Determination of modular forms by fundamental Fourier coefficients

Abhishek Saha

University of Bristol

30th September 2013

Setting

- V = some set of "modular forms".
- S = a set that indexes "Fourier coefficients" of elements of V, i.e., for all Φ ∈ V, have an expansion

$$\Phi(z)=\sum_{n\in\mathcal{S}}\Phi_n(z).$$

• $\mathcal{D} = an$ "interesting subset" of \mathcal{S} .

Setting

- V = some set of "modular forms".
- S = a set that indexes "Fourier coefficients" of elements of V, i.e., for all Φ ∈ V, have an expansion

$$\Phi(z)=\sum_{n\in\mathcal{S}}\Phi_n(z).$$

• $\mathcal{D} = an$ "interesting subset" of \mathcal{S} .

We are interested in situations where the following implication is true for all $\Phi \in V$:

$$\Phi_n = 0 \ \forall \ n \in \mathcal{D} \qquad \Rightarrow \qquad \Phi = 0$$

or, equivalently:

 $\Phi \neq 0 \qquad \Rightarrow \qquad ext{there exists } n \in \mathcal{D} ext{ such that } \Phi_n \neq 0.$

Another way of phrasing the question is: When does an interesting subset of Fourier coefficients determine a modular form?

3 / 28

Another way of phrasing the question is: When does an interesting subset of Fourier coefficients determine a modular form?

This talk will focus on the following types of modular forms:

- **(**) Modular forms of half-integral weight (automorphic forms on $\overline{SL_2}$)
- Siegel modular forms of degree 2 and trivial central character (automorphic forms on PGSp₄)

Definition of Sp_4

For a commutative ring R, we denote by $\operatorname{Sp}_4(R)$ the set of 4×4 matrices A satisfying the equation $A^t J A = J$ where $J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$.

Definition of \mathbb{H}_2

Let \mathbb{H}_2 denote the set of 2×2 matrices Z such that $Z = Z^t$ and Im(Z) is positive definite.

 \mathbb{H}_2 is a homogeneous space for $\mathrm{Sp}_4(\mathbb{R})$ under the action

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

Definition of Sp_4

For a commutative ring R, we denote by $\operatorname{Sp}_4(R)$ the set of 4×4 matrices A satisfying the equation $A^t J A = J$ where $J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$.

Definition of \mathbb{H}_2

Let \mathbb{H}_2 denote the set of 2×2 matrices Z such that $Z = Z^t$ and Im(Z) is positive definite.

 \mathbb{H}_2 is a homogeneous space for $\mathrm{Sp}_4(\mathbb{R})$ under the action

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

The congruence subgroup $\Gamma_0^{(2)}(N)$

Let $\Gamma_0^{(2)}(N) \subset \operatorname{Sp}_4(\mathbb{Z})$ denote the subgroup of matrices that are congruent to $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N$.

The space
$$S_k(\Gamma_0^{(2)}(N))$$

Siegel modular forms

A Siegel modular form of degree 2, level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_2 satisfying

$$F(\gamma Z) = \det(CZ + D)^k F(Z),$$

for any $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(2)}(N)$,

If in addition, F vanishes at the cusps, then F is called a cusp form.

We define $S_k(\Gamma_0^{(2)}(N))$ to be the space of cusp forms as above.

The space
$$S_k(\Gamma_0^{(2)}(N))$$

Siegel modular forms

A Siegel modular form of degree 2, level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_2 satisfying

$$F(\gamma Z) = \det(CZ + D)^k F(Z),$$

for any $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(2)}(N)$,

If in addition, F vanishes at the cusps, then F is called a cusp form.

We define $S_k(\Gamma_0^{(2)}(N))$ to be the space of cusp forms as above.

Remark. As in the classical case, we have Hecke operators and a Petersson inner product.

Remark. Hecke eigenforms in $S_k(\Gamma_0^{(2)}(N))$ give rise to cuspidal automorphic representations of $PGSp_4(\mathbb{A})$

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$. Note that

$$F(Z + egin{pmatrix} p & q \ q & r \end{pmatrix}) = F(Z), \qquad ext{for all } Z \in \mathbb{H}_2, \ (p,q,r) \in \mathbb{Z}^3$$

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$. Note that

$$F(Z + \begin{pmatrix} p & q \\ q & r \end{pmatrix}) = F(Z),$$
 for all $Z \in \mathbb{H}_2, \ (p,q,r) \in \mathbb{Z}^3$

The Fourier expansion

$$F(Z) = \sum_{S>0} a(F,S)e^{2\pi i \operatorname{Tr} SZ}$$

where S varies over all matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a,b,c) \in \mathbb{Z}^3$ and $b^2 < 4ac$. We denote $\operatorname{disc}(S) = b^2 - 4ac$.

