

Quantifying Uncertainty in Differential Equation Models: Manifolds, Metrics and Russian Roulette

Mark Girolami

Department of Statistical Science University College London

October 9, 2013

Talk Outline

• Why statistical inference for mechanistic models is hugely challenging

- · Why statistical inference for mechanistic models is hugely challenging
- One approach is to attack the problem exploiting intrinsic geometry of mechanistic dynamics

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

- Why statistical inference for mechanistic models is hugely challenging
- One approach is to attack the problem exploiting intrinsic geometry of mechanistic dynamics
- Mechanistic dynamics described via PDE and ODE systems with non-analytic solutions

- Why statistical inference for mechanistic models is hugely challenging
- One approach is to attack the problem exploiting intrinsic geometry of mechanistic dynamics
- Mechanistic dynamics described via PDE and ODE systems with non-analytic solutions
- How to account for uncertainty induced by implicit definition of dynamics via PDE and ODE representation

- Why statistical inference for mechanistic models is hugely challenging
- One approach is to attack the problem exploiting intrinsic geometry of mechanistic dynamics
- Mechanistic dynamics described via PDE and ODE systems with non-analytic solutions
- How to account for uncertainty induced by implicit definition of dynamics via PDE and ODE representation
- Oftentimes under fine spatial mesh refinement computing a likelihood exactly may be infeasible

- Why statistical inference for mechanistic models is hugely challenging
- One approach is to attack the problem exploiting intrinsic geometry of mechanistic dynamics
- Mechanistic dynamics described via PDE and ODE systems with non-analytic solutions
- How to account for uncertainty induced by implicit definition of dynamics via PDE and ODE representation
- Oftentimes under fine spatial mesh refinement computing a likelihood exactly may be infeasible
- Forward and Inverse inference can still progress exploiting pseudo-marginal constructions in general form of Russian Roulette

Simple Dynamics

.

・ロット 白マ ト 山田 マ 山 マ シ く 日 マ

Simple Dynamics

Simple Dynamics

<□ > < @ > < E > < E > E 9 < @</p>

• Simple nonlinear model - protein autoregulation.

$$\frac{dx}{dt} = \frac{72}{36+y} - \alpha$$
$$\frac{dy}{dt} = \beta x - 1$$

• Simple nonlinear model - protein autoregulation.

$$\frac{dx}{dt} = \frac{72}{36+y} - \alpha$$
$$\frac{dy}{dt} = \beta x - 1$$

• 120 equally spaced measurements of system from t = 0...60 seconds with Normal errors having known variance 0.5, $\alpha = 3, \beta = 1$.

• Simple nonlinear model - protein autoregulation.

$$\frac{dx}{dt} = \frac{72}{36+y} - \alpha$$
$$\frac{dy}{dt} = \beta x - 1$$

- 120 equally spaced measurements of system from t = 0...60 seconds with Normal errors having known variance 0.5, $\alpha = 3, \beta = 1$.
- Induces a data density posing many challenges for simulation based inference

Systems Identification - Posterior Inference

Mixing of Markov Chains

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric Concepts in MCMC

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric Concepts in MCMC

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

• Expected Fisher Information $\mathbf{G}(\theta)$ is metric tensor of a Riemann manifold

Geometric Concepts in MCMC

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

- Expected Fisher Information $G(\theta)$ is metric tensor of a Riemann manifold
- For nonlinear DE's $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta)$ observed under Normal additive error with covariance , then FR metric tensor

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

- Expected Fisher Information $G(\theta)$ is metric tensor of a Riemann manifold
- For nonlinear DE's $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta)$ observed under Normal additive error with covariance , then FR metric tensor

$$\mathbf{G}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}} \mathbf{x} \mathbf{C}^{-1} \partial_{\boldsymbol{\theta}} \mathbf{x}^{\mathsf{T}}$$

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

- Expected Fisher Information $G(\theta)$ is metric tensor of a Riemann manifold
- For nonlinear DE's $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta)$ observed under Normal additive error with covariance , then FR metric tensor

$$\mathbf{G}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}} \mathbf{x} \mathbf{C}^{-1} \partial_{\boldsymbol{\theta}} \mathbf{x}^{\mathsf{T}}$$

• Sensitivity equations define metric can be exploited to locally transform coordinate system for sampling

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

- Expected Fisher Information $G(\theta)$ is metric tensor of a Riemann manifold
- For nonlinear DE's $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta)$ observed under Normal additive error with covariance, then FR metric tensor

$$\mathbf{G}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}} \mathbf{x} \mathbf{C}^{-1} \partial_{\boldsymbol{\theta}} \mathbf{x}^{\mathsf{T}}$$

- Sensitivity equations define metric can be exploited to locally transform coordinate system for sampling
- Discretised Langevin diffusion (MALA) on manifold defines efficient proposal mechanism

$$\boldsymbol{\theta}_{d}^{\prime} = \boldsymbol{\theta}_{d} + \frac{\epsilon^{2}}{2} \left(\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \right)_{d} - \epsilon^{2} \sum_{i,j}^{D} \boldsymbol{G}(\boldsymbol{\theta})_{ij}^{-1} \Gamma_{ij}^{d} + \epsilon \left(\sqrt{\mathbf{G}^{-1}(\boldsymbol{\theta})} \mathbf{z} \right)_{d}$$

