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Talk Outline

• Why statistical inference for mechanistic models is hugely challenging

• One approach is to attack the problem exploiting intrinsic geometry of
mechanistic dynamics

• Mechanistic dynamics described via PDE and ODE systems with
non-analytic solutions

• How to account for uncertainty induced by implicit definition of dynamics
via PDE and ODE representation

• Oftentimes under fine spatial mesh refinement computing a likelihood
exactly may be infeasible

• Forward and Inverse inference can still progress exploiting
pseudo-marginal constructions in general form of Russian Roulette
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• Simple nonlinear model - protein autoregulation.

dx
dt

=
72

36 + y
− α

dy
dt

= βx − 1

• 120 equally spaced measurements of system from t = 0...60seconds
with Normal errors having known variance 0.5, α = 3, β = 1.

• Induces a data density posing many challenges for simulation based
inference
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Systems Identification - Posterior Inference



Mixing of Markov Chains
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Geometric Concepts in MCMC

• Rao, 1945 to first order

χ2(δθ) =

∫
|p(y;θ + δθ)− p(y;θ)|2

p(y;θ)
dy ≈ δθTG(θ)δθ

• Expected Fisher Information G(θ) is metric tensor of a Riemann manifold
• For nonlinear DE’s ẋ(t) = f(x(t),θ) observed under Normal additive

error with covariance , then FR metric tensor

G(θ) = ∂θxC−1∂θxT

• Sensitivity equations define metric can be exploited to locally transform
coordinate system for sampling

• Discretised Langevin diffusion (MALA) on manifold defines efficient
proposal mechanism

θ′d = θd +
ε2

2

(
G−1(θ)∇θL(θ)

)
d
− ε2

D∑
i,j

G(θ)−1
ij Γd

ij + ε
(√

G−1(θ)z
)

d

• Non-Euclidean geometry can exploit geodesics equations to devise
sampling schemes (RMHMC)
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Infinite and finite dimensional mismatch
• Uncertainty induced by discrete mesh
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Infinite and finite dimensional mismatch

• Models relate ẋ(t ,θ) ∈ RP to states x(t ,θ) ∈ RP by vector field
fθ(t , ·) : RP → RP indexed by parameter vector, θ ∈ Θ

• Observations, y(t) ∈ RR , via transformation, G : RP → RR , of the true or
exact solution, x(t , θ), of system at T time points.

y (r)(t) = G(r)
(
x(t,θ)

)
+ ε(r)(t), ε(r)(t) ∼ NT (0,Σ(r)),

where G(r) is the r th output of the observation model.

• If unique analytic, x(t,θ), at each observation time (and spatial position
in the case of PDEs), given data y(t) posterior takes the form

p
(
θ, x0|y(t)

)
∝ p

(
y(t)|x(t,θ), x0

)
× π

(
θ, x0

)
.
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Infinite and finite dimensional mismatch
• Due to non-analytic x(t,θ), likelihood p

(
y(t)|x(t,θ), x0

)
unavailable

• Replace x(t,θ) with finite-dimensional representation xN(t,θ) - Finite
spatial and temporal mesh, i.e. numerically integrated solution

• Disregard the additional uncertainty induced in the discrete solution

y (r)(t) = G(r)
(
xN(t,θ)

)
+ ε(r)(t), ε(r)(t) ∼ NT (0,Σ(r)),

Yielding posterior measure

pN(θ, x0|y(t)
)
∝ p

(
y(t)|xN(t,θ), x0

)
× π

(
θ, x0

)
.