Remark. The Fourier coefficients a(F, S) are mysterious objects and are conjecturally related to central *L*-values (when *F* is an eigenform).

Fourier coefficients with fundamental discriminant

Recall the Fourier expansion $F(Z) = \sum_{S>0} a(F, S)e^{2\pi i \operatorname{Tr} SZ}$.

Note that
$$\begin{pmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{pmatrix} \in \mathsf{\Gamma}_0^{(2)}(N)$$
 for all $A \in \mathrm{SL}_2(\mathbb{Z}).$

 $\operatorname{SL}_2(\mathbb{Z})\text{-invariance}$ of Fourier coefficients

This shows that

$$a(F, ASA^t) = a(F, S)$$

for all $A \in SL_2(\mathbb{Z})$

Fourier coefficients with fundamental discriminant

Recall the Fourier expansion $F(Z) = \sum_{S>0} a(F, S)e^{2\pi i \operatorname{Tr} SZ}$.

Note that
$$\begin{pmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{pmatrix} \in \Gamma_0^{(2)}(N)$$
 for all $A \in \mathrm{SL}_2(\mathbb{Z}).$

 $\operatorname{SL}_2(\mathbb{Z})$ -invariance of Fourier coefficients

This shows that

$$a(F, ASA^t) = a(F, S)$$

for all $A \in \mathrm{SL}_2(\mathbb{Z})$

We are interested in situations where F is determined by the Fourier coefficients a(F, S) with $\operatorname{disc}(S) < 0$ a fundamental discriminant.

Recall: $d \in \mathbb{Z}$ is a fundamental discriminant if EITHER d is a squarefree integer congruent to 1 mod 4 OR d = 4m where m is a squarefree integer congruent to 2 or 3 mod 4.

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

Theorem 1 (S – Schmidt)

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F, S) \neq 0$ for infinitely many S with disc(S) a fundamental discriminant.

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

Theorem 1 (S – Schmidt)

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F, S) \neq 0$ for infinitely many S with disc(S) a fundamental discriminant.

Remark. If N = 1, no U(p) condition.

Remark. In fact we can give the lower bound $X^{\frac{5}{8}-\epsilon}$ for the number of such non-vanishing Fourier coefficients with absolute discriminant less than X.

- V = the elements of $S_k(\Gamma_0^{(2)}(N))$ that are eigenfunctions of U(p) for p|N.
- S = the set of matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a, b, c) \in \mathbb{Z}^3$ and $b^2 < 4ac$. For all $\Phi \in V$, we have a Fourier expansion

$$\Phi(Z)=\sum_{n\in\mathcal{S}}\Phi_n(Z).$$

• D = the subset of S consisting of those matrices with $b^2 - 4ac$ a fundamental discriminant.

- V = the elements of $S_k(\Gamma_0^{(2)}(N))$ that are eigenfunctions of U(p) for p|N.
- S = the set of matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a, b, c) \in \mathbb{Z}^3$ and $b^2 < 4ac$. For all $\Phi \in V$, we have a Fourier expansion

$$\Phi(Z)=\sum_{n\in\mathcal{S}}\Phi_n(Z).$$

• D = the subset of S consisting of those matrices with $b^2 - 4ac$ a fundamental discriminant.

Theorem 1 says: For all $\Phi \in V$,

 $\Phi_n = 0 \ \forall \ n \in \mathcal{D} \qquad \Rightarrow \qquad \Phi = 0$

or, equivalently:

 $\Phi \neq 0 \qquad \Rightarrow \qquad \text{there exists } n \in \mathcal{D} \text{ such that } \Phi_n \neq 0.$

Theorem 1

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F, S) \neq 0$ for infinitely many S with disc(S) a fundamental discriminant.

Why do we care?

Key point: From the automorphic point of view, weighted averages of Fourier coefficients of Siegel modular forms are simultaneously

- Period integrals over Bessel subgroups
- (Conjecturally) Central *L*-values of quadratic twists of the relevant automorphic representation

As a result, non-vanishing of Fourier coefficients leads to very interesting consequences.

