extension and write $h_{v}(D):=h_{v}(D, D)$.


## Local height pairings

Construction of $h_{v}$ depends on whether $v=p$ or $v \neq p$.

- $v \neq p$ : intersection theory, as in Ph.D. thesis of Müller ('10)
- $v=p$ : logarithms, normalized differentials, Coleman integration (B. - Besser '11)


## More on local heights at $p$

- $X_{p}:=X \times \mathbf{Q}_{p}$
- Fix a decomposition

$$
\begin{equation*}
H_{\mathrm{dR}}^{1}\left(X_{p}\right)=\Omega^{1}\left(X_{p}\right) \oplus W, \tag{1}
\end{equation*}
$$

where $W$ is unit root subspace

- $\omega_{D}$ : differential of the third kind on $X_{p}$ such that
- $\operatorname{Res}\left(\omega_{D}\right)=D$,
- $\omega_{D}$ is normalized with respect to (1).
- If $D$ and $E$ have disjoint support, $h_{p}(D, E)$ is the Coleman integral

$$
h_{p}(D, E)=\int_{E} \omega_{D}
$$

## Theorem 1

- $\omega_{i}:=\frac{x^{i} d x}{2 y}$ for $i=0, \ldots, g-1$
- $\left\{\bar{\omega}_{0}, \ldots, \bar{\omega}_{g-1}\right\}$ : basis of $W$ dual to $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\}$ with respect to the cup product pairing.
- $\tau(P):=h_{p}(P-O)$ for $P \in X\left(\mathbf{Q}_{p}\right)$


## Theorem 1 (B.-Besser-Müller)

We have

$$
\tau(P)=-2 \int_{O}^{P} \sum_{i=0}^{g-1} \omega_{i} \bar{\omega}_{i}
$$

- The integral is an iterated Coleman integral, normalized to have constant term 0 with respect to a certain choice of tangent vector at $O$.
- The proof uses Besser's $p$-adic Arakelov theory.


## A result of Kim

Our second theorem is a generalization of the following: Theorem (Kim, '10).
Let $X=E$ have genus 1 and rank 1 over $\mathbf{Q}$ such that the given model is minimal and all Tamagawa numbers are 1. Then

$$
\frac{\int_{O}^{P} \omega_{0} x \omega_{0}}{\left(\int_{O}^{P} \omega_{0}\right)^{2}}
$$

normalized as above, is constant on non-torsion $P \in E(\mathbf{Z})$. With Besser, gave a simple proof of this result:

- By Theorem 1 we have $-2 \int_{O}^{P} \omega_{0} x \omega_{0}=\tau(P)$.
- One can show that $h(P-O)=\tau(P)$ for non-torsion $P \in E(\mathbf{Z})$.
- Both $h(P-O)$ and $\left(\int_{O}^{P} \omega_{0}\right)^{2}$ are quadratic forms on $E(\mathbf{Q}) \otimes \mathbf{Q}$.


## Theorem 2 ("Quadratic Chabauty")

- For $i \in\{0, \ldots, g-1\}$, let $f_{i}(P)=\int_{O}^{P} \omega_{i}$ and $f_{i}(D)=\int_{D} \omega_{i}$
- Let $g_{i j}\left(D_{k}, D_{l}\right)=\frac{1}{2}\left(f_{i}\left(D_{k}\right) f_{j}\left(D_{l}\right)+f_{j}\left(D_{k}\right) f_{i}\left(D_{l}\right)\right)$


## Theorem 2 (B-Besser-Müller)

Suppose that the Mordell-Weil rank of $J / \mathbf{Q}$ is $g$ and that the $f_{i}$ induce linearly independent $\mathbf{Q}_{p}$-valued functionals on $J(\mathbf{Q}) \otimes \mathbf{Q}$. Then there exist constants $\alpha_{i j} \in \mathbf{Q}_{p}, i, j \in\{0, \ldots, g-1\}$ such that

$$
\rho:=\tau-\sum_{i \leqslant j} \alpha_{i j} g_{i j}
$$

only takes values on $X(\mathbf{Z}[1 / p])$ in an effectively computable finite set $T$.

