
Applications of entropy compression method
to graph colorings

Jan Volec



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Probabilistic method in combinatorics

• Goal: show existence of object satisfying properties P1, . . . ,Pk

• Example: ∃ coloring of graph G with m edges with k colors,
property Pi is that the i-th edge is not monochromatic

• If our graph is just a set of k independent edges. . .

a random 2-coloring is good with probability (1/2)k

• If the success probabilities are high w.r.t. # of Pi . . .

P[Fail] ≤
m∑
i=1

1− P[Pi ] =
m

k
, which is < 1 for k = m + 1



Lovász Local Lemma (Erdős and Lovász, 1975)

• if probabilities of Pi are only “a bit” dependent on each other,

• and also all Pi are “quite likely” to happen. . .

• LLL shows (non-constructively) there exists a good object

• Example: graph G with maximum degree ∆ → ∃ 4∆-coloring

• Well, simple greedy algorithm gives (∆ + 1)-coloring. . .



Lovász Local Lemma (Erdős and Lovász, 1975)

• if probabilities of Pi are only “a bit” dependent on each other,

• and also all Pi are “quite likely” to happen. . .

• LLL shows (non-constructively) there exists a good object

• Example: graph G with maximum degree ∆ → ∃ 4∆-coloring

• Well, simple greedy algorithm gives (∆ + 1)-coloring. . .



Lovász Local Lemma (Erdős and Lovász, 1975)

• if probabilities of Pi are only “a bit” dependent on each other,

• and also all Pi are “quite likely” to happen. . .

• LLL shows (non-constructively) there exists a good object

• Example: graph G with maximum degree ∆ → ∃ 4∆-coloring

• Well, simple greedy algorithm gives (∆ + 1)-coloring. . .



Lovász Local Lemma (Erdős and Lovász, 1975)

• if probabilities of Pi are only “a bit” dependent on each other,

• and also all Pi are “quite likely” to happen. . .

• LLL shows (non-constructively) there exists a good object

• Example: graph G with maximum degree ∆ → ∃ 4∆-coloring

• Well, simple greedy algorithm gives (∆ + 1)-coloring. . .



Lovász Local Lemma (Erdős and Lovász, 1975)

• if probabilities of Pi are only “a bit” dependent on each other,

• and also all Pi are “quite likely” to happen. . .

• LLL shows (non-constructively) there exists a good object

• Example: graph G with maximum degree ∆ → ∃ 4∆-coloring

• Well, simple greedy algorithm gives (∆ + 1)-coloring. . .



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Algorithmic version of LLL

• LLL proves the existence of a good coloring (or other objects)

• But can we efficiently construct a good coloring?

• Moser and Tardos (2009) – YES!

• Very nice and simple algorithm, its analysis is ∼ 3 pages

Entropy compression

• Moser (2009): similar algorithm for a more restricted LLL

• But this time, both algorithm & analysis fits on one slide

• In some other applications, his approach even beats LLL

• The name “Entropy compression” was given by Tao

• The method independently discovered by Schweitzer (2009)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .

we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



Edge-colorings of graphs

• if we want to color edges s.t. incident edges → different colors

• we definitely need at least ∆ colors, sometimes we need more

• Vizing’s Theorem (1964): ∆ + 1 is always enough

• Conjecture: if we increase the number of colors to ∆ + 2. . .
we can always find edge-coloring with no 2-colored cycle

Acyclic edge-colorings of graphs

• 64∆ colors is enough – Alon, McDiarmid, and Reed (1991)

• 16∆ colors is enough – Molloy and Reed (1998)

• 9.62∆ colors is enough – Ndreca, Procacci, Scoppola (2012)

• 4∆ colors is enough – Esperet, Parreau (2013)



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I

3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle

• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• Set up algorithm, it finds acyclic edge-coloring using 6∆ colors

• Input: graph G , R infinite sequence of numbers from [4∆]