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a Hecke eigenform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a Hecke eigenform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

The following fact goes back to Gauss:

$$\operatorname{SL}_2(\mathbb{Z}) \setminus \left\{ S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}, \operatorname{disc}(S) = -d \right\} \quad \cong \quad \operatorname{Cl}_K.$$

Recall that $a(F, ASA^t) = a(F, S)$ for all $A \in \operatorname{SL}_2(\mathbb{Z})$

So, for any character Λ of the finite group $\mathsf{Cl}_{\mathcal{K}},$ the following quantity is well-defined,

$$R(F, d, \Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F, c) \Lambda^{-1}(c)$$

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a Hecke eigenform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

The following fact goes back to Gauss:

$$\operatorname{SL}_2(\mathbb{Z}) \setminus \left\{ S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}, \operatorname{disc}(S) = -d \right\} \quad \cong \quad \operatorname{Cl}_K.$$

Recall that $a(F, ASA^t) = a(F, S)$ for all $A \in \operatorname{SL}_2(\mathbb{Z})$

So, for any character Λ of the finite group $\mathsf{Cl}_{\mathcal{K}},$ the following quantity is well-defined,

$$R(F, d, \Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F, c) \Lambda^{-1}(c)$$

Corollary of Theorem 1

There are infinitely many d, Λ as above, so that $R(F, d, \Lambda) \neq 0$.

Abhishek Saha (University of Bristol)

The automorphic representation Π_F of $PGSp_4$ attached to F does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work. However the non-vanishing of $R(F, d, \Lambda)$ means that it has a Bessel model of a very nice type!

The automorphic representation Π_F of $PGSp_4$ attached to F does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work. However the non-vanishing of $R(F, d, \Lambda)$ means that it has a Bessel model of a very nice type!

This is key to proving many important facts about Π_F related to algebraicity of special values, integral representations and analytic properties of *L*-functions.

The automorphic representation Π_F of $PGSp_4$ attached to F does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work. However the non-vanishing of $R(F, d, \Lambda)$ means that it has a Bessel model of a very nice type!

This is key to proving many important facts about Π_F related to algebraicity of special values, integral representations and analytic properties of *L*-functions.

In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_2 twists of Π_F having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), S (2009, 2010) and Pitale–S–Schmidt (2011) proved results for Π_F under the same assumption.

The automorphic representation Π_F of $PGSp_4$ attached to F does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work. However the non-vanishing of $R(F, d, \Lambda)$ means that it has a Bessel model of a very nice type!

This is key to proving many important facts about Π_F related to algebraicity of special values, integral representations and analytic properties of *L*-functions.

In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_2 twists of Π_F having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), S (2009, 2010) and Pitale–S–Schmidt (2011) proved results for Π_F under the same assumption.

With Theorem 1, we now know that all those results hold unconditionally for Π_F coming from eigenforms in $S_k(\Gamma_0^{(2)}(N))$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a eigenform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda) = \sum_{c \in Cl_K} a(F, c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a eigenform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda) = \sum_{c \in Cl_K} a(F, c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some F, d, Λ as above, we have $R(F, d, \Lambda) \neq 0$. Then $L(\frac{1}{2}, \Pi_F \times \theta_\Lambda) \neq 0$, where $\theta_\Lambda = \sum_{0 \neq a \subset O_K} \Lambda(a) e^{2\pi i N(a)z}$ is a holomorphic modular form of weight 1 and nebentypus $(\frac{-d}{*})$ on $\Gamma_0(d)$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a eigenform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda) = \sum_{c \in Cl_K} a(F, c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some *F*, *d*, Λ as above, we have $R(F, d, \Lambda) \neq 0$. Then $L(\frac{1}{2}, \Pi_F \times \theta_\Lambda) \neq 0$, where $\theta_\Lambda = \sum_{0 \neq a \subset O_K} \Lambda(a) e^{2\pi i N(a)z}$ is a holomorphic modular form of weight 1 and nebentypus $(\frac{-d}{*})$ on $\Gamma_0(d)$.

The above conjecture is not proved in general; however it is known for certain special Siegel cusp forms that are *lifts*.

13 / 28

Yoshida lifts

- N_1, N_2 : two squarefree integers that are not coprime.
- $N = \operatorname{lcm}(N_1, N_2).$
- f : newform of weight 2 on $\Gamma_0(N_1)$.
- g : newform of weight 2k on $\Gamma_0(N_2)$.
- Assume that for all $p|gcd(N_1, N_2)$, f and g have the same Atkin-Lehner eigenvalue at p.