## Proof of Theorem 2

Sketch of proof. Set $\rho(P):=-\sum_{v \neq p} h_{v}(P-O)$, so we have

$$
h(P-O)=h_{p}(P-O)+\sum_{v \neq p} h_{v}(P-O)=\tau(P)-\rho(P)
$$

If the $f_{i}$ induce linearly independent functionals on $J(\mathbf{Q}) \otimes \mathbf{Q}$, then the set $g_{i j}$ is a basis of the space of $\mathbf{Q}_{p}$-valued quadratic forms on $J(\mathbf{Q}) \otimes \mathbf{Q}$. Since $h(P-O)$ is also quadratic in $P$, we can write

$$
h(P-O)=\sum_{i \leqslant j} \alpha_{i j} f_{i}(P) f_{j}(P), \quad \alpha_{i j} \in \mathbf{Q}_{p}
$$

and conclude

$$
\rho(P)=\tau(P)-\sum_{i \leqslant j} \alpha_{i j} f_{i}(P) f_{j}(P)
$$

## Finite set of values $T$

## Proposition

There is a proper regular model $X$ of $X / \mathbf{Z}_{q}$ such that if $z$ is $p$-integral, $h_{q}(z-O, z-O)$ depends solely on the component of the special fiber $X_{q}$ that the section in $X\left(\mathbf{Z}_{q}\right)$ corresponding to $z$ intersects.

## Algorithms

We have Sage code for the computation of the following objects:

- single and double Coleman integrals
- $h_{p}(D, E)$
- The main tool is Kedlaya's algorithm - computes the action of Frobenius and fix the global constant of integration.
We also have Magma code for the computation of:
- $h_{v}(D, E)$ for $v \neq p$
- the set $T$
- The algorithms rely on Steve Donnelly's implementation of the computation of regular models in Magma.


## Explicit Coleman integration

The Coleman integral is a $p$-adic line integral on the curve between points.

If points $P, Q$ are in the same residue disk, use intuition from real-valued line integrals to compute Coleman integrals.

How do we integrate if $P, Q$ aren't in the same residue disk?
Coleman's key idea: use Frobenius to move between different residue disks (Dwork's "analytic continuation along Frobenius")


## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system


## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=\int_{\phi\left(P^{\prime}\right)}^{\phi\left(Q^{\prime}\right)} \omega_{i}
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=\int_{P^{\prime}}^{Q^{\prime}} \phi^{*} \omega_{i}
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=\int_{P^{\prime}}^{Q^{\prime}}\left(d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}\right)
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=\int_{P^{\prime}}^{Q^{\prime}} d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \int_{P^{\prime}}^{Q^{\prime}} \omega_{j}
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=f_{i}\left(Q^{\prime}\right)-f_{i}\left(P^{\prime}\right)+\sum_{j=0}^{2 g-1} M_{i j} \int_{P^{\prime}}^{Q^{\prime}} \omega_{j} .
$$

## Explicit Coleman integration, continued

So we need to

- calculate the action of Frobenius on differentials (Kedlaya's algorithm) and
- use this to set up a linear system to compute single and iterated Coleman integrals
Using a few more words (and equations):
- Calculate the action of Frobenius $\phi$ on each basis differential, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{i j} \omega_{j}
$$

- Compute $\int_{P^{\prime}}^{Q^{\prime}} \omega_{j}$ by solving a linear system

$$
\int_{P^{\prime}}^{Q^{\prime}} \omega_{i}=f_{i}\left(Q^{\prime}\right)-f_{i}\left(P^{\prime}\right)+\sum_{j=0}^{2 g-1} M_{i j} \int_{P^{\prime}}^{Q^{\prime}} \omega_{j} .
$$

- Eigenvalues of $M$ are algebraic integers of norm $p^{1 / 2} \neq 1$.