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

• Rao, 1945 to first order

$$\chi^{2}(\delta\boldsymbol{\theta}) = \int \frac{|\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta} + \delta\boldsymbol{\theta}) - \boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})|^{2}}{\boldsymbol{p}(\mathbf{y};\boldsymbol{\theta})} d\mathbf{y} \approx \delta\boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}(\boldsymbol{\theta}) \delta\boldsymbol{\theta}$$

- Expected Fisher Information $G(\theta)$ is metric tensor of a Riemann manifold
- For nonlinear DE's $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta)$ observed under Normal additive error with covariance, then FR metric tensor

$$\mathbf{G}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}} \mathbf{x} \mathbf{C}^{-1} \partial_{\boldsymbol{\theta}} \mathbf{x}^{\mathsf{T}}$$

- Sensitivity equations define metric can be exploited to locally transform coordinate system for sampling
- Discretised Langevin diffusion (MALA) on manifold defines efficient proposal mechanism

$$\boldsymbol{\theta}_{d}^{\prime} = \boldsymbol{\theta}_{d} + \frac{\epsilon^{2}}{2} \left(\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \right)_{d} - \epsilon^{2} \sum_{i,j}^{D} \boldsymbol{G}(\boldsymbol{\theta})_{ij}^{-1} \Gamma_{ij}^{d} + \epsilon \left(\sqrt{\mathbf{G}^{-1}(\boldsymbol{\theta})} \mathbf{z} \right)_{d}$$

 Non-Euclidean geometry can exploit geodesics equations to devise sampling schemes (RMHMC)

Infinite and finite dimensional mismatch

· Uncertainty induced by discrete mesh

Infinite and finite dimensional mismatch

· Uncertainty induced by discrete mesh

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Infinite and finite dimensional mismatch

• Models relate $\dot{\mathbf{x}}(t, \theta) \in \mathbb{R}^{P}$ to states $\mathbf{x}(t, \theta) \in \mathbb{R}^{P}$ by vector field $f_{\theta}(t, \cdot) : \mathbb{R}^{P} \to \mathbb{R}^{P}$ indexed by parameter vector, $\theta \in \Theta$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Infinite and finite dimensional mismatch

- Models relate $\dot{\mathbf{x}}(t, \theta) \in \mathbb{R}^{P}$ to states $\mathbf{x}(t, \theta) \in \mathbb{R}^{P}$ by vector field $f_{\theta}(t, \cdot) : \mathbb{R}^{P} \to \mathbb{R}^{P}$ indexed by parameter vector, $\theta \in \Theta$
- Observations, y(t) ∈ ℝ^R, via transformation, G : ℝ^P → ℝ^R, of the *true or* exact solution, x(t, θ), of system at T time points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Infinite and finite dimensional mismatch

- Models relate $\dot{\mathbf{x}}(t, \theta) \in \mathbb{R}^{P}$ to states $\mathbf{x}(t, \theta) \in \mathbb{R}^{P}$ by vector field $f_{\theta}(t, \cdot) : \mathbb{R}^{P} \to \mathbb{R}^{P}$ indexed by parameter vector, $\theta \in \Theta$
- Observations, y(t) ∈ ℝ^R, via transformation, G : ℝ^P → ℝ^R, of the *true or* exact solution, x(t, θ), of system at T time points.

$$\mathbf{y}^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \Sigma^{(r)}),$$

where $\mathcal{G}^{(r)}$ is the *r*th output of the observation model.

Infinite and finite dimensional mismatch

- Models relate $\dot{\mathbf{x}}(t, \theta) \in \mathbb{R}^{P}$ to states $\mathbf{x}(t, \theta) \in \mathbb{R}^{P}$ by vector field $f_{\theta}(t, \cdot) : \mathbb{R}^{P} \to \mathbb{R}^{P}$ indexed by parameter vector, $\theta \in \Theta$
- Observations, y(t) ∈ ℝ^R, via transformation, G : ℝ^P → ℝ^R, of the *true or* exact solution, x(t, θ), of system at T time points.

$$\mathbf{y}^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \Sigma^{(r)}),$$

where $\mathcal{G}^{(r)}$ is the *r*th output of the observation model.

 If unique analytic, x(t, θ), at each observation time (and spatial position in the case of PDEs), given data y(t) posterior takes the form

Infinite and finite dimensional mismatch

- Models relate $\dot{\mathbf{x}}(t, \theta) \in \mathbb{R}^{P}$ to states $\mathbf{x}(t, \theta) \in \mathbb{R}^{P}$ by vector field $f_{\theta}(t, \cdot) : \mathbb{R}^{P} \to \mathbb{R}^{P}$ indexed by parameter vector, $\theta \in \Theta$
- Observations, y(t) ∈ ℝ^R, via transformation, G : ℝ^P → ℝ^R, of the *true or* exact solution, x(t, θ), of system at T time points.

$$\mathbf{y}^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \Sigma^{(r)}),$$

where $\mathcal{G}^{(r)}$ is the *r*th output of the observation model.