Yoshida lifts

- N_1, N_2 : two squarefree integers that are not coprime.
- $N = \operatorname{lcm}(N_1, N_2).$
- f : newform of weight 2 on $\Gamma_0(N_1)$.
- g : newform of weight 2k on $\Gamma_0(N_2)$.
- Assume that for all $p|gcd(N_1, N_2)$, f and g have the same Atkin-Lehner eigenvalue at p.

The Yoshida lift

Under the above assumptions, there exists a eigenform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that

$$L(s,\Pi_F)=L(s,\pi_f)L(s,\pi_g)$$

Remark. In the language of automorphic representations, the Yoshida lift is a special case of Langlands functoriality, coming from the embedding of L-groups

$$\operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C}) \to \operatorname{Sp}_4(\mathbb{C}).$$

How is the Yoshida lift constructed?

The Yoshida lift is constructed via the theta correspondence. Suppose we start with classical newforms f, g as in the previous slide.

- First we fix a definite quaternion algebra D which is unramified at all finite primes outside $gcd(N_1, N_2)$.
- ② Via the Jacquet-Langlands correspondence, we transfer π_f , π_g to representations π'_f , π'_g on $D^{\times}(\mathbb{A})$.
- Osing the isomorphism

$$(D^{\times} \times D^{\times})/\mathbb{Q}^{\times} \cong GSO(4)$$

we obtain an automorphic representation $\pi'_{f,g}$ on $GSO(4,\mathbb{A})$.

• Finally we use the theta lifting to transfer $\pi'_{f,g}$ to the automorphic representation Π_F on $\mathrm{GSp}_4(\mathbb{A})$.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Recall the conjecture stated earlier which is expected to hold for any Siegel eigenform F, a fundamental discriminant -d and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have $R(F, d, \Lambda) \neq 0$. Then $L(\frac{1}{2}, \Pi_F \times \theta_{\Lambda}) \neq 0$.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Recall the conjecture stated earlier which is expected to hold for any Siegel eigenform F, a fundamental discriminant -d and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have
$$R(F, d, \Lambda) \neq 0$$
. Then $L(\frac{1}{2}, \Pi_F \times \theta_{\Lambda}) \neq 0$.

Theorem (Prasad–Takloo-Bighash)

The above conjecture is true when F is a Yoshida lifting.

Remark. If $\Lambda = 1$, this is also proved in work of Böcherer–Schulze-Pillot. **Remark.** Note that when *F* is a Yoshida lifting, then

$$L(\frac{1}{2}, \Pi_F \times \theta_{\Lambda}) = L(\frac{1}{2}, \pi_f \times \theta_{\Lambda})L(\frac{1}{2}, \pi_g \times \theta_{\Lambda}).$$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a eigenform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s, \Pi_F) = L(s, \pi_f)L(s, \pi_g)$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a eigenform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s, \Pi_F) = L(s, \pi_f)L(s, \pi_g)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with -d a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

17 / 28

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a eigenform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s, \Pi_F) = L(s, \pi_f)L(s, \pi_g)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with -d a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

Theorem of Prasad–Takloo-Bighash

$$R(F, d, \Lambda) \neq 0 \quad \Rightarrow \quad L(\frac{1}{2}, \pi_f \times \theta_\Lambda) L(\frac{1}{2}, \pi_g \times \theta_\Lambda) \neq 0.$$

A simultaneous non-vanishing result

Putting together the three results of the previous slide, we obtain the following result:

Theorem 2 (S-Schmidt)

Let k > 1 be an odd positive integer. Let N_1 , N_2 be two positive, squarefree integers such that $M = \gcd(N_1, N_2) > 1$. Let f be a holomorphic newform of weight 2k on $\Gamma_0(N_1)$ and g be a holomorphic newform of weight 2 on $\Gamma_0(N_2)$. Assume that for all primes p dividing Mthe Atkin-Lehner eigenvalues of f and g coincide. Then there exists an imaginary quadratic field K and a character $\chi \in \widehat{Cl}_K$ such that $L(\frac{1}{2}, \pi_f \times \theta_\chi) \neq 0$ and $L(\frac{1}{2}, \pi_g \times \theta_\chi) \neq 0$.

Remark. Our proof shows, in fact, that there are at least $X^{\frac{5}{8}-\epsilon}$ such pairs (K, χ) with $\operatorname{disc}(K) < X$.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel eigenforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular *L*-functions.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel eigenforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular *L*-functions.

