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Generating finite groups

For a group G , let d(G ) denote the minimal number of elements
required to generate G .

Task: Find an upper bound for d(G ) of the form

d(G ) ≤ f (something to do with G )

What could the “something to do with G” be?
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Order?

Fix a finite field K of order q. Then the dimension of a (finite)
vector space V over K is completely determined by its order, since
dimV = logq(|V |).

Could we use the same principle with finite groups? That is, could
we find a bound of the form

d(G ) ≤ f (|G |)

for some function f of |G |?
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Order?

No!! Order has no effect (in general) on minimal generator
numbers in finite groups.

Example: Let p be prime, n ≥ 1, and let Epn = Zn
p, which is a

group under addition, the elementary abelian group of order pn.
Now, viewing Epn as a group is completely equivalent to viewing
Epn as a vector space over Zp, and hence d(Epn) = dimZp Epn = n.
However, if Cm denotes the cyclic group of order m, then
d(Cpn) = 1. Thus, we have two groups of the same order; one
needing n generators (n can be arbitrarily large) and the other
needing 1 generator.
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Order?

So cyclic groups give problems.. But what if we refine our search,
and just look at the set of non-cyclic finite groups? Can we then
find a correlation between order and the function d?

No! There are many examples where we can see that there is no
relationship between the functions |.| and d on the set of finite
groups.

Example: As we’ve seen already, the elementary abelian group of
order 8 = 23 needs three generators, i.e. d(E8) = 3.

Now consider the largest of the finite simple groups, the
Fischer-Griess Monster group, M. We have

|M| = 808017424794512875886459904961710757005754368000000000

But d(M) = 2.
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The behaviour of d on the set of subgroups of G?

In particular, the last example shows that, for finite groups H and
G , |H| ≤ |G | 6⇒ d(H) ≤ d(G ). But is it true that
H ≤ G (subgroup)⇒ d(H) ≤ d(G )?

No..

Example: Let n > 5 be even, and consider the symmetric group Sn
of degree n. The permutations (1, 2) and (1, 2, . . . , n) generate Sn
(and Sn is noncyclic), so d(Sn) = 2.

Now consider H = 〈(1, 2), (3, 4), . . . , (n − 1, n)〉 ≤ Sn. Since all
generators commute, and have order 2, we have H ∼= E2n/2 . Hence
d(H) = n/2, so we have H ≤ Sn, but d(H) = n/2 > 2 = d(Sn).
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Some invariants of G that have worked

(a) Minimal normal subgroups

Theorem (Lucchini, 1995 (CFSG))

Let N be a proper, minimal normal subgroup of the finite group G.
Then d(G ) ≤ d(G/N) + 1.

Theorem (Lucchini; Menegazzo, 1997 (CFSG))

Let the finite non-cyclic group G have a unique minimal normal
subgroup M. Then d(G ) = max (2, d(G/M)).



Some invariants of G that have worked

(a) Minimal normal subgroups

Theorem (Lucchini, 1995 (CFSG))

Let N be a proper, minimal normal subgroup of the finite group G.
Then d(G ) ≤ d(G/N) + 1.

Theorem (Lucchini; Menegazzo, 1997 (CFSG))

Let the finite non-cyclic group G have a unique minimal normal
subgroup M. Then d(G ) = max (2, d(G/M)).



Some invariants of G that have worked

(a) Minimal normal subgroups

Theorem (Lucchini, 1995 (CFSG))

Let N be a proper, minimal normal subgroup of the finite group G.
Then d(G ) ≤ d(G/N) + 1.

Theorem (Lucchini; Menegazzo, 1997 (CFSG))

Let the finite non-cyclic group G have a unique minimal normal
subgroup M. Then d(G ) = max (2, d(G/M)).



Some invariants of G that have worked

(b) Sylow p-subgroups: Let

r(G ) = max {d(P) : P a Sylow subgroup ofG}

Theorem (Kovács, 1968)

Let G be a finite soluble group. Then d(G ) ≤ r(G ) + 1.