 If unique analytic, x(t, θ), at each observation time (and spatial position in the case of PDEs), given data y(t) posterior takes the form

$$p(\theta, \mathbf{x}_0 | \mathbf{y}(\mathbf{t})) \propto p(\mathbf{y}(\mathbf{t}) | \mathbf{x}(\mathbf{t}, \theta), \mathbf{x}_0) \times \pi(\theta, \mathbf{x}_0).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Infinite and finite dimensional mismatch

• Due to non-analytic $\mathbf{x}(\mathbf{t}, \theta)$, likelihood $p(\mathbf{y}(\mathbf{t}) | \mathbf{x}(\mathbf{t}, \theta), \mathbf{x}_0)$ unavailable

Infinite and finite dimensional mismatch

- Due to non-analytic $\mathbf{x}(\mathbf{t}, \theta)$, likelihood $p(\mathbf{y}(\mathbf{t})|\mathbf{x}(\mathbf{t}, \theta), \mathbf{x}_0)$ unavailable
- Replace x(t, θ) with finite-dimensional representation x^N(t, θ) Finite spatial and temporal mesh, i.e. numerically integrated solution

Infinite and finite dimensional mismatch

- Due to non-analytic $\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})$, likelihood $p(\mathbf{y}(\mathbf{t})|\mathbf{x}(\mathbf{t}, \boldsymbol{\theta}), \mathbf{x}_0)$ unavailable
- Replace x(t, θ) with finite-dimensional representation x^N(t, θ) Finite spatial and temporal mesh, i.e. numerically integrated solution
- Disregard the additional uncertainty induced in the discrete solution

$$\mathbf{y}^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \boldsymbol{\Sigma}^{(r)}),$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Infinite and finite dimensional mismatch

- Due to non-analytic $\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})$, likelihood $p(\mathbf{y}(\mathbf{t})|\mathbf{x}(\mathbf{t}, \boldsymbol{\theta}), \mathbf{x}_0)$ unavailable
- Replace x(t, θ) with finite-dimensional representation x^N(t, θ) Finite spatial and temporal mesh, i.e. numerically integrated solution
- Disregard the additional uncertainty induced in the discrete solution $y^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \boldsymbol{\Sigma}^{(r)}),$

Yielding posterior measure

$$p^{N}(\theta, \mathbf{x}_{0}|\mathbf{y}(\mathbf{t})) \propto p(\mathbf{y}(\mathbf{t})|\mathbf{x}^{N}(\mathbf{t}, \theta), \mathbf{x}_{0}) imes \pi(\theta, \mathbf{x}_{0}).$$

Infinite and finite dimensional mismatch

- Due to non-analytic $\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})$, likelihood $p(\mathbf{y}(\mathbf{t})|\mathbf{x}(\mathbf{t}, \boldsymbol{\theta}), \mathbf{x}_0)$ unavailable
- Replace x(t, θ) with finite-dimensional representation x^N(t, θ) Finite spatial and temporal mesh, i.e. numerically integrated solution
- Disregard the additional uncertainty induced in the discrete solution $y^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \boldsymbol{\Sigma}^{(r)}),$

Yielding posterior measure

$$p^{N}(\theta, \mathbf{x}_{0}|\mathbf{y}(\mathbf{t})) \propto p(\mathbf{y}(\mathbf{t})|\mathbf{x}^{N}(\mathbf{t}, \theta), \mathbf{x}_{0}) imes \pi(\theta, \mathbf{x}_{0}).$$

 Seemingly innocuous implicit assumption may lead to serious statistical bias and misleading inferences as unaccounted errors accumulate in the discretisation

Infinite and finite dimensional mismatch

- Due to non-analytic $\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})$, likelihood $p(\mathbf{y}(\mathbf{t})|\mathbf{x}(\mathbf{t}, \boldsymbol{\theta}), \mathbf{x}_0)$ unavailable
- Replace x(t, θ) with finite-dimensional representation x^N(t, θ) Finite spatial and temporal mesh, i.e. numerically integrated solution
- Disregard the additional uncertainty induced in the discrete solution $y^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t}, \boldsymbol{\theta})) + \epsilon^{(r)}(\mathbf{t}), \qquad \epsilon^{(r)}(\mathbf{t}) \sim \mathcal{N}_{T}(\mathbf{0}, \boldsymbol{\Sigma}^{(r)}),$

Yielding posterior measure

$$p^{N}(\theta, \mathbf{x}_{0}|\mathbf{y}(\mathbf{t})) \propto p(\mathbf{y}(\mathbf{t})|\mathbf{x}^{N}(\mathbf{t}, \theta), \mathbf{x}_{0}) imes \pi(\theta, \mathbf{x}_{0}).$$

 Seemingly innocuous implicit assumption may lead to serious statistical bias and misleading inferences as unaccounted errors accumulate in the discretisation

$$\begin{aligned} y^{(r)}(\mathbf{t}) &= \mathcal{G}^{(r)}(\mathbf{x}(\mathbf{t})) + \epsilon^{(r)}(\mathbf{t}) \\ &= \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t})) + \delta^{(r)}(\mathbf{t}) + \epsilon^{(r)}(\mathbf{t}) \\ \end{aligned}$$
where $\delta^{(r)}(\mathbf{t}) = \mathcal{G}^{(r)}(\mathbf{x}(\mathbf{t})) - \mathcal{G}^{(r)}(\mathbf{x}^{N}(\mathbf{t})).$