Remark. Jolanta Marzec (Bristol) is currently working on generalizing Theorem 1 to squareful levels as well as to other congruence subgroups (e.g. paramodular).

How is Theorem 1 proved?

19 / 28

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel eigenforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular *L*-functions.

Remark. Jolanta Marzec (Bristol) is currently working on generalizing Theorem 1 to squareful levels as well as to other congruence subgroups (e.g. paramodular).

How is Theorem 1 proved?

It turns out that the key step of proving Theorem 1 is a very similar result for modular forms of half-integral weight!

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Fourier expansion Any $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ has a Fourier expansion $f(z) = \sum_{(-1)^k n \equiv 0, 1(4)} a(f, n) e^{2\pi i z}.$

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Fourier expansion Any $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ has a Fourier expansion $f(z) = \sum_{(-1)^k n \equiv 0, 1(4)} a(f, n)e^{2\pi i z}.$

Let \mathcal{D} be the set of integers d > 0 such that $(-1)^k d$ is a fundamental discriminant.

Remark. If $f \in S_{k+1/2}^+(\Gamma_0(4N))$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f, d)|^2$ is essentially equal to $L(1/2, \pi \times \chi_d)$.

Remark. If $f \in S^+_{k+1/2}(\Gamma_0(4N))$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f, d)|^2$ is essentially equal to $L(1/2, \pi \times \chi_d)$.

We are interested in the situation when elements of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ are determined by the Fourier coefficients a(f, d) with $d \in D$.

• V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,

- V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,
- S = the set of integers *n* such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),

- V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,
- S = the set of integers *n* such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),
- \mathcal{D} = the set of integers *n* such that $(-1)^k n$ is a *fundamental* discriminant.

- V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,
- S = the set of integers *n* such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),
- \mathcal{D} = the set of integers *n* such that $(-1)^k n$ is a *fundamental* discriminant.

Easy version: V = basis of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ consisting of Hecke eigenforms

- V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,
- S = the set of integers *n* such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),
- \mathcal{D} = the set of integers *n* such that $(-1)^k n$ is a *fundamental* discriminant.

Easy version: V = basis of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ consisting of Hecke eigenforms

Question: Suppose $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is a (non-zero) Hecke eigenform. Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

- V = some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k \ge 2$,
- S = the set of integers *n* such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),
- \mathcal{D} = the set of integers *n* such that $(-1)^k n$ is a *fundamental* discriminant.

Easy version: V = basis of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ consisting of Hecke eigenforms

Question: Suppose $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is a (non-zero) Hecke eigenform. Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Answer: Yes. Proved by Kohnen (1985).

Harder version: $V = \{v_1 - v_2\}$ where v_1, v_2 are Hecke eigenforms **Question:** Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ and a(f, d) = a(g, d) for all $d \in \mathcal{D}$. Is f = g?

23 / 28

Harder version: $V = \{v_1 - v_2\}$ where v_1, v_2 are Hecke eigenforms **Question:** Suppose f and g are two Hecke eigenforms in $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ and a(f, d) = a(g, d) for all $d \in \mathcal{D}$. Is f = g? **Answer:** Yes. Proved by Luo–Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Harder version: $V = \{v_1 - v_2\}$ where v_1, v_2 are Hecke eigenforms **Question:** Suppose f and g are two Hecke eigenforms in $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ and a(f, d) = a(g, d) for all $d \in \mathcal{D}$. Is f = g? **Answer:** Yes. Proved by Luo–Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Hardest version: $V = S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$

Question: Suppose $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Harder version: $V = \{v_1 - v_2\}$ where v_1, v_2 are Hecke eigenforms **Question:** Suppose f and g are two Hecke eigenforms in $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ and a(f, d) = a(g, d) for all $d \in \mathcal{D}$. Is f = g? **Answer:** Yes. Proved by Luo–Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Hardest version: $V = S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$

Question: Suppose $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Answer: Yes!

Theorem 3 (S)

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \ge 2$. Assume $f \ne 0$. Then $a(f, d) \ne 0$ for infinitely many d in \mathcal{D} .

Theorem 3 (S)

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \ge 2$. Assume $f \ne 0$. Then $a(f, d) \ne 0$ for infinitely many d in \mathcal{D} .

Remark. Note that because *f* is not a Hecke eigenform, there is no way to reduce the problem to central *L*-values!