• Seemingly innocuous implicit assumption may lead to serious statistical
bias and misleading inferences as unaccounted errors accumulate in the
discretisation

y (r)(t) = G(r)
(
x(t)

)
+ ε(r)(t)

= G(r)
(
xN(t)

)
+ δ(r)(t) + ε(r)(t)

where δ(r)(t) = G(r)
(
x(t)

)
− G(r)

(
xN(t)

)
.
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Full Bayesian posterior measure for model uncertainty

• Define a probability measure over functions

p
(
x(t,θ), f|θ, x0,Ψ

)

where Ψ are parameters of error model for x(t,θ), and f evaluations of
vector field at discretised approximate solution

• The full posterior distribution therefore follows as

p
(
θ, x0, x(t,θ), f,Ψ|y(t)

)
∝ p

(
y(t)|x(t,θ)

)︸ ︷︷ ︸
Likelihood

× p
(
x(t,θ), f|θ, x0,Ψ

)︸ ︷︷ ︸
Probabilistic Solution

×π
(
θ, x0,Ψ

)︸ ︷︷ ︸
Prior

• Uncertainty in the probabilistic solution x(t,θ) is made explicit taking into
account the mismatch between state solution and a finite approximation
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Full Bayesian posterior measure for model uncertainty

• Gaussian measure, µf
0 = N (mf

0, C f
0), on a Hilbert space, H, mean

function mf
0, covariance operator C f

0 well defined

• Eigenfunctions of covariance operator form basis for derivative space

• mf
0(t1) = `(t1), C f

0(t1, t2) = α−1 ∫R Rλ(t1, z)Rλ(t2, z)dz = RR(t1, t2).

• Posterior measure for ẋ(t) denoted by µf
n = N

(
mf

n(t), C f
n(t, t)

)
mf

n(t) = mf
0(t) + RR(t, s)

(
Λn + RR(s, s)

)−1(f1:n −mf
0(s)

)
C f

n(t, t) = RR(t, t)− RR(t, s)
(
Λn + RR(s, s)

)−1RR(s, t)

• Linearity of integral operator provides Gaussian prior measure for x(t)

• Posterior measure follows as p
(
x(t)

∣∣f1:N ,θ, x0,Ψ
)

= NT
(
mN(t), CN(t, t)

)
mn(t) = m0(t) + QR(t, s)

(
Λn + RR(s, s)

)−1(f1:n −mf
0(s)

)
Cn(t, t) = QQ(t, t)−QR(t, s)

(
Λn + RR(s, s)

)−1RQ(s, t),
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n = N

(
mf

n(t), C f
n(t, t)

)

mf
n(t) = mf

0(t) + RR(t, s)
(
Λn + RR(s, s)

)−1(f1:n −mf
0(s)

)
C f

n(t, t) = RR(t, t)− RR(t, s)
(
Λn + RR(s, s)

)−1RR(s, t)

• Linearity of integral operator provides Gaussian prior measure for x(t)

• Posterior measure follows as p
(
x(t)

∣∣f1:N ,θ, x0,Ψ
)

= NT
(
mN(t), CN(t, t)

)
mn(t) = m0(t) + QR(t, s)

(
Λn + RR(s, s)

)−1(f1:n −mf
0(s)

)
Cn(t, t) = QQ(t, t)−QR(t, s)

(
Λn + RR(s, s)

)−1RQ(s, t),



Full Bayesian posterior measure for model uncertainty

• Gaussian measure, µf
0 = N (mf

0, C f
0), on a Hilbert space, H, mean

function mf
0, covariance operator C f

0 well defined

• Eigenfunctions of covariance operator form basis for derivative space

• mf
0(t1) = `(t1), C f

0(t1, t2) = α−1 ∫R Rλ(t1, z)Rλ(t2, z)dz = RR(t1, t2).

• Posterior measure for ẋ(t) denoted by µf
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Probabilistic Integration

• Posterior measure of functional solutions in H is Gaussian Process

• Approximate solution at knots x̃(s1), · · · , x̃(sN) probability measure for
solution values at any t follows in Gaussian conditional

• Provides calibrated probability measure of uncertainty due to finite
solution and infinite model mismatch

p
(
θ, x0, x(t,θ), f,Ψ|y(t)

)
∝ p

(
y(t)|x(t,θ)