Full Bayesian posterior measure for model uncertainty

• Define a probability measure over functions

 $\rho\big(\bm{x}(\bm{t},\bm{\theta}),\bm{f}|\bm{\theta},\bm{x}_0,\Psi\big)$

Full Bayesian posterior measure for model uncertainty

• Define a probability measure over functions

 $\rho\big(\bm{x}(\bm{t},\bm{\theta}),\bm{f}|\bm{\theta},\bm{x}_0,\Psi\big)$

where Ψ are parameters of error model for $\mathbf{x}(\mathbf{t}, \theta)$, and \mathbf{f} evaluations of vector field at discretised approximate solution

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Full Bayesian posterior measure for model uncertainty

• Define a probability measure over functions

 $\rho\big(\boldsymbol{x}(\boldsymbol{t},\boldsymbol{\theta}),\boldsymbol{f}|\boldsymbol{\theta},\boldsymbol{x}_{0},\boldsymbol{\Psi}\big)$

where Ψ are parameters of error model for $\mathbf{x}(\mathbf{t}, \boldsymbol{\theta})$, and \mathbf{f} evaluations of vector field at discretised approximate solution

• The full posterior distribution therefore follows as

$$p(\theta, \mathbf{x}_0, \mathbf{x}(\mathbf{t}, \theta), \mathbf{f}, \Psi | \mathbf{y}(\mathbf{t})) \propto \underbrace{p(\mathbf{y}(\mathbf{t}) | \mathbf{x}(\mathbf{t}, \theta))}_{\text{Likelihood}} \times \underbrace{p(\mathbf{x}(\mathbf{t}, \theta), \mathbf{f} | \theta, \mathbf{x}_0, \Psi)}_{\text{Probabilistic Solution}} \times \underbrace{\pi(\theta, \mathbf{x}_0, \Psi)}_{\text{Prior}}$$

Full Bayesian posterior measure for model uncertainty

· Define a probability measure over functions

 $\rho\big(\boldsymbol{x}(\boldsymbol{t},\boldsymbol{\theta}),\boldsymbol{f}|\boldsymbol{\theta},\boldsymbol{x}_{0},\boldsymbol{\Psi}\big)$

where Ψ are parameters of error model for $\mathbf{x}(\mathbf{t}, \theta)$, and \mathbf{f} evaluations of vector field at discretised approximate solution

• The full posterior distribution therefore follows as

 $p\big(\boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{x}(t, \boldsymbol{\theta}), \boldsymbol{f}, \boldsymbol{\Psi} | \boldsymbol{y}(t) \big) \propto \underbrace{ p\big(\boldsymbol{y}(t) | \boldsymbol{x}(t, \boldsymbol{\theta}) \big) }_{\text{Likelihood}} \times \underbrace{ p\big(\boldsymbol{x}(t, \boldsymbol{\theta}), \boldsymbol{f} | \boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{\Psi} \big) }_{\text{Probabilistic Solution}} \times \underbrace{ \pi\big(\boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{\Psi} \big) }_{\text{Prior}}$

• Uncertainty in the probabilistic solution $\mathbf{x}(\mathbf{t}, \theta)$ is made explicit taking into account the mismatch between state solution and a finite approximation

Full Bayesian posterior measure for model uncertainty

• Approximate solutions at *N* knots, $\tilde{x}(s_1), \cdots, \tilde{x}(s_N)$

- Approximate solutions at *N* knots, $\tilde{x}(s_1), \dots, \tilde{x}(s_N)$
- From these obtain values of N approximate vector field evaluations as,

$$\mathbf{f}_{1:N} = \left[f_{\theta}(s_1, \tilde{x}(s_1)), \cdots, f_{\theta}(s_N, \tilde{x}(s_N))\right]$$

Full Bayesian posterior measure for model uncertainty

- Approximate solutions at *N* knots, $\tilde{x}(s_1), \dots, \tilde{x}(s_N)$
- From these obtain values of N approximate vector field evaluations as,

$$\mathbf{f}_{1:N} = \left[f_{\theta}(s_1, \tilde{x}(s_1)), \cdots, f_{\theta}(s_N, \tilde{x}(s_N))\right]$$

• Error between $\mathbf{f}_{1:N}$ and $\dot{x}(\mathbf{s}) = [\dot{x}(s_1), \cdots, \dot{x}(s_N)]$ define probabilistically

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

- Approximate solutions at *N* knots, $\tilde{x}(s_1), \dots, \tilde{x}(s_N)$
- From these obtain values of N approximate vector field evaluations as,

$$\mathbf{f}_{1:N} = \left[f_{\theta}(s_1, \tilde{x}(s_1)), \cdots, f_{\theta}(s_N, \tilde{x}(s_N))\right]$$

- Error between $\mathbf{f}_{1:N}$ and $\dot{x}(\mathbf{s}) = [\dot{x}(s_1), \cdots, \dot{x}(s_N)]$ define probabilistically
- Infinite dimension function space, no Lebesgue measure