## Example 1

- $X: y^{2}=x^{3}-3024 x+70416:$ non-minimal model of "57a1"
- $X(\mathbf{Q})$ has rank 1 and trivial torsion.
- $p=7$ is a good ordinary prime.
- $Q=(60,-324) \in X(\mathbf{Q})$
- Compute

$$
\alpha_{00}=\frac{h(Q-O)}{\left(\int_{O}^{Q} \omega_{0}\right)^{2}}
$$

- Compute

$$
T=\left\{i \cdot \log _{7}(2)+j \cdot \log _{7}(3): i \in\{0,2\}, j \in\{0,2,5 / 2\}\right\} .
$$

- Compute

$$
\left\{z \in X\left(\mathbf{Q}_{7}\right): \rho(z) \in T\right\}
$$

## Example 1, continued

- $\mathrm{X}: y^{2}=x^{3}-3024 x+70416$
- $T=\left\{i \cdot \log _{7}(2)+j \cdot \log _{7}(3): i \in\{0,2\}, j \in\{0,2,5 / 2\}\right\}$

There are 16 integral points on $X$; we have

| $P$ | $\rho(P)$ |
| :---: | :---: |
| $(-48, \pm 324)$ | $2 \log _{7}(2)+\frac{5}{2} \log _{7}(3)$ |
| $(-12, \pm 324)$ | $2 \log _{7}(2)+2 \log _{7}(3)$ |
| $(24, \pm 108)$ | $2 \log _{7}(2)+2 \log _{7}(3)$ |
| $(33, \pm 81)$ | $\frac{5}{2} \log _{7}(3)$ |
| $(40, \pm 116)$ | $2 \log _{7}(2)$ |
| $(60, \pm 324)$ | $2 \log _{7}(2)+\frac{5}{2} \log _{7}(3)$ |
| $(132, \pm 1404)$ | $2 \log _{7}(2)+2 \log _{7}(3)$ |
| $(384, \pm 7452)$ | $2 \log _{7}(2)+\frac{5}{2} \log _{7}(3)$ |

## Example 2

- $X: y^{2}=x^{3}(x-1)^{2}+1$
- $J(\mathbf{Q})$ has rank 2 and trivial torsion.
- $Q_{1}=(2,-3), Q_{2}=(1,-1), Q_{3}=(0,1) \in X(\mathbf{Q})$ are the only integral points on $X$ up to involution (computed by M. Stoll).
- Set $D_{1}=Q_{1}-O, D_{2}=Q_{2}-Q_{3}$, then
- $\left[D_{1}\right]$ and $\left[D_{2}\right]$ are independent.
- $p=11$ is a good, ordinary prime.


## Example 2, continued

- Compute

$$
T=\left\{0, \frac{1}{2} \log _{11}(2), \frac{2}{3} \log _{11}(2)\right\} .
$$

- Compute the height pairings $h\left(D_{i}, D_{j}\right)$ and the Coleman integrals $\int_{D_{i}} \omega_{k} \int_{D_{j}} \omega_{l}$ and deduce the $\alpha_{i j}$ from

$$
\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{11}
\end{array}\right)=\left(\begin{array}{rrr}
\int_{D_{1}} \omega_{0} \int_{D_{1}} \omega_{0} & \int_{D_{1}} \omega_{0} \int_{D_{1}} \omega_{1} & \int_{D_{1}} \omega_{1} \int_{D_{1}} \omega_{1} \\
\int_{D_{1}} \omega_{0} \int_{D_{2}} \omega_{0} & \frac{1}{2}\left(\int_{D_{1}} \omega_{0} \int_{D_{2}} \omega_{1}+\int_{D_{1}} \omega_{1} \int_{D_{2}} \omega_{0}\right) & \int_{D_{1}} \omega_{1} \int_{D_{2}} \omega_{1} \\
\int_{D_{2}} \omega_{0} \int_{D_{2}} \omega_{0} & \int_{D_{2}} \omega_{0} \int_{D_{2}} \omega_{1} & \int_{D_{2}} \omega_{1} \int_{D_{2}} \omega_{1}
\end{array}\right)^{-1}\left(\begin{array}{l}
h\left(D_{1}, D_{1}\right) \\
h\left(D_{1}, D_{2}\right) \\
h\left(D_{2}, D_{2}\right)
\end{array}\right)
$$

- Use power series expansions of $\tau$ and of the double and single Coleman integrals to give a power series describing $\rho$ in each residue disk.