Remark. Actually the theorem I prove is stronger: *N* can be divisible by squares of primes, the nebentypus need not be trivial, one can work with the larger space $S_{k+\frac{1}{2}}(\Gamma_0(4N))$, and one can give a lower bound on the number of non-vanishing Fourier coefficients a(f, d).

A quick recap of the two results

Theorem 1

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F, S) \neq 0$ for infinitely many S with disc(S) a fundamental discriminant.

Theorem 3

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \ge 2$. Assume $f \ne 0$. Then $a(f, d) \ne 0$ for infinitely many d in \mathcal{D} .

25 / 28

A quick recap of the two results

Theorem 1

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F, S) \neq 0$ for infinitely many S with disc(S) a fundamental discriminant.

Theorem 3

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \ge 2$. Assume $f \ne 0$. Then $a(f, d) \ne 0$ for infinitely many d in \mathcal{D} .

Rest of this talk:

- why Theorem 3 implies Theorem 1.
- how Theorem 3 is proved.

For simplicity, let us restrict to the case N = 1 and k even.

- Let $F(Z) = \sum_{S} a(F, S) e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \quad F \neq 0.$ Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F, S) \neq 0$.

For simplicity, let us restrict to the case N = 1 and k even.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd prime number.

For simplicity, let us restrict to the case N = 1 and k even.

- Let $F(Z) = \sum_{S} a(F, S) e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \ F \neq 0.$ Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F, S) \neq 0$.
- Step 1. Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd prime number.

Step 2. For each n > 1, define

$$c(n) = a\left(F, \begin{pmatrix} \frac{n+b^2}{4p} & b/2\\ b/2 & p \end{pmatrix}\right)$$

where b is any integer so that 4p divides $n + b^2$,

For simplicity, let us restrict to the case N = 1 and k even.

- Let $F(Z) = \sum_{S} a(F, S) e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \ F \neq 0.$ Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F, S) \neq 0$.
- Step 1. Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd prime number.

Step 2. For each n > 1, define

$$c(n) = a\left(F, \begin{pmatrix} \frac{n+b^2}{4p} & b/2\\ b/2 & p \end{pmatrix}\right)$$

where b is any integer so that 4p divides $n + b^2$, and put

$$h(z) = \sum_{n \ge 1} c(n) e^{2\pi i n z}$$

Why Theorem 3 implies Theorem 1 (contd.) Because of Step 1, it follows that $h(z) = \sum_{n>1} c(n)e^{2\pi i n z} \neq 0$. Why Theorem 3 implies Theorem 1 (contd.) Because of Step 1, it follows that $h(z) = \sum_{n>1} c(n)e^{2\pi i n z} \neq 0$.

Theorem (Eichler–Zagier, Skoruppa)

$$h(z)\in S^+_{k-\frac{1}{2}}(4p)$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of *Jacobi forms* and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, h(z) need not be!

27 / 28

Why Theorem 3 implies Theorem 1 (contd.) Because of Step 1, it follows that $h(z) = \sum_{n\geq 1} c(n)e^{2\pi i n z} \neq 0$.

Theorem (Eichler–Zagier, Skoruppa)

$$h(z)\in S^+_{k-\frac{1}{2}}(4p)$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of *Jacobi forms* and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, h(z) need not be!

Step 3. It follows from Theorem 3 that $c(d) \neq 0$ for infinitely many d such that -d is a fundamental discriminant. Since

$$c(d) = a \left(\mathsf{F}, egin{pmatrix} rac{d+b^2}{4p} & b/2 \ b/2 & p \end{pmatrix}
ight)$$

this proves Theorem 1.

Abhishek Saha (University of Bristol)

Let f ∈ S⁺_{k+¹/₂}(Γ₀(4N)) be non-zero and D be the set of integers d such that (-1)^kd is a fundamental discriminant. Need to show there exists d ∈ D with a(f, d) ≠ 0.

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers dsuch that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- Let f ∈ S⁺_{k+¹/₂}(Γ₀(4N)) be non-zero and D be the set of integers d such that (-1)^kd is a fundamental discriminant. Need to show there exists d ∈ D with a(f, d) ≠ 0.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

• We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.

- Let $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers dsuch that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0.

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant $C_f > 0$ so that $S(M, X; f) > C_f X$ for all sufficiently large X.

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant C_f > 0 so that S(M, X; f) > C_fX for all sufficiently large X.
- This shows that there are infinitely many $d \in \mathcal{D}$ such that $a(f, d) \neq 0$.