Full Bayesian posterior measure for model uncertainty

- Approximate solutions at *N* knots, $\tilde{x}(s_1), \dots, \tilde{x}(s_N)$
- From these obtain values of N approximate vector field evaluations as,

$$\mathbf{f}_{1:N} = \left[f_{\theta}(s_1, \tilde{x}(s_1)), \cdots, f_{\theta}(s_N, \tilde{x}(s_N))\right]$$

- Error between $\mathbf{f}_{1:N}$ and $\dot{x}(\mathbf{s}) = [\dot{x}(s_1), \cdots, \dot{x}(s_N)]$ define probabilistically
- · Infinite dimension function space, no Lebesgue measure
- Radon-Nikodym derivative of posterior measure with respect to GP prior

$$\frac{d\mu^{f}}{d\mu_{0}^{f}}(\dot{x}(\mathbf{s})) \propto \exp\left(-\frac{1}{2}||\dot{x}(\mathbf{s}) - \mathbf{f}_{1:N}||_{\mathbf{\Lambda}_{N}}^{2}\right)$$

< ロト < 団ト < 三ト < 三ト < 回 < つ < つ

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Full Bayesian posterior measure for model uncertainty

Gaussian measure, μ^f₀ = N(m^f₀, C^f₀), on a Hilbert space, H, mean function m^f₀, covariance operator C^f₀ well defined

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Gaussian measure, μ^f₀ = N(m^f₀, C^f₀), on a Hilbert space, H, mean function m^f₀, covariance operator C^f₀ well defined
- Eigenfunctions of covariance operator form basis for derivative space

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$
- Posterior measure for $\dot{x}(\mathbf{t})$ denoted by $\mu_n^f = \mathcal{N}(m_n^f(\mathbf{t}), \mathcal{C}_n^f(\mathbf{t}, \mathbf{t}))$

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$
- Posterior measure for $\dot{x}(\mathbf{t})$ denoted by $\mu_n^f = \mathcal{N}(m_n^f(\mathbf{t}), \mathcal{C}_n^f(\mathbf{t}, \mathbf{t}))$

$$m_{0}^{f}(\mathbf{t}) = m_{0}^{f}(\mathbf{t}) + \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_{n} + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} (\mathbf{f}_{1:n} - m_{0}^{f}(\mathbf{s}))$$
$$\mathcal{C}_{n}^{f}(\mathbf{t}, \mathbf{t}) = \mathsf{RR}(\mathbf{t}, \mathbf{t}) - \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_{n} + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} \mathsf{RR}(\mathbf{s}, \mathbf{t})$$

Full Bayesian posterior measure for model uncertainty

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$
- Posterior measure for $\dot{x}(\mathbf{t})$ denoted by $\mu_n^f = \mathcal{N}(m_n^f(\mathbf{t}), \mathcal{C}_n^f(\mathbf{t}, \mathbf{t}))$

$$m_{0}^{f}(\mathbf{t}) = m_{0}^{f}(\mathbf{t}) + \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_{n} + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} (\mathbf{f}_{1:n} - m_{0}^{f}(\mathbf{s}))$$
$$\mathcal{C}_{n}^{f}(\mathbf{t}, \mathbf{t}) = \mathsf{RR}(\mathbf{t}, \mathbf{t}) - \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_{n} + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} \mathsf{RR}(\mathbf{s}, \mathbf{t})$$

• Linearity of integral operator provides Gaussian prior measure for x(t)

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$
- Posterior measure for $\dot{x}(\mathbf{t})$ denoted by $\mu_n^f = \mathcal{N}(m_n^f(\mathbf{t}), \mathcal{C}_n^f(\mathbf{t}, \mathbf{t}))$

$$m_n^{f}(\mathbf{t}) = m_0^{f}(\mathbf{t}) + \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_n + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} (\mathbf{f}_{1:n} - m_0^{f}(\mathbf{s}))$$

$$\mathcal{C}_n^{f}(\mathbf{t}, \mathbf{t}) = \mathsf{RR}(\mathbf{t}, \mathbf{t}) - \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_n + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} \mathsf{RR}(\mathbf{s}, \mathbf{t})$$

- Linearity of integral operator provides Gaussian prior measure for x(t)
- Posterior measure follows as $p(x(t)|\mathbf{f}_{1:N}, \theta, \mathbf{x}_0, \Psi) = \mathcal{N}_T(m_N(t), \mathcal{C}_N(t, t))$

- Gaussian measure, $\mu_0^f = \mathcal{N}(m_0^f, \mathcal{C}_0^f)$, on a Hilbert space, \mathcal{H} , mean function m_0^f , covariance operator \mathcal{C}_0^f well defined
- Eigenfunctions of covariance operator form basis for derivative space
- $m_0^t(t_1) = \ell(t_1), \quad C_0^t(t_1, t_2) = \alpha^{-1} \int_{\mathbb{R}} \mathsf{R}_\lambda(t_1, z) \mathsf{R}_\lambda(t_2, z) dz = \mathsf{RR}(t_1, t_2).$
- Posterior measure for $\dot{x}(\mathbf{t})$ denoted by $\mu_n^f = \mathcal{N}(m_n^f(\mathbf{t}), \mathcal{C}_n^f(\mathbf{t}, \mathbf{t}))$

$$m_n^{f}(\mathbf{t}) = m_0^{f}(\mathbf{t}) + \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_n + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} (\mathbf{f}_{1:n} - m_0^{f}(\mathbf{s}))$$

$$\mathcal{C}_n^{f}(\mathbf{t}, \mathbf{t}) = \mathsf{RR}(\mathbf{t}, \mathbf{t}) - \mathsf{RR}(\mathbf{t}, \mathbf{s}) (\Lambda_n + \mathsf{RR}(\mathbf{s}, \mathbf{s}))^{-1} \mathsf{RR}(\mathbf{s}, \mathbf{t})$$