)︸ ︷︷ ︸
Likelihood

× p
(
x(t,θ), f|θ, x0,Ψ

)︸ ︷︷ ︸
Probabilistic Solution

×π
(
θ, x0,Ψ

)︸ ︷︷ ︸
Prior

• Important in quantifying uncertainty (or uncertainty reduction) in moving
from coarse to fine meshing

• Suggests probabilistic construction (integration), sampling of solutions
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Kuramoto-Sivashinsky model of reaction-diffusion

• Kuramoto-Sivashinsky model of reaction-diffusion systems

∂

∂t
u = −u

∂

∂x
u − ∂2

∂x2 u − ∂4

∂x4 u,

• Domain x ∈ [0, 32π], t ∈ [0, 150]

• Initial function u(0, x) = cos (x/16)
{

1 + sin (x/16)
}

• Discretize spatial domain, obtaining a high-dimensional (128
dimensions) system of stiff ODEs

• Use the integrating factor method to transform the system to one of
purely nonlinear ODEs

• Probabilistic IVP solutions sampled using 2K uniform solver knots

• Fifteen solution samples illustrate uncertainty over domain propagates
through system resulting in noticeably distinct dynamics, not captured by
deterministic numerical solvers.
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• Fifteen solution samples illustrate uncertainty over domain propagates
through system resulting in noticeably distinct dynamics, not captured by
deterministic numerical solvers.
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Kuramoto-Sivashinsky model of reaction-diffusion

Figure: Side view and top view of a probabilistic solution realization of the
Kuramoto-Sivashinsky PDE with initial function u(0, x) = cos (x/16)

{
1 + sin (x/16)

}
and domain x ∈ [0, 32π], t ∈ [0, 150].



Kuramoto-Sivashinsky model of reaction-diffusion

Figure: Fifteen realizations of the probabilistic solution of the Kuramoto-Sivashinsky
PDE using a fixed initial function. The solution is known to exhibit temporal chaos.
Deterministic numerical solutions only capture one type of behaviour given a fixed initial
function, which can lead to bias when used in conjunction with data-based inference.



Full Bayesian Uncertainty Quantification

• Consider now joint parameter and solution inference

• Draw K samples from the posterior distribution p
(
θ, x(t), f1:N |y(t), x0,Ψ

)
Initialize θ;
for k = 1 : K do

Propose θ? ∼ q(θ?|θ);
Conditionally simulate a solution realisation x?(t) from
p
(
x(t), f1:N

∣∣θ, x0,Ψ
)

Compute:

ρ(θ, x(t)→ θ?, x?(t)) =
q(θ|θ?)

q(θ?|θ)

p(θ?)

p(θ)

p
(
y(t)|G

(
x?(t)

)
,Σ
)

p
(
y(t)|G

(
x(t)

)
,Σ
) ;

if min[1, ρ(θ → θ?)] > U[0, 1] then
Update θ, x(t) = θ?, x?(t);

end if
Return θ, x(t).

end for
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Inference for model of cellular signal transduction

Figure: Experimental data and sample paths of the observation processes obtained by
transforming a sample from marginal posterior state distribution by observation function



Inference for model of cellular signal transduction

Figure: Marginal parameter posterior based on sample of size 100K generated by a
parallel tempering algorithm utilizing seven chains, with the first 10K samples removed.
Prior densities are shown in red.



Intractable Likelihoods under Mesh Refinement

What can we do?



Large Scale GMRF Ozone Column Model
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Large Scale GMRF Ozone Column Model

• Cressie, (2008) comprised of 173,405 ozone measurements

• Data and spatial extent has precluded full Bayesian analysis to date

• Matern covariance function triangulated over 196,002 vertices on sphere
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=
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}
• Exploit Pseudo-Marginal construction - Andrieu & Roberts, 2009 -

Russian Roulette unbiased truncation of infinite series - MCMC based
inference can proceed..... in principle ;-)
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• EQUIP presents some of the most exciting open research problems at
the leading edge of computational statistics

• Geometric approaches to MCMC

• Probabilistic solution of DE’s

• Addressing intractable nature of likelihoods under mesh refinement
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