• First, fix arbitrary ordering on the edge set of G

• In each step, we will maintain partial acyclic edge-coloring

• Mark all edges as uncolored, repeat until each edge is colored:

1. e := uncolored edge with minimum index

2. I := colors currently used on edges incident to e, L := [6∆] \ I
3. r := next number from R and α := r -th color from L

4. Try to color e with color α, does it create any 2-colored cycle?

5. If YES, then
• C := c1c2 . . . c`−1e be shortest and lexicographically min. cycle
• uncolor edges c3, c4, . . . , c`−1 and e

6. write LOG record about this step



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R

1

2

3

4

5

6 7

COLOR LOG:
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R

1

2

3

4

5

6 7

COLOR LOG: C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B

1

2

3

4

5

6 7

COLOR LOG: C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B

1

2

3

4

5

6 7

COLOR LOG: C C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R

1

2

3

4

5

6 7

COLOR LOG: C C C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R

1

2

3

4

5

6 7

COLOR LOG: C C C C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G

1

2

3

4

5

6 7

COLOR LOG: C C C C C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C
CYCLE LOG:



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C
CYCLE LOG:

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U
CYCLE LOG: 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C
CYCLE LOG: 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C
CYCLE LOG: 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C
CYCLE LOG: 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U
CYCLE LOG: 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C
CYCLE LOG: 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C
CYCLE LOG: 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C
CYCLE LOG: 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U
CYCLE LOG: 0 0 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U C
CYCLE LOG: 0 0 0 0 0 0 0 0

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U C . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U C . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U C . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U C . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U �SC . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C C U U �SC . . .
CYCLE LOG: 0 0 0 0 0 0 0 0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 0 0 0 0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U C �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 0 0 0 0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 0 0 0 0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C C U U U U �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 0 0 0 0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U C �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C C U U �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: 0 0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C C �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C C �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C C �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C C �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C C �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: C �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .

1

2

3

4

5

6 7

COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R

After t steps: # of bad R’s ≤ # of partial colorings × # of LOGs



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R

After t steps: # of bad R’s ≤ # of partial colorings × # of LOGs
But observe: t −m ≤ # of uncolorings (u) ≤ t



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R

After t steps: # of bad R’s ≤ # of partial colorings × # of LOGs
But observe: t −m ≤ # of uncolorings (u) ≤ t

(6∆ + 1)m ·m · 2t+u · (∆− 1)u



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R

After t steps: # of bad R’s ≤ # of partial colorings × # of LOGs
But observe: t −m ≤ # of uncolorings (u) ≤ t

(6∆ + 1)m ·m · 2t+u · (∆− 1)u

C (G ) · 22t · (∆− 1)t = C (G ) · (4∆− 4)t



• e := uncolored edge with minimum index

• Try to color e, does it create any 2-colored 2`-cycle?

• If YES, then uncolor edges c3, c4, . . . , c`−1 and e

• write LOG record about this step

colors from R R B B R R G G R B G B R . . .
COLOR LOG: �SC �SC �SC �SC �SC �SC �SC �SU �SU �SC �SC �SU �SU �SU �SU �SC �SC �SU �SU �SC . . .
CYCLE LOG: �A0 �A0 �A0 �A0 �A0 �A0 �A0 �A0 . . .

Claim: # of 2`-cycles around fixed edge e is at most (∆− 1)2`−2

Claim: COLOR and CYCLE LOGs −→ current set of colored edges
Claim: current coloring and LOGs −→ the whole sequence R

After t steps: # of bad R’s ≤ # of partial colorings × # of LOGs
But observe: t −m ≤ # of uncolorings (u) ≤ t

(6∆ + 1)m ·m · 2t+u · (∆− 1)u

C (G ) · 22t · (∆− 1)t = C (G ) · (4∆− 4)t

There are (4∆)t choices for R, so there must be a good choice!



Thank you for your attention!