- Linearity of integral operator provides Gaussian prior measure for x(t)
- Posterior measure follows as $p(x(t)|\mathbf{f}_{1:N}, \theta, \mathbf{x}_0, \Psi) = \mathcal{N}_T(m_N(t), \mathcal{C}_N(t, t))$

$$m_n(\mathbf{t}) = m_0(\mathbf{t}) + QR(\mathbf{t}, \mathbf{s}) (\Lambda_n + RR(\mathbf{s}, \mathbf{s}))^{-1} (\mathbf{f}_{1:n} - m_0^f(\mathbf{s}))$$

$$C_n(\mathbf{t}, \mathbf{t}) = QQ(\mathbf{t}, \mathbf{t}) - QR(\mathbf{t}, \mathbf{s}) (\Lambda_n + RR(\mathbf{s}, \mathbf{s}))^{-1} RQ(\mathbf{s}, \mathbf{t}),$$

Probabilistic Integration

• Posterior measure of functional solutions in ${\mathcal H}$ is Gaussian Process

- Posterior measure of functional solutions in $\ensuremath{\mathcal{H}}$ is Gaussian Process
- Approximate solution at knots \$\tilde{x}(s_1), \dots, \$\tilde{x}(s_N)\$ probability measure for solution values at any *t* follows in Gaussian conditional

- Posterior measure of functional solutions in $\ensuremath{\mathcal{H}}$ is Gaussian Process
- Approximate solution at knots \$\tilde{x}(s_1), \dots, \$\tilde{x}(s_N)\$ probability measure for solution values at any *t* follows in Gaussian conditional
- Provides calibrated probability measure of uncertainty due to finite solution and infinite model mismatch

- Posterior measure of functional solutions in ${\mathcal H}$ is Gaussian Process
- Approximate solution at knots \$\tilde{x}(s_1), \dots, \$\tilde{x}(s_N)\$ probability measure for solution values at any *t* follows in Gaussian conditional
- Provides calibrated probability measure of uncertainty due to finite solution and infinite model mismatch

$$p(\boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{x}(t, \boldsymbol{\theta}), \boldsymbol{f}, \boldsymbol{\Psi} | \boldsymbol{y}(t)) \propto \underbrace{p(\boldsymbol{y}(t) | \boldsymbol{x}(t, \boldsymbol{\theta}))}_{\text{Likelihood}} \times \underbrace{p(\boldsymbol{x}(t, \boldsymbol{\theta}), \boldsymbol{f} | \boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{\Psi})}_{\text{Probabilistic Solution}} \times \underbrace{\pi(\boldsymbol{\theta}, \boldsymbol{x}_{0}, \boldsymbol{\Psi})}_{\text{Prior}}$$

- Posterior measure of functional solutions in ${\mathcal H}$ is Gaussian Process
- Approximate solution at knots \$\tilde{x}(s_1), \dots, \$\tilde{x}(s_N)\$ probability measure for solution values at any *t* follows in Gaussian conditional
- Provides calibrated probability measure of uncertainty due to finite solution and infinite model mismatch

$$p(\theta, \mathbf{x}_0, \mathbf{x}(t, \theta), \mathbf{f}, \Psi | \mathbf{y}(t)) \propto \underbrace{p(\mathbf{y}(t) | \mathbf{x}(t, \theta))}_{\text{Likelihood}} \times \underbrace{p(\mathbf{x}(t, \theta), \mathbf{f} | \theta, \mathbf{x}_0, \Psi)}_{\text{Probabilistic Solution}} \times \underbrace{\pi(\theta, \mathbf{x}_0, \Psi)}_{\text{Prior}}$$

• Important in quantifying uncertainty (or uncertainty reduction) in moving from coarse to fine meshing

- Posterior measure of functional solutions in $\ensuremath{\mathcal{H}}$ is Gaussian Process
- Approximate solution at knots \$\tilde{x}(s_1), \dots, \$\tilde{x}(s_N)\$ probability measure for solution values at any *t* follows in Gaussian conditional
- Provides calibrated probability measure of uncertainty due to finite solution and infinite model mismatch

$$p(\theta, \mathbf{x}_0, \mathbf{x}(t, \theta), \mathbf{f}, \Psi | \mathbf{y}(t)) \propto \underbrace{p(\mathbf{y}(t) | \mathbf{x}(t, \theta))}_{\text{Likelihood}} \times \underbrace{p(\mathbf{x}(t, \theta), \mathbf{f} | \theta, \mathbf{x}_0, \Psi)}_{\text{Probabilistic Solution}} \times \underbrace{\pi(\theta, \mathbf{x}_0, \Psi)}_{\text{Prior}}$$