Theorem (Longobardi; Maj, 1988 (CFSG))

Let G be a finite group. Then d(G ) ≤ 2r(G ).

Theorem (Guralnick, 1989 (CFSG))

Let G be a finite group. Then d(G ) ≤ r(G ) + 1.

All of these (apart from Kovács’ 1968 result) rely heavily on the
following idea:
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All of these (apart from Kovács’ 1968 result) rely heavily on the
following idea:



“Factorising” G

Let G be a finite group. Then G has a composition series

1 = G0 / G1 / . . . / Gr = G

where each Gi/Gi−1 is simple.

By the Jordan-Hölder Theorem, any two composition series for G
have the same length (called the composition length of G ).
Moreover, the set of composition factors {Gi/Gi−1 : 1 ≤ i ≤ r} is
uniquely determined by G .

Thus, the finite groups are, in some sense, built from the finite
simple groups. This led to the following question, which dominated
group theory in the twentieth century:

What are the finite simple groups?
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The classification of finite simple groups (CFSG): Timeline

Late 1800s: E. Mathieu and C. Jordan were first to realise the
importance of simple groups in finite group theory;
both discovered a number of finite simple groups;
Mathieu discovered, in particular, five curious ones
which would later form part of the list of the 26
sporadic simple groups.

Early 1900s: L. Dickson discovered finite analogues to the infinite
groups (Lie groups) which were being constructed by
S. Lie and E. Cartan. These turned out to be simple,
and became known as groups of Lie type.
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The CFSG: Timeline

1905: List of known finite simple groups ran as follows:

Groups of prime order;
Groups of Lie type;
Alternating groups;
Mathieu’s curious five.

1955: Chevalley, Suzuki and Ree completed the
construction of groups of Lie type.

1962: Feit-Thompson Theorem: Every finite group of odd
order is solvable.

1965: Z. Janko discovered the first new sporadic finite
simple group since Mathieu’s five.



The CFSG: Timeline

1905: List of known finite simple groups ran as follows:

Groups of prime order;
Groups of Lie type;
Alternating groups;
Mathieu’s curious five.

1955: Chevalley, Suzuki and Ree completed the
construction of groups of Lie type.

1962: Feit-Thompson Theorem: Every finite group of odd
order is solvable.

1965: Z. Janko discovered the first new sporadic finite
simple group since Mathieu’s five.



The CFSG: Timeline

1905: List of known finite simple groups ran as follows:

Groups of prime order;
Groups of Lie type;
Alternating groups;
Mathieu’s curious five.

1955: Chevalley, Suzuki and Ree completed the
construction of groups of Lie type.

1962: Feit-Thompson Theorem: Every finite group of odd
order is solvable.

1965: Z. Janko discovered the first new sporadic finite
simple group since Mathieu’s five.



The CFSG: Timeline

1905: List of known finite simple groups ran as follows:

Groups of prime order;
Groups of Lie type;
Alternating groups;
Mathieu’s curious five.

1955: Chevalley, Suzuki and Ree completed the
construction of groups of Lie type.

1962: Feit-Thompson Theorem: Every finite group of odd
order is solvable.

1965: Z. Janko discovered the first new sporadic finite
simple group since Mathieu’s five.



The CFSG: Timeline

Next dozen years: One or two new finite simple groups found per
year, using ideas of the odd order theorem.
Meanwhile, the classification gathered pace, led by
Daniel Gorenstein, but with contribution from a
number of authors (Thompson, Fischer, Glauberman,
Alperin, . . .).

February 1981: Classification is completed, when Simon Norton
proved the uniqueness of the Monster group, M.
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The CFSG

The proof of CFSG spans around 10,000 pages, 500 different
journal articles, and was contributed to by around 100 different
authors.