## Example 2, continued

How can we express $\tau$ as a power series on a residue disk $\mathcal{D}$ ?

- Construct the dual basis $\left\{\bar{\omega}_{0}, \bar{\omega}_{1}\right\}$ of $W$.
- Fix a point $P_{0} \in \mathcal{D}$.
- Compute $\tau\left(P_{0}\right)=h_{p}\left(P_{0}-O, P_{0}-O\right)$ and use

$$
\tau(P)=\tau\left(P_{0}\right)-2 \sum_{i=0}^{g-1}\left(\int_{P_{0}}^{P} \omega_{i} \bar{\omega}_{i}+\int_{P_{0}}^{P} \omega_{i} \int_{O}^{P_{0}} \bar{\omega}_{i}\right)
$$

to give a power series describing $\tau$ in the residue disk.

- The integral points $P \in \mathcal{D}$ are solutions to

$$
\rho(P)=\tau(P)-\sum \alpha_{i j} f_{i}(P) f_{j}(P) \in T .
$$

## Example 2, continued

For example, on the residue disk containing $(0,1)$, the only solutions to $\rho(P) \in T$ modulo $O\left(11^{11}\right)$ have $x$-coordinate $O\left(11^{11}\right)$ or
$4 \cdot 11+7 \cdot 11^{2}+9 \cdot 11^{3}+7 \cdot 11^{4}+9 \cdot 11^{6}+8 \cdot 11^{7}+11^{8}+4 \cdot 11^{9}+10 \cdot 11^{10}+O\left(11^{11}\right)$
Combine with the Mordell-Weil sieve to see that the "extra" points are not integral. These are the recovered integral points and their corresponding $\rho$ values:

| $P$ | $\rho(P)$ |
| :---: | :---: |
| $(2, \pm 3)$ | $\frac{2}{3} \log _{11}(2)$ |
| $(1, \pm 1)$ | $\frac{1}{2} \log _{11}(2)$ |
| $(0, \pm 1)$ | $\frac{2}{3} \log _{11}(2)$ |

## Example 3

Let $X$ be the genus 3 hyperelliptic curve

$$
y^{2}=\left(x^{3}+x+1\right)\left(x^{4}+2 x^{3}-3 x^{2}+4 x+4\right)
$$

- The prime $p=7$ is good and ordinary
- $J(\mathbf{Q})$ has rank 3
- Let $P=(-1,2), Q=(0,2), R=(-2,12), S=(3,62)$, and let $\iota(P), \iota(Q), \iota(R), \iota(S)$ denote their respective images under the hyperelliptic involution $t$.
- A set of generators of a finite-index subgroup of the Mordell-Weil group of the Jacobian of $X$ is given by

$$
\left\{D_{1}=[P-O], D_{2}=[S-\iota(Q)], D_{3}=[\iota(S)-R]\right\}
$$

## Example 3, continued

We first compute global 7-adic height pairings:

$$
\begin{aligned}
& h\left(D_{1}, D_{1}\right)=7+6 \cdot 7^{2}+4 \cdot 7^{4}+3 \cdot 7^{6}+5 \cdot 7^{7}+3 \cdot 7^{8}+4 \cdot 7^{9}+O\left(7^{10}\right) \\
& h\left(D_{1}, D_{2}\right)=4 \cdot 7+3 \cdot 7^{2}+2 \cdot 7^{4}+6 \cdot 7^{5}+7^{6}+7^{7}+7^{8}+2 \cdot 7^{9}+O\left(7^{10}\right) \\
& h\left(D_{1}, D_{3}\right)=2 \cdot 7+2 \cdot 7^{2}+3 \cdot 7^{4}+2 \cdot 7^{5}+6 \cdot 7^{6}+5 \cdot 7^{7}+6 \cdot 7^{8}+O\left(7^{10}\right) \\
& h\left(D_{2}, D_{2}\right)=3 \cdot 7+2 \cdot 7^{2}+2 \cdot 7^{3}+7^{4}+5 \cdot 7^{5}+4 \cdot 7^{6}+7^{7}+2 \cdot 7^{8}+4 \cdot 7^{9}+O\left(7^{10}\right) \\
& h\left(D_{2}, D_{3}\right)=4 \cdot 7+6 \cdot 7^{2}+5 \cdot 7^{3}+3 \cdot 7^{4}+2 \cdot 7^{5}+7^{6}+6 \cdot 7^{7}+7^{8}+7^{9}+O\left(7^{10}\right) \\
& h\left(D_{3}, D_{3}\right)=7^{2}+3 \cdot 7^{3}+7^{5}+4 \cdot 7^{6}+3 \cdot 7^{7}+5 \cdot 7^{8}+7^{9}+O\left(7^{10}\right)
\end{aligned}
$$

We use the height data and Coleman integration to find the $\alpha_{i j}$ :

$$
\begin{aligned}
& \alpha_{00}=3 \cdot 7^{-1}+4 \cdot 7+5 \cdot 7^{2}+7^{3}+2 \cdot 7^{4}+4 \cdot 7^{5}+6 \cdot 7^{6}+2 \cdot 7^{7}+4 \cdot 7^{9}+O\left(7^{10}\right) \\
& \alpha_{01}=2 \cdot 7^{-1}+1+5 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+6 \cdot 7^{5}+5 \cdot 7^{7}+4 \cdot 7^{8}+7^{9}+O\left(7^{10}\right) \\
& \alpha_{02}=5 \cdot 7^{-1}+6+3 \cdot 7+6 \cdot 7^{2}+7^{3}+2 \cdot 7^{4}+7^{5}+2 \cdot 7^{6}+6 \cdot 7^{7}+3 \cdot 7^{8}+2 \cdot 7^{9}+O\left(7^{10}\right) \\
& \alpha_{11}=4+3 \cdot 7+3 \cdot 7^{2}+4 \cdot 7^{3}+3 \cdot 7^{4}+3 \cdot 7^{6}+6 \cdot 7^{7}+6 \cdot 7^{8}+7^{9}+O\left(7^{10}\right) \\
& \alpha_{12}=2 \cdot 7^{-1}+2+3 \cdot 7+5 \cdot 7^{2}+4 \cdot 7^{3}+7^{4}+3 \cdot 7^{6}+3 \cdot 7^{7}+4 \cdot 7^{8}+7^{9}+O\left(7^{10}\right) \\
& \alpha_{22}=7^{-1}+5+3 \cdot 7+7^{2}+5 \cdot 7^{3}+3 \cdot 7^{4}+4 \cdot 7^{6}+2 \cdot 7^{7}+7^{8}+4 \cdot 7^{9}+O\left(7^{10}\right)
\end{aligned}
$$

## Example 3, continued

With the $\alpha_{i j}$ data and dual basis, we find the following
$\mathbf{Z}_{7}$-points having $\rho$-values in the set

$$
T=\left\{a \log (2)+b \log (31): a \in\left\{0,1, \frac{5}{4}, \frac{7}{4}\right\}, b \in\left\{0, \frac{1}{2}\right\}\right\} .
$$

| disk | $x(z)$ |
| :---: | ---: | ---: |
| $\overline{(3, \pm 1)}$ | $3+3 \cdot 7+2 \cdot 7^{3}+4 \cdot 7^{4}+3 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $3+3 \cdot 7+3 \cdot 7^{2}+2 \cdot 7^{3}+4 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $3+2 \cdot 7+5 \cdot 7^{2}+7^{3}+2 \cdot 7^{4}+5 \cdot 7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $3+2 \cdot 7+7^{2}+2 \cdot 7^{3}+6 \cdot 7^{4}+5 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $3+4 \cdot 7^{2}+4 \cdot 7^{3}+4 \cdot 7^{4}+7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $3+\mathbf{O}\left(7^{7}\right)$ |
|  | $3+3 \cdot 7+5 \cdot 7^{2}+6 \cdot 7^{4}+4 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $3+3 \cdot 7+7^{2}+7^{3}+6 \cdot 7^{4}+2 \cdot 7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $\overline{(4, \pm 1)}$ |  |