- Important in quantifying uncertainty (or uncertainty reduction) in moving from coarse to fine meshing
- Suggests probabilistic construction (integration), sampling of solutions

Kuramoto-Sivashinsky model of reaction-diffusion

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kuramoto-Sivashinsky model of reaction-diffusion

· Kuramoto-Sivashinsky model of reaction-diffusion systems

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

• Domain $x \in [0, 32\pi], t \in [0, 150]$

Kuramoto-Sivashinsky model of reaction-diffusion

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

- Domain $x \in [0, 32\pi], t \in [0, 150]$
- Initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$

Kuramoto-Sivashinsky model of reaction-diffusion

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

- Domain $x \in [0, 32\pi], t \in [0, 150]$
- Initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$
- Discretize spatial domain, obtaining a high-dimensional (128 dimensions) system of stiff ODEs

Kuramoto-Sivashinsky model of reaction-diffusion

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

- Domain $x \in [0, 32\pi], t \in [0, 150]$
- Initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$
- Discretize spatial domain, obtaining a high-dimensional (128 dimensions) system of stiff ODEs
- Use the integrating factor method to transform the system to one of purely nonlinear ODEs

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

- Domain $x \in [0, 32\pi], t \in [0, 150]$
- Initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$
- Discretize spatial domain, obtaining a high-dimensional (128 dimensions) system of stiff ODEs
- Use the integrating factor method to transform the system to one of purely nonlinear ODEs
- Probabilistic IVP solutions sampled using 2K uniform solver knots

$$\frac{\partial}{\partial t}u = -u\frac{\partial}{\partial x}u - \frac{\partial^2}{\partial x^2}u - \frac{\partial^4}{\partial x^4}u,$$

- Domain $x \in [0, 32\pi], t \in [0, 150]$
- Initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$
- Discretize spatial domain, obtaining a high-dimensional (128 dimensions) system of stiff ODEs
- Use the integrating factor method to transform the system to one of purely nonlinear ODEs
- Probabilistic IVP solutions sampled using 2K uniform solver knots
- Fifteen solution samples illustrate uncertainty over domain propagates through system resulting in noticeably distinct dynamics, not captured by deterministic numerical solvers.

Figure: Side view and top view of a probabilistic solution realization of the Kuramoto-Sivashinsky PDE with initial function $u(0, x) = \cos(x/16) \{1 + \sin(x/16)\}$ and domain $x \in [0, 32\pi], t \in [0, 150]$.

Figure: Fifteen realizations of the probabilistic solution of the Kuramoto-Sivashinsky PDE using a fixed initial function. The solution is known to exhibit temporal chaos. Deterministic numerical solutions only capture one type of behaviour given a fixed initial function, which can lead to bias when used in conjunction with data-based inference.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Full Bayesian Uncertainty Quantification

• Consider now joint parameter and solution inference

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Full Bayesian Uncertainty Quantification

- · Consider now joint parameter and solution inference
- Draw K samples from the posterior distribution p(θ, x(t), f_{1:N}|y(t), x₀, Ψ)

Full Bayesian Uncertainty Quantification

- · Consider now joint parameter and solution inference
- Draw K samples from the posterior distribution p(θ, x(t), f_{1:N}|y(t), x₀, Ψ) Initialize θ;
 - $\begin{array}{l} \text{for } k = 1: \mathcal{K} \text{ do} \\ \text{Propose } \theta^{\star} \sim q(\theta^{\star}|\theta); \\ \text{Conditionally simulate a solution realisation } \mathbf{x}^{\star}(\mathbf{t}) \text{ from } \\ p(\mathbf{x}(\mathbf{t}), \mathbf{f}_{1:N} \big| \theta, \mathbf{x}_0, \Psi) \\ \text{Compute:} \end{array}$

$$\begin{split} \rho(\theta, \mathbf{x}(t) \to \theta^{\star}, \mathbf{x}^{\star}(t)) &= \frac{q(\theta|\theta^{\star})}{q(\theta^{\star}|\theta)} \; \frac{p(\theta^{\star})}{p(\theta)} \; \frac{p(\mathbf{y}(t)|\mathcal{G}(\mathbf{x}^{\star}(t)), \Sigma)}{p(\mathbf{y}(t)|\mathcal{G}(\mathbf{x}(t)), \Sigma)}; \\ \text{if } \min[1, \rho(\theta \to \theta^{\star})] > \mathsf{U}[0, 1] \; \text{ then} \\ \text{Update } \theta, \mathbf{x}(t) &= \theta^{\star}, \mathbf{x}^{\star}(t); \\ \text{ end if} \\ \text{Return } \theta, \mathbf{x}(t). \\ \text{end for} \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

в

Sac

Inference for model of cellular signal transduction

Figure: Experimental data and sample paths of the observation processes obtained by transforming a sample from marginal posterior state distribution by observation function

Inference for model of cellular signal transduction

Figure: Marginal parameter posterior based on sample of size 100K generated by a parallel tempering algorithm utilizing seven chains, with the first 10K samples removed. Prior densities are shown in red. ・ロト ・ 戸 ト ・ 三 ト ・ 三 ト

в 500

Intractable Likelihoods under Mesh Refinement

What can we do?