Inevitably, mistakes were found! Most were rectified fairly easily,
apart from the last one found, which took two books and seven
years to fix; it was finally settled in 2004 by M. Aschbacher and
S.Smith. According to Aschbacher, the proof has no further holes,
and so the CFSG can now be regarded as a theorem.
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The CFSG

Theorem (Classification of finite simple groups)

Every finite simple group is isomorphic to one of the following:

Cyclic groups of prime order;

Alternating groups;

Groups of Lie type;

26 sporadic simple groups.



Back to our original question

Question: How many elements does it take to generate a
permutation group G of degree d?

Recall that we want to find an upper bound on d(G ) of the form

d(G ) ≤ f (something to do with G )

Here, the “something to do with G” will be the degree, d , of G as
a permutation group. That is, we want to bound d(G ) in terms of
d .
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Theorems

The first main result in this direction came before CFSG:

Theorem (Jerrum, 1976)

Let G be a permutation group of degree d. Then d(G ) ≤ d.

After CFSG, Neumann made a significant improvement..

Theorem (Neumann, 1989 (CFSG))

Let G be a permutation group of degree d. Then d(G ) ≤ d/2,
except that d(G ) = 2 when d = 3 and G ∼= S3. Furthermore, if G
is transitive and d ≥ 5, then d(G ) < d/2, unless d = 8 and
G ∼= D8 ◦ D8.

.. however, it was long suspected that substantially lower bounds
would hold for special classes of permutation groups. For example,
one of the more recent results is as follows:
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Theorems

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let G be a primitive permutation group of degree d. Then
d(G ) ≤ log2(d).

After Neumann’s 1989 result, the main focus turned to the
asymptotic behaviour of d(G ), in terms of d .
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Asymptotic results

Theorem (Kovács; Newman, 1988)

There exists a constant c1 such that whenever G is a nilpotent
transitive permutation group of degree d ≥ 2, then

d(G ) ≤ c1d/
√

log2 d

Theorem (Bryant; Kovács; Robinson, 1995 (CFSG))

There exists a constant c2 such that whenever G is a soluble
transitive permutation group of degree d ≥ 2, then

d(G ) ≤ c2d/
√

log2 d
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Theorem (Lucchini, 1998 (CFSG))

There exists a constant c3 such that whenever G is a permutation
group of degree d ≥ 2, containing a soluble transitive subgroup,
then

d(G ) ≤ c3d/
√

log2 d

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists a constant c4 such that whenever G is a transitive
permutation group of degree d ≥ 2, then

d(G ) ≤ c4d/
√

log2 d



Asymptotic results

Theorem (Lucchini, 1998 (CFSG))

There exists a constant c3 such that whenever G is a permutation
group of degree d ≥ 2, containing a soluble transitive subgroup,
then

d(G ) ≤ c3d/
√

log2 d

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists a constant c4 such that whenever G is a transitive
permutation group of degree d ≥ 2, then

d(G ) ≤ c4d/
√

log2 d



Constants

In fact, Kovács and Newman proved (in the nilpotent transitive
case) that

d(G ) ≤ 4d/
√

log2 d

for all d ≥ 2.

However, the methods used in the proofs of the later results failed
to yield estimates for the constants involved (although, Bryant et.
al showed in their 1995 paper that the constant c1 in the nilpotent
case must satisfy C ≥ 1/

√
2)..
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Estimating the constants

Theorem A

Let G be a soluble transitive permutation group of degree d ≥ 2.
Then

d(G ) ≤ c2d/
√

log2 d

where c2 =
√

3/2 = 0.8660254 . . ..

Theorem B

Let G be a transitive permutation group of degree d ≥ 2. Then

d(G ) ≤ c4d/
√

log2 d

where c4 = 0.978113.



Estimating the constants

Theorem A

Let G be a soluble transitive permutation group of degree d ≥ 2.
Then

d(G ) ≤ c2d/
√

log2 d

where c2 =
√

3/2 = 0.8660254 . . ..

Theorem B

Let G be a transitive permutation group of degree d ≥ 2. Then

d(G ) ≤ c4d/
√

log2 d

where c4 = 0.978113.



Estimating the constants

Theorem A

Let G be a soluble transitive permutation group of degree d ≥ 2.
Then

d(G ) ≤ c2d/
√

log2 d

where c2 =
√

3/2 = 0.8660254 . . ..

Theorem B

Let G be a transitive permutation group of degree d ≥ 2. Then

d(G ) ≤ c4d/
√

log2 d

where c4 = 0.978113.



Key idea of proofs: Wreath products

Definition

Let R be a permutation group of degree m (acting on
{1, 2, . . . ,m}), and let n ≥ 1. Then the (permutational) wreath
product of R with Sn, denoted R o Sn, is defined to be the
semi-direct product (R1 ×R2 × . . .×Rn) o Sn, where each Ri

∼= R,
and G acts on (R1 × R2 × . . .× Rn) by permutation of coordinates
(e.g. n = 3, ri ∈ Ri ⇒ (r1, r2, r3)(1,2,3) = (r3, r1, r2)).

Let Ωt = {1, 2, . . . , t}, for t ≥ 1. R o Sn acts on the cartesian
product Ω := Ωm × Ωn via

((r1, r2, . . . , rn), σ).(i , j) = (rσ(j).i , σ(j))

(e.g. m = 4, n = 3: (((1, 4), (1, 3), (1, 2)), (1, 3, 2)).(4, 2) = (1, 1))
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Key idea of proofs: Wreath products

Clearly this is an imprimitive action, with blocks ∆j := Ωm × {j},
1 ≤ j ≤ n. So we have constructed examples of imprimitive
permutation groups of degree d = mn. In fact, it turns out that all
imprimitive permutation groups can be realised as a subgroup of
one of the groups constructed above..

Theorem (Suprunenko, 1976)

Let G be an imprimitive permutation group of degree d, and
minimal block size m (so 1 < m < d). Then G is (isomorphic to)
a subgroup in a wreath product R o Sn, where R is primitive of
degree m, and n = d/m.
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Idea of proofs

The proof proceeds by induction on |G |:
Initial step: Prove the theorem for primitive G . This follows

immediately from

Theorem (Holt; Roney-Dougal, 2013)

Let G be a primitive permutation group of degree d. Then
d(G ) ≤ log2(d).
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immediately from

Theorem (Holt; Roney-Dougal, 2013)

Let G be a primitive permutation group of degree d. Then
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Inductive step: This concerns imprimitive G . By Suprunenko’s
Theorem, we have

G ≤ R o Sn

for some primitive group R of degree m, where
1 < m, n < d , and mn = d .



Examples

d Neumann’s
Theorem gives
d(G ) ≤

Theorem B
gives d(G ) ≤

Max. value of
d(G ) among
the transi-
tive groups of
degree d

5 2 2 2

6 2 3 2

7 3 3 2

8 4 4 4

9 4 4 3

10 4 4 3



Examples

G transitive of degree d = 16

Neumann’s Theorem ⇒ d(G ) ≤ 7

Theorem B ⇒ d(G ) ≤ 6

Maximum value of d(G ) among the transitive groups of degree 16
= 6

G transitive of degree d = 24

Neumann’s Theorem ⇒ d(G ) ≤ 11

Theorem B ⇒ d(G ) ≤ 9

Maximum value of d(G ) among the transitive groups of degree 24
= 6
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Examples

G transitive of degree d = 32

Neumann’s Theorem ⇒ d(G ) ≤ 15

Theorem B ⇒ d(G ) ≤ 12

Maximum value of d(G ) among the transitive groups of degree 32
= 10

G transitive of degree d = 1000

Neumann’s Theorem ⇒ d(G ) ≤ 499

Theorem B ⇒ d(G ) ≤ 274

Maximum value of d(G ) among the transitive groups of degree
1000 = unknown
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