## Example 3, continued

| disk | $x(z)$ |
| :---: | ---: |
| $(0, \pm 2)$ | $4 \cdot 7+5 \cdot 7^{2}+4 \cdot 7^{3}+6 \cdot 7^{4}+6 \cdot 7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5 \cdot 7+6 \cdot 7^{2}+3 \cdot 7^{3}+4 \cdot 7^{4}+6 \cdot 7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $4 \cdot 7+2 \cdot 7^{2}+4 \cdot 7^{3}+5 \cdot 7^{4}+2 \cdot 7^{5}+O\left(7^{7}\right)$ |  |
|  | $5 \cdot 7+2 \cdot 7^{2}+6 \cdot 7^{3}+2 \cdot 7^{4}+2 \cdot 7^{5}+3 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $\mathbf{O}\left(7^{7}\right)$ |  |
|  | $2 \cdot 7+2 \cdot 7^{2}+6 \cdot 7^{3}+3 \cdot 7^{4}+3 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $2 \cdot 7^{2}+7^{3}+2 \cdot 7^{4}+6 \cdot 7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |  |
| $2 \cdot 7+6 \cdot 7^{4}+2 \cdot 7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |  |
| $4 \cdot 7+2 \cdot 7^{3}+3 \cdot 7^{4}+4 \cdot 7^{5}+O\left(7^{7}\right)$ |  |
|  | $5 \cdot 7+4 \cdot 7^{2}+2 \cdot 7^{4}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $4 \cdot 7+4 \cdot 7^{2}+3 \cdot 7^{3}+4 \cdot 7^{4}+6 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $5 \cdot 7+7^{3}+5 \cdot 7^{4}+3 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |

## Example 3, continued

| disk | $x(z)$ |
| :---: | ---: |
| $(5, \pm 2)$ | $5+6 \cdot 7+7^{2}+3 \cdot 7^{3}+2 \cdot 7^{4}+5 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $5+4 \cdot 7+5 \cdot 7^{2}+6 \cdot 7^{3}+5 \cdot 7^{4}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+6 \cdot 7+4 \cdot 7^{2}+2 \cdot 7^{3}+2 \cdot 7^{4}+2 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $5+4 \cdot 7+2 \cdot 7^{2}+3 \cdot 7^{3}+2 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $5+2 \cdot 7+2 \cdot 7^{2}+7^{3}+2 \cdot 7^{4}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+7+2 \cdot 7^{2}+7^{3}+3 \cdot 7^{4}+7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+2 \cdot 7+7^{2}+5 \cdot 7^{3}+2 \cdot 7^{4}+3 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+7+3 \cdot 7^{2}+4 \cdot 7^{4}+7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $5+\mathbf{6} \cdot \mathbf{7 + 6 \cdot \mathbf { 7 } ^ { 2 } + \mathbf { 6 } \cdot 7 ^ { 3 } + \mathbf { 6 } \cdot 7 ^ { 4 } + \mathbf { 6 } \cdot \mathbf { 7 } ^ { 5 } + \mathbf { 6 } \cdot 7 ^ { 6 } + \mathbf { O } ( 7 ^ { 7 } )}$ |
|  | $5+4 \cdot 7+7^{3}+4 \cdot 7^{4}+2 \cdot 7^{5}+3 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+6 \cdot 7+2 \cdot 7^{2}+5 \cdot 7^{3}+2 \cdot 7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $5+4 \cdot 7+4 \cdot 7^{2}+5 \cdot 7^{3}+4 \cdot 7^{4}+5 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |

## Example 3, continued

| disk | $x(z)$ |
| :---: | ---: |
| $\overline{(6, \pm 2)}$ | $6+3 \cdot 7+4 \cdot 7^{3}+4 \cdot 7^{4}+3 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $6+7+3 \cdot 7^{2}+7^{3}+3 \cdot 7^{4}+7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+3 \cdot 7+3 \cdot 7^{2}+7^{3}+4 \cdot 7^{4}+3 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+7+2 \cdot 7^{3}+6 \cdot 7^{4}+2 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $\mathbf{6 + 6 \cdot 7 + 6 \cdot 7 ^ { 2 } + \mathbf { 6 } \cdot 7 ^ { 3 } + \mathbf { 6 } \cdot 7 ^ { 4 } + \mathbf { 6 } \cdot 7 ^ { 5 } + \mathbf { 6 } \cdot 7 ^ { 6 } + \mathbf { O } ( 7 ^ { 7 } )}$ |
|  | $6+5 \cdot 7+5 \cdot 7^{2}+6 \cdot 7^{3}+6 \cdot 7^{4}+7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+6 \cdot 7+5 \cdot 7^{2}+2 \cdot 7^{3}+7^{4}+7^{5}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+5 \cdot 7+6 \cdot 7^{2}+7^{3}+7^{4}+7^{5}+3 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+3 \cdot 7+5 \cdot 7^{2}+6 \cdot 7^{3}+4 \cdot 7^{4}+2 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+7+5 \cdot 7^{2}+4 \cdot 7^{3}+7^{4}+4 \cdot 7^{5}+3 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+3 \cdot 7+7^{2}+3 \cdot 7^{3}+4 \cdot 7^{4}+5 \cdot 7^{5}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $6+7+2 \cdot 7^{2}+6 \cdot 7^{3}+4 \cdot 7^{4}+2 \cdot 7^{5}+4 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  |  |

## Example 3, continued

| disk | $x(z)$ |
| :---: | ---: |
| $(2, \pm 3)$ | $2+7^{2}+2 \cdot 7^{3}+4 \cdot 7^{4}+4 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $2+5 \cdot 7+2 \cdot 7^{2}+5 \cdot 7^{3}+6 \cdot 7^{4}+5 \cdot 7^{5}+6 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $2+3 \cdot 7^{3}+2 \cdot 7^{4}+5 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |  |
|  | $2+5 \cdot 7+3 \cdot 7^{2}+6 \cdot 7^{3}+7^{4}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |
|  | $2+7+4 \cdot 7^{2}+7^{3}+7^{4}+4 \cdot 7^{5}+O\left(7^{7}\right)$ |
|  | $2+4 \cdot 7+3 \cdot 7^{2}+2 \cdot 7^{3}+5 \cdot 7^{5}+3 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $2+7+7^{3}+2 \cdot 7^{4}+5 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |  |
|  | $2+4 \cdot 7+5 \cdot 7^{3}+6 \cdot 7^{4}+2 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
|  | $2+4 \cdot 7^{2}+3 \cdot 7^{4}+4 \cdot 7^{5}+7^{6}+O\left(7^{7}\right)$ |
| $2+5 \cdot 7+6 \cdot 7^{2}+7^{5}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |  |
|  | $2+3 \cdot 7^{2}+4 \cdot 7^{3}+6 \cdot 7^{4}+5 \cdot 7^{5}+2 \cdot 7^{6}+O\left(7^{7}\right)$ |
| $2+5 \cdot 7+6 \cdot 7^{3}+3 \cdot 7^{4}+7^{5}+5 \cdot 7^{6}+O\left(7^{7}\right)$ |  |,

## Future work

What next?

- Further explore the connection with Kim's nonabelian Chabauty.
- Higher rank?
- Theorem 2 also yields a bound on the number of integral points on $X$, but the bound needs computations of certain Coleman integrals. Improve on this to get a Coleman-like bound which only depends on simpler numerical data.
- Explicitly extend Theorems 1 and 2 to more general classes of curves.