<ロ> <0</p>

• Cressie, (2008) comprised of 173,405 ozone measurements

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Cressie, (2008) comprised of 173,405 ozone measurements
- Data and spatial extent has precluded full Bayesian analysis to date

- Cressie, (2008) comprised of 173,405 ozone measurements
- Data and spatial extent has precluded full Bayesian analysis to date
- Matern covariance function triangulated over 196,002 vertices on sphere

- Cressie, (2008) comprised of 173,405 ozone measurements
- Data and spatial extent has precluded full Bayesian analysis to date
- Matern covariance function triangulated over 196,002 vertices on sphere

$$p(\mathbf{x}|\theta) = \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2}\left[\log|\mathbf{C}_{\theta}| + \mathbf{x}^{\mathsf{T}}\mathbf{C}_{\theta}^{-1}\mathbf{x}\right]\right\}$$

- Cressie, (2008) comprised of 173,405 ozone measurements
- Data and spatial extent has precluded full Bayesian analysis to date
- Matern covariance function triangulated over 196,002 vertices on sphere

$$\begin{split} \rho(\mathbf{x}|\theta) &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2}\left[\log|\mathbf{C}_{\theta}| + \mathbf{x}^{\mathsf{T}}\mathbf{C}_{\theta}^{-1}\mathbf{x}\right]\right\} \\ &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}\mathsf{E}\{\mathbf{z}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{n}\mathbf{z}\} - \frac{1}{2}\sum_{m=0}^{\infty}\mathbf{x}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{m}\mathbf{x}\right\} \end{split}$$

- Cressie, (2008) comprised of 173,405 ozone measurements
- · Data and spatial extent has precluded full Bayesian analysis to date
- Matern covariance function triangulated over 196,002 vertices on sphere

$$\begin{split} \rho(\mathbf{x}|\theta) &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2}\left[\log|\mathbf{C}_{\theta}| + \mathbf{x}^{\mathsf{T}}\mathbf{C}_{\theta}^{-1}\mathbf{x}\right]\right\} \\ &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}\mathsf{E}\{\mathbf{z}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{n}\mathbf{z}\} - \frac{1}{2}\sum_{m=0}^{\infty}\mathbf{x}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{m}\mathbf{x}\right\} \\ \rho(\mathbf{x}\mid\theta) &= \frac{1}{(2\pi)^{N/2}} \exp\left\{\frac{1}{2}\log|\mathbf{Q}_{\theta}| - \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{\theta}\mathbf{x}\right\} \\ &= \frac{1}{(2\pi)^{N/2}} \exp\left\{\frac{1}{2}\mathbb{E}_{\mathbf{z}}\{\mathbf{z}^{\mathsf{T}}\log(\mathbf{Q}_{\theta})\mathbf{z}\} - \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{\theta}\mathbf{x}\right\} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Cressie, (2008) comprised of 173,405 ozone measurements
- Data and spatial extent has precluded full Bayesian analysis to date
- Matern covariance function triangulated over 196,002 vertices on sphere

$$\begin{split} \rho(\mathbf{x}|\theta) &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2}\left[\log|\mathbf{C}_{\theta}| + \mathbf{x}^{\mathsf{T}}\mathbf{C}_{\theta}^{-1}\mathbf{x}\right]\right\} \\ &= \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left\{\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}\mathsf{E}\{\mathbf{z}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{n}\mathbf{z}\} - \frac{1}{2}\sum_{m=0}^{\infty}\mathbf{x}^{\mathsf{T}}(\mathbf{I}-\mathbf{C}_{\theta})^{m}\mathbf{x}\right\} \\ \rho(\mathbf{x}\mid\theta) &= \frac{1}{(2\pi)^{N/2}} \exp\left\{\frac{1}{2}\log|\mathbf{Q}_{\theta}| - \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{\theta}\mathbf{x}\right\} \\ &= \frac{1}{(2\pi)^{N/2}} \exp\left\{\frac{1}{2}\mathbb{E}_{\mathbf{z}}\{\mathbf{z}^{\mathsf{T}}\log(\mathbf{Q}_{\theta})\mathbf{z}\} - \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{\theta}\mathbf{x}\right\} \end{split}$$

 Exploit Pseudo-Marginal construction - Andrieu & Roberts, 2009 -Russian Roulette unbiased truncation of infinite series - MCMC based inference can proceed..... in principle ;-)

Conclusions and Discussion

• EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- · Geometric approaches to MCMC

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's
- Addressing intractable nature of likelihoods under mesh refinement

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's
- Addressing intractable nature of likelihoods under mesh refinement
- · EQUIP is awesome

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's
- Addressing intractable nature of likelihoods under mesh refinement
- · EQUIP is awesome
- · EQUIP is awesome

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's
- Addressing intractable nature of likelihoods under mesh refinement
- · EQUIP is awesome
- · EQUIP is awesome
- · EQUIP is awesome

- EQUIP presents some of the most exciting open research problems at the leading edge of computational statistics
- Geometric approaches to MCMC
- Probabilistic solution of DE's
- Addressing intractable nature of likelihoods under mesh refinement
- · EQUIP is awesome
- · EQUIP is awesome
- · EQUIP is